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Abstract—As NASA continues to develop and launch satellites, 
rovers, landers, and other spacecraft, there is a growing need to 
increase the level of autonomy of each system. As the number of 
spacecraft increases, it becomes increasingly difficult to actively 
monitor each of them for off-nominal behavior, even with the 
help of a large staff. Furthermore, time-sensitive faults might 
require a faster response time than what human operators or 
mission-control can provide. Therefore, one of the key 
capabilities for an autonomous system is the ability to manage 
faults and off-nominal behavior. The paper will describe a new 
framework called MAIFLOWER (Modular AI for Faults: Local 
Watch and Efficient Response) designed to provide 
generalizable, automatic anomaly detection, diagnosis and 
recovery capabilities. MAIFLOWER offers several key benefits. 
First, MAIFLOWER provides a robust fault detection interface 
to quickly, accurately, and autonomously identify anomalous 
behavior from onboard telemetry data. Second, MAIFLOWER 
integrates several anomaly detection methods from knowledge-
based approaches such as model-based reasoning (MBR) to 
data-driven methods like machine learning (ML) and 
thermodynamic analysis into a single package, leveraging 
strengths of each method while mitigating their weaknesses. 
Third, the fault management modules of MAIFLOWER are 
designed to cue adaptive execution modules as well as trigger 
replanning and rescheduling procedures to appropriately 
respond to faults, creating a closed loop execution environment 
for continuous anomaly detection and fault management. The 
paper also describes the application of MAIFLOWER to 
Astrobotic's Vertical Solar Array Technology Optimized for 
Lunar Traverse (VOLT), a mobile power generation and 
transmission platform being developed as part of Astrobotic’s 
lunar power grid architecture.  
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1. INTRODUCTION 
Monitoring and diagnosing off-nominal behavior for 
autonomous space systems is a very critical, but challenging 
problem.  The majority of autonomous systems in space will 
be unmanned and, as our explorations take us further from 
the Earth, the latencies involved in human interventions when 
faults occur will make this an infeasible option. Furthermore, 
anomalies can render systems non-operational in a matter of 
seconds, making it critically important to detect and diagnose 
them very rapidly. Therefore, autonomous systems require 
AI based off-nominal behavior detection and diagnosis 
systems and the ability to develop and execute recovery plans 
autonomously without the need to communicate with ground 
controllers [1]. This paper describes the Modular AI for 
Faults: Local Watch and Efficient Response (MAIFLOWER) 
systems which provides these capabilities.  

Model-based reasoning (MBR) and data-driven or machine 
learning methods are typically used for anomaly detection 
and diagnosis (REF). Each has associated costs and benefits. 
Unsupervised learning approaches are effective at detecting 
previously unknown or unforeseen anomalies. Furthermore, 
unsupervised approaches like clustering can automatically 
model patterns of nominal behavior from unlabeled data and 
therefore can be used to rapidly develop system models using 
data generated either from the system itself or a simulation or 
a digital twin. Machine learning approaches, however, cannot 
effectively trace the root causes for an anomaly for a variety 
of reasons: 1. Not having the information (i.e., labels) needed 
to discriminate between faulty and nominal behavior; and 2. 
lacking insight into un-instrumented system components. 
The latter is an important point: not every component of a 
system will be instrumented to provide telemetry, and thus 
the machine learning system will not have visibility into 
significant portions of the system. MBR approaches on the 
other hand are effective at detecting and diagnosing faults 
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that are known but require upfront model development. 
Furthermore, they may not detect unforeseen anomalies not 
captured in the model. 

Combining MBR with machine learning can offer the 
benefits of both methods while mitigating some of their 
shortcomings. MAIFLOWER is a framework for doing this. 
It combines  model-based reasoning (MBR) and a novel data-
driven approach called Thermodynamic Reasoning 
Intelligent Anomaly Detection (TRIAD) [2]. TRIAD 
combines analysis in time and frequency domains for fast 
anomaly detection. TRIAD is designed to incorporate 
additional data-driven anomaly detection methods such as 
deep neural network-based methods, thus making it a flexible 
and extensible framework. In addition, TRIAD has several 
key strengths over other unsupervised learning techniques: 
first, it can dynamically adjust to what is necessary for the 
scenario being monitored. Second, TRIAD can be used to 
intelligently aggregate other anomaly detection algorithms 
(as opposed to running them in parallel).  These upsides 
dovetail, in that a number of state-of-the-art techniques for 
anomaly detection can be bundled into a computationally-
extensive instantiation of TRIAD, and then whittled down to 
provide optimal performance for a given compute budget. For 
a sparse compute budget, TRIAD can provide high 
performance without incorporating any additional methods. 

We applied MAIFLOWER to Astrobotic Technology’s 
Vertical Solar Array Technology Optimized for Lunar 
Traverse (VOLT), a mobile power generation and 
transmission platform being developed under several NASA 
contracts as a core component of Astrobotic’s lunarpower 
grid architecture (LunaGrid) for the lunar south pole. The 
VOLT carries a 20-meter tall photovoltaic solar array which 
generates 10kW of power to deliver to other lunar systems 
via wired and wireless connections. In its nominal operations, 
VOLT will egress from its lander, transit to a desired location 
near peaks of persistent light at the lunar south pole, settle 
into the lunar soil by oscillating its wheels, and then deploy 
the Roll Out Solar Array (ROSA), developed by Redwire of 
Goleta, CA. Redwire has developed and successfully 
deployed ROSAs on the International Space Station (ISS), 
and has modified the technology to support lunar surface 
deployment. The ROSA is deployed by unrolling two 
composite booms. As the ROSA is unfurled, a suite of 
sensors including inertial measurement units (IMUs) and 
force sensors on the wheels continuously monitor the array’s 
movement, measuring angular deflections on the gimbal and 
rover chassis. Figure 1 shows the deployed configuration of 
the VOLT and Figure 2 shows the stowed configuration. The 
VOLT’s primary structural elements, including the booms, 
gimbal, and chassis, have been designed to keep the deployed 
array within a tight tolerance of +/- 3 degrees of the local 
gravity vector to maintain stability. However, the deflections 

 

 

1 Image provided by Astrobotic 

in the system must be continuously monitored during 
deployment to detect potential stability issues and correct if 
present.   

Figure 1. VOLT in deployed configuration1 

 

Figure 2. VOLT in stowed configuration2 

One challenge during ROSA deployment is the local 
variation and instability of regolith, which are especially 
significant on terrain with a high slope. This is a relevant 
challenge, because the ROSA must be deployed on an 
illuminated peak, which will have a high slope of up to 15 
degrees, to have the persistent light required to generate 
power. It is therefore crucial to detect faults such as vehicle 
instability due to regolith shift or collapse as soon as they start 
to give ample time for corrective actions. Accuracy is also an 
important consideration. While false negatives are widely 
acknowledged as undesirable, false positives can also lead to 
adverse outcomes for the VOLT. For example, trying to 
correct a VOLT’s ROSA to a proper level, when it is in fact 
already within its stability tolerance, can itself lead to 

2 Image provided by Astrobotic 
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undesirable loss of stability.  

We will present the details of MAIFLOWER and 
demonstrate its accuracy and speed of detection on several 
simulated VOLT fault scenarios. 

  
2. RELATED WORK 

Traditionally, Fault Detection, Isolation, and Recovery 
(FDIR) systems have used Model Based Reasoning (MBR), 
which requires knowledge of the subsystem design and the 
behavior of components down to the desired level of 
diagnosis [3].  

Modern developments in fault detection use data driven, 
Machine Learning (ML)-based, approaches. A unified 
approach to anomaly detection simplifies to an unsupervised 
learning task aimed at developing a valid model for the 
majority of the data points. Anomaly detection methods 
typically use unsupervised clustering to find high density 
regions, and data that does not fit well into these high-density 
regions are identified as anomalous. Anomaly detection 
differs from the classification task, because typically the 
training data only represents nominal operations, and the 
anomalies may often not be fully known in advance [4].  

There are a number of ways to model nominal vs off-nominal 
data. Some of these are traditional AI approaches such as 
principal component analysis (PCA) [5], K-Means [6], and 
Gaussian Mixture Models (GMM) [7]. There are also one 
class classification methods such as support vector machines 
(SVM) [8], which classify nominal data into one class and 
everything else into an off-nominal class. 

The modern methods for learning models of nominal data 
include Variational Autoencoders (VAE) [9] and Generative 
Adversarial Networks (GAN) [10]. These are generative 
approaches that use neural networks to learn to generate 
realistic output from noise and conditional inputs. The VAE 
or GAN learn a model of the distribution of expected system 
behavior from nominal system behavior data. Sensor 
readings that deviate from this model by more than a 
prespecified threshold are considered off-nominal or 
anomalous.  

In order to successfully integrate with the VOLT system, 
there are a number of requirements that MAIFLOWER must 
be able to meet, including a need for quick reaction times in 
order to detect and correct leveling errors during ROSA 
deployment. MAIFLOWER also needs to be capable of 
detecting very gradual changes that are hard to discern over 
sensor noise. For example, the ROSA makes only one full 
rotation every month which it does in 9-degree increments 
which take 30 seconds each and occur every 8 hours. The 
traditional ML approaches described above cannot handle 
this range.  TRIAD uses both the time and frequency domains 
to detect anomalies and therefore can handle both slow- and 
fast-moving behaviors. 

There are a family of related technologies, created by Stottler 
Henke for anomaly detection using our Management of 
consumables Adaptive Execution, SynchronizaTion, 
Replanning/rescheduling, Optimization system 
(MAESTRO) framework [2]. The MAESTRO framework 
includes interfaces for diagnostic engines, adaptive execution 
systems, planners and schedulers. Versions of MAESTRO 
have been applied to the Lunar Gateway [2], the Cryogenic 
Test Bed at NASA’s Goddard Space Flight Center and the 
next generation Exploration Extravehicular Mobility Unit 
(xEMU) space suit. MAIFLOWER adds to MAESTRO by 
integrating both MBR and TRIAD. 

 
3. METHOD 

VOLT Background 

The VOLT is comprised of two major subsystems; a mobile 
base known as the Astrobotic Mobility Platform or AMP, and 
the Roll Out Solar Array, or ROSA. The ROSA is attached to 
the AMP via a 4 DOF gimbal, which provides leveling and 
sun-tracking capability for the array. The AMP is composed 
of a rigid chassis which contains avionics compute and power 
electronics enclosures, as well as the primary vehicle thermal 
system. Four spoked wheels are attached to the chassis via 
folding legs that are stowed for launch and deploy once the 
VOLT reaches the lunar surface. The front legs have 
additional degrees of freedom which enable steering and roll 
axis pivoting to traverse uneven terrain. The ROSA primarily 
consists of four elements: 1) a rigid root tube which provides 
the structural attach point to the gimbal and pointing actuator, 
2) the integrated modular blanket assembly (IMBA) to which 
the solar cells are affixed, 3) the mandrel which is a 
cylindrical element used to spool and unspool the array, and 
4) two composite slit booms which provide structural support 
to the array as it deploys. In its deployed configuration, the 
ROSA stands 20 meters tall, with 10kW of solar cells 
occupying the top half of the blanket.  

There are a number of sensors on the VOLT that 
MAIFLOWER will use to detect and diagnose faults. The 
VOLT has three IMUs, one on the top of the ROSA, another 
on the top of the gimbal, and another on the bottom of the 
gimbal. There are 12 cameras, two on each side of the AMP 
to provide stereo vision for navigation and two upward facing 
cameras for monitoring ROSA deployment. There are four 
strain gauges to measure the loads on each of the wheels. 
Additionally, there are position and torque sensors on each of 
the four wheels, the pointing actuator, the steering motor, on 
each of the three arms of the gimbal and in the mandrel.   

There are a wide range of faults that a general flight model 
(FM) architecture needs to be capable of detecting, 
diagnosing and reacting to. The most critical mechanical fault 
relevant for MAIFLOWER is the ROSA on VOLT exceeding 
its tolerance of +/- 3 degrees from the local gravity vector 
during deployment operations. Exceeding this requirement 
results with unsuccessful deployment of the ROSA to 
generate power, and in the worst case could lead to a dynamic 
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instability causing the vehicle to tip due to off-nominal center 
of mass. During deployment, acceleration and velocity 
measurements must be constantly monitored to assess 
whether the ROSA is within its safe operating limits. Soil 
failure can also result in the ROSA exceeding its safe 
operating limits. Examples of soil failure include soil collapse 
and soil sliding. Both of these issues can happen after initial 
gimbal leveling and during deployment operations.  

Sensor faults are a subset of mechanical faults, and sensor 
accuracy can be compromised by a variety of factors. All 
sensor outputs will contain some amount of noise (e.g. 
thermal noise detected by the sensor, electrical noise, or 
sensor drift); however, sensors can also be damaged by an 
impact, or by a shock caused by upstream electrical 
components. A faulty sensor can exhibit a range of behaviors, 
from producing random values to getting stuck at a single 
value or getting stuck at zero.  

There are also a number of electrical power system (EPS) 
faults that can affect the 64 photovoltaic solar panel modules 
(SPMs) that make up the 10kW ROSA. Cells in the SPMs 
can experience physical damage due to radiation induced 
charge buildup or micrometeoroid debris, as well as relays 
faulting open or closed and sensor failures. Failure of one or 
more SPMs to generate power may necessitate real-time 
action to shed loads or immediately reschedule tasks using 
power in order to prevent over discharging the batteries or 
otherwise overtaxing the EPS. Excess energy generation can 
also be an issue. When solar panels are body-mounted, excess 
energy (which becomes heat) is a less of a concern because 
the rover body provides a ready heat sink. In the case of the 
ROSA, heat buildup is also not an issue because the ROSA 
will radiate heat into space through its back side.  

MAIFLOWER also has an ability to monitor the voltage and 
current into and out of the batteries to intelligently manage 
their charging and discharging cycle. This battery 
management system is expected to extend battery life and to 
preserve maximum charge capacity. If the batteries are 
mistreated by being over, undercharged, or by being charged 
outside of the recommended temperature range, they will 
degrade more quickly. However, even well-treated batteries 
will eventually fail. In this context, a battery failure is when 
the battery has 80% or less of its original charge capacity. 
This degradation will be manifested by the observation that 
charging current appears to charge the battery more quickly 
than before. Another indication of a degraded battery is the 
bus voltage sagging more quickly [11]. 

The next subsection will describe the MAIFLOWER 
approach for handling these types of faults. 

MAIFLOWER System 

MAIFLOWER uses hybrid MBR and TRIAD, which 
emphasizes the benefits of each approach and mitigates the 
disadvantages. The benefits of the hybrid system include the 
following: 

• detects and diagnoses anomalies never before 

encountered 
• provides high accuracy on “Day One” of operations 
• effectively utilizes existing design knowledge 
• detects and diagnosis faults with a small amount of 

data  
• produces detection and diagnosis results that are 

easy for humans to interpret 
• provides a rigorously certifiable software 

implementation 
• has predictable behavior 
• diagnoses down to the lowest modelled component 

level 
• handles rare but modeled operating conditions 
• has a very quickly executing software 

implementation 
• discovers unknown and subtle relationships (even 

across subsystems) 
• provides a high degree of certainty in the diagnosis 

when both approaches agree  

During normal operations, MAIFLOWER monitors onboard 
sensor values to characterize the systems. Characterization 
means automatically learning nominal behavior of subsystem 
components so that MAIFLOWER will be prepared to detect 
deviations from this nominal behavior which could be 
potential faults. As a system starts failing, MAIFLOWER 
will first detect the problem and immediately proceed to fail-
safe state to minimize damage. Next, MAIFLOWER will 
diagnose the problem and determine the root cause. Finally, 
MAIFLOWER will plan actions to mitigate the problem.  

Any intelligent, adaptive system must inherently be a closed 
loop system because it must sense what is occurring and 
make appropriate decisions to take suitable actions, and then 
sense the effects of those actions. The first part of this sense-
decide-act loop involves perception or understanding the 
situation from raw sensor values.  

MAIFLOWER uses hybrid MBR and TRIAD for this 
perception task. MBR encodes the schematic information of 
subsystems, which includes the components (including 
sensors themselves), their normal behavior and known 
abnormal modes of behavior, and the connections between 
components. During normal operations, the model is used to 
simulate the current behavior and compare the simulated 
sensor output values to the actual sensor outputs. Significant 
deviations are used to detect the existence of a fault, and then 
the model is used to determine which component faults are 
most likely to lead to observed pattern of deviation from the 
expected sensor values. The set of possible faults, including 
sensor faults which explain the unexpected sensor values, is 
the MBR diagnosis engine’s output. TRIAD is a model-free 
module to detect and diagnose faults. It intelligently 
synthesizes the feature functions of many time-series 
anomaly detection algorithms, including state-of-the-art 
methods like Convolutional Neural Networks (CNNs) and 
Transformers. TRIAD creates feature encodings based on all 
of the feature functions and then performs threshold-based 
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detection to find off-nominal behavior. Our initial version of 
MAIFLOWER is specifically focused on anomaly detection, 
and diagnosis; automation for mitigating faults is planned in 
the future.  

 

Figure 3. System Diagram of the MAIFLOWER 
Framework 

 

Figure 4. Decision tree showing how MAIFLOWER 
finds false positives and various faults 

Figure 3 shows the high-level system design of 
MAIFLOWER.  MAIFLOWER is a closed loop system that 
takes sensor data from the spacecraft subsystems and uses it 
both to diagnose anomalies and to characterize the system’s 
nominal behavior. When MAIFLOWER detects and 
diagnoses a fault, it will first safe the spacecraft, i.e., it will 
implement an immediate action to prevent potentially 
mission ending damage. The planner and scheduler modules 
then add tasks to the spacecraft’s active mission plan to 

mitigate faults and adjust the tasks already in the mission plan 
such that the subsystems affected by the fault are 
circumvented. The adaptive execution model sends 
commands to the spacecraft itself, which will run those 
commands, and produce for telemetry data, closing the loop. 
Note that the MAIFLOWER version described here focuses 
on the diagnosis block of this diagram. 

Model-Based Reasoning  

MBR based diagnosis systems encode detailed and explicit 
descriptions for the interrelated factors that affect sensor 
readings. These models typically represent the world as a 
collection of components, where each component is 
characterized by attributes and one or more possible modes 
of operation. The model also contains constraints that specify 
required relationships between attribute values and modes. 
Constraint violations are used to identify components in 
faulty modes. For example, forces, torques, translational and 
angular accelerations, velocities and positions are 
constrained by physics. If the sensor measurements of these 
attributes do not obey these relationships, either the sensors, 
or the physical component itself must be at fault. MBR 
models can represent nominal conditions as well as known 
fault modes. The nominal condition itself may need to model 
more than one mode of operation. In this case, the MBR’s 
task will be to assess the system’s current mode of operation 
based on sensor data and commands issued to the system.  

Models encode the effects of contextual factors, so they can 
be applied reliably across contexts, such as the current 
environment, configuration, and sent commands. Model-
based reasoning requires knowledge engineering efforts to 
encode these interacting effects. However, the knowledge 
engineering burden can be significantly reduced by 
automatically compiling existing schematic diagrams of 
systems. MBR engines can be extremely fast and do not 
require a large amount of memory or compute power, even 
for complex models.  

MAIFLOWER encodes a low fidelity model of the VOLT for 
MBR to estimate predicted sensor measurement values, 
which can then be compared to the actual sensor values. Note 
that typically the models used for MBR are lower fidelity that 
the real system in order to manage the computational and 
modeling costs.  Because the VOLT is expected to be dug 
into the lunar regolith and not moving, the MBR model is 
very simple. In this model, the expected sensor values are 
fixed and based on the static forces of the system. In other 
words, if the VOLT is on a flat surface, the force on each 
wheel is expected to be ¼ of the gravitational force acting on 
the vehicle. 

The simple model of the VOLT used by MBR attempts to 
mimic the real system (or realistic simulation if 
MAIFLOWER needs to be tested without access to a physical 
system). MAIFLOWER receives sensor telemetry data from 
the real system which it will compare to the corresponding 
sensor values in its simplified MBR model of the VOLT. 
MAIFLOWER also issues commands identical to those 
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issued to the real system to its simplified MBR model of the 
VOLT to ensure that the simplified MBR model is in the 
same operational mode as the real system. The MBR module 
calculates expected sensor values using its internal model 
while considering the phase of the mission. It compares the 
expected values to the actual values from telemetry and notes 
significant deviations. Cross checking is then performed for 
each anomalous sensor to look for sensor faults or errors. If 
such errors are detected, MBR reports this finding and 
completes the loop. If sensor errors are ruled out as the cause 
of anomalous telemetry, the MBR module steps through each 
component to check for major faults by comparing the 
expected behaviors for each known fault mode. If the 
anomaly is due to a major fault, the module reports its 
findings about the root causes and returns to the top of the 
loop for the next telemetry cycle. MAIFLOWER uses 
TRIAD to remove ambiguity that can occur while diagnosing 
faults with MBR. Figure 4 shows how MAIFLOWER 
determines whether anomalous sensor values are caused by a 
diagnosable fault or if there was a MBR false positive.   

TRIAD 

As mentioned previously, MAIFLOWER complements 
MBR with TRIAD, a data-driven approach. TRIAD is a novel 
method for anomaly detection and diagnosis based on the 
idea of thermodynamic variables (TDs). TRIAD uses sensor 
data from nominal spacecraft operations to train its fault 
detection capability. TRIAD then trains its fault diagnosis 
capability with off-nominal data produced during different 
fault situations. Thermodynamic variables are aggregate 
values that describe the state of a system. Temperature and 
pressure are two familiar examples of thermodynamic 
variables. TRIAD uses aggregate values including but not 
limited to mean, variance, maximum value, minimum value, 
and maximum distance between consecutive sensor readings. 
See Appendix A for a full list of all aggregate values used by 
TRIAD. Each aggregate value will be generated over the last 
n samples. For example, one function for generating a TD, 
referred to as a “feature-generating function”, is the mean 
over the last 100 samples at a specific sampling rate (30 msec 
is a typical sampling rate for MAIFLOWER). Because 
analyzing the data at multiple time scales can be helpful, 
TRIAD will have generated function for the same type of 
aggregate value, but with different numbers of samples. For 
example, the version of TRIAD used in MAIFLOWER has 
generated functions for computing them mean over the past 
10, 100, 250 and 500 samples. In addition, TRIAD 
sequentially applies multiple different feature-generating 
functions to the data to generate richer features.   An example 
of this benefit is when a feature-generating function doesn't 
provide much insight into the raw input data. However, when 
applied to the frequency domain data created by taking a 
Fourier transform of that raw data, it can consistently uncover 
anomalies that might otherwise go unnoticed. The current 
version of TRIAD uses a pool of feature-generating functions 
(that generate the TDs specified in Appendix A), as well as 
sequences of feature-generating functions that were designed 
specifically for MAIFLOWER. Future versions of TRIAD 

could instead automatically generate sequences of feature-
generating functions until TRIAD consumes an allotted 
computation budget. These sequences would be 
automatically curated to reduce redundancy in the features 
TRIAD generate.  

TRIAD is trained on fault-free training dataset to construct 
quantile-based empiric distributions over each of the 
generated TDs. When the system is online, out-of-
distribution instances of features are detected as anomalies. 
The thresholds for what constitute out-of-distribution values 
for each TD are set depending on the desired sensitivity. 
TRIAD uses a validation data set to tune this threshold, 
moving along a tradeoff frontier between false positive and 
false negative rates. Typically, the challenge with approaches 
like TRIAD is that they cannot characterize a system’s 
behavior when it is operating in an environment where they 
have not been trained, though they can still detect it. Using 
TRIAD in combination with MBR, as described in the next 
subsection, helps address this challenge at least partially. 
When TRIAD is operating in an environment where it has not 
been trained, there are two possibilities. First, TRIAD is 
dealing with data on which it has not been trained but that 
environment or mode is modeled by MBR and therefore be 
characterized and diagnosed. Second, neither TIRAD nor 
MBR model that space. We are investigating techniques like 
continual learning to address this case. Continual learning 
enables ML models to train on all available data  without 
catastrophic forgetting [12]. Catastrophic forgetting is a 
phenomenon where neural networks lose accuracy on the 
environments or modes it was trained on in the past after 
being trained on a new environment or mode [13].   

TRIAD diagnoses anomalies using vectorized recordings of 
previously known anomalies. It develops “zones” in the high-
dimensional feature space, each of which corresponds to a 
type of fault. The version of TRIAD in MAIFLOWER uses 
manually designed boundaries to split the high dimensional 
space into zones corresponding to each fault type. Both 
nominal and fault data were generated from the simulation 
model of the VOLT and ROSA. We are unlikely to get fault 
data from the real system for this application and we will 
continue to use simulated fault data in the future, albeit from 
an updated higher-fidelity simulation model. In a future 
version of TRIAD, it will instead use unsupervised learning 
to automatically find the zones in the high-dimensional space 
that correspond to distinct anomalies. Specifically, TRIAD 
will fit a probability distribution in the high-dimensional 
space for each fault type by maximizing the log-probability 
of parameterized Gaussian mixture distributions. Gaussian 
mixtures are highly expressive distributions, especially in 
contexts where target distributions can be high-dimensional 
and multi-modal. This allows for incomplete sets of “cues” 
for specific types of faults to remain actionable, which can be 
helpful in the case of broken sensors. Using these 
parameterized distributions, TRIAD will assign a probability 
to each class of known anomaly in the event of a real fault, in 
addition to a probability that the fault is of an unknown type.  
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Both the anomaly detection and anomaly diagnosis 
components of TRIAD can be retrained with new data in the 
face of new operational circumstances with no development 
overhead, allowing TRIAD to continually learn and keep 
pace with new contexts, incorporating new knowledge of 
specific fault types over time. Given the infeasibility of 
generating fault data from the real system, we will use 
simulated data to demonstrate retraining capabilities. 

On top of the statistical functions and other basic generating 
functions, TRIAD is also designed to incorporate data-driven 
anomaly detection methods, including state-of-the-art 
anomaly detection methods that use transformers and CNNs. 
To accomplish this, these neural network based approaches 
will be trained on a variety of downstream tasks including 
detection of synthetic faults, prediction of future data [14], 
and reconstruction accuracy [11]. Then, feature encoding 
layers of the neural network will be subject to threshold-
based detection. This capability will be implemented and 
tested in the future work. 

Hybridizing MBR and TRIAD 

As mentioned, MAIFLOWER uses hybrid TRIAD and MBR 
to identify anomalous behavior in spacecraft telemetry data. 
This approach leverages the benefits of each while 
minimizing their disadvantages. When an anomaly is 
detected, there are a few possibilities: it is detected by both 
systems, only by TRIAD, or only the MBR system. TRIAD 
will detect all data streams that are “different” from the data 
it was trained on, and as such, it may flag sensor values as 
anomalies even when they are not. These false positives from 
TRIAD will be counteracted by MBR which only flags 
anomalies for sensor values that violate modeled physical 
constraints of the system. Because MBR and TRIAD are very 
different algorithms (especially in that one is model-based 
and the other, model-free), their agreement provides extra 
confidence in the result (compared to using MBR or TRIAD 
alone).  

 

Figure 5. Diagram of the MAIFLOWER false positive 
detection system 

When TRIAD and MBR disagree, MAIFLOWER will need 
to choose which result to use as the final conclusion. Both 
TRIAD and MBR provide a confidence value along with their 
fault detection and diagnosis results. If TRIAD and MBR 
disagree, this tie will be broken by whichever has higher 
confidence. See Figure 5 for a graphical representation of 
how MAIFLOWER handles TRIAD false positives. As 
previously mentioned, MBR and TRIAD have 

complementary strengths. They also have complimentary 
regimes in which they provide a high confidence in their 
diagnosis.    

Simulation of VOLT and ROSA 

While the goal is to evaluate MAIFLOWER on real hardware 
data in the near future, the team have conducted a set of 
evaluations using a simulated model of the Astrobotic VOLT 
to generate both nominal and fault data. Note that the model 
used for the simulation is different from the one used for 
MBR. The two were developed independently with a firewall 
ensuring that one did not bias the other. Furthermore, our 
objective was to follow the convention that the simulation 
model is a higher fidelity representation of the real system 
compared while the model used for MBR is a lower fidelity 
representation; this is consistent with the MBR approach in 
general where a model is very likely to be a simplification of 
the real system. 

The higher fidelity simulation models normal force from the 
lunar surface, the associated coefficient of friction between 
the wheels and soil, and gravity as well as the stabilizing and 
attachment interactions between the AMP and the ROSA. 
Figure 6 illustrates how the AMP and ROSA are modeled, 
where the two components are modeled with springs 
interfacing between them. In Figure 6, springs A and B affect 
fore-aft motion while springs C and D affect port-starboard 
motion. Spring E fixes the ROSA to the rover body and has a 
very high spring constant to model a nearly rigid connection. 
Springs A and B have a spring constant of 28000 N/m, 
springs C and D have a spring constant of 21000 N/m, and 
spring E has 5000000 N/m. The ROSA can sway, and this 
oscillation effect is controlled by spring constants that differ 
between the fore-aft and port-starboard directions. The 
swaying of the ROSA causes an equal and opposite reaction 
on the mobility platform, thereby producing a rocking motion 
where the legs briefly leave the ground in time with the 
ROSA’s oscillations. Even if the mobility base isn't rocking 
enough to lift any legs off the ground, the ROSA’s 
oscillations will be reflected in the normal forces between the 
legs and the landscape. In other words, the physical 
simulation will account for the increased force on certain legs 
when the ROSA's oscillations shift the system's center of 
mass toward them.  

The simulation model calculates normal forces and friction 
with an efficient linear optimization. This process first 
calculates how impulses affect all the legs of the rover, 
assuming partially inelastic collisions with the landscape. 
This calculation produces a normal force magnitude and 
vector for each leg. The friction forces on each leg are 
computed using those normal forces. All relevant faults can 
be simulated with our model. The shape and incline of the 
landscape can be dynamically adjusted to simulate soil 
collapse. To simplify the physics, the coefficient of friction 
between the wheels and the lunar regolith is dynamically 
updated to simulate soil slippage. Small offsets can be added 
to the orientation of the upper gimbal to simulate an offset of 
the ROSA to the local gravity vector. 
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Figure 6. Spring based model with coordinate reference 
shown at the bottom  

Evaluation 

We evaluated MAIFLOWER in nine different scenarios 
which are listed in Appendix B. The evaluations started by 
perturbing our physics-based simulation model in some way 
(e.g. soil collapse, soil slipping) and recording data. We then 
used both TRIAD and MBR on the generated data to detect 
and diagnose the relevant fault. A successful response to the 
scenario occurs when either both MBR and TRIAD agree, or 
when they disagree but MAIFLOWER was able to 
successfully break the tie by choosing the outcome from the 
method with a higher confidence value.   

 

 4. RESULTS AND DISCUSSION  
We validated our simulation in nine diverse scenarios. Let us 
first consider the asymmetric soil collapse scenario. In this 
scenario, soil collapses beneath all wheels except the front 
left wheel, triggering oscillations in the ROSA in both the X 
and Y directions. Refer to Figure 6 to see the X and Y 
directions on the VOLT. Figure 7 shows the position of the 
top of the ROSA after the asymmetric collapse. 

 

Figure 7. X (top), Z(middle), Y (bottom) positions of the 
ROSA tip after the asymmetric soil collapse. The 

damping coefficient was set to a very low value in the 
simulation. The initial shorter peak in the first sub-

figure represents the initial fall. 

It is not possible to show the graphs for every sensor for each 
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scenario. Instead, we show graphs for select sensors for each 
scenario to give a sense for the data generated by the 
simulation and the impact of the faults on different sensors. 
Note that the X and Y directions display large magnitude 
oscillations while the Z direction displays a large step change 
followed by a small magnitude oscillation. These oscillations 
are of varying frequencies, as the spring constants holding the 
ROSA in place along its stable and unstable axes are 
different. The back right wheel hits the ground first, and the 
VOLT briefly sways, held by two wheels, until the back left 
wheel makes contact with the ground at around 7.5 seconds, 
stabilizing the system. The normal force induced on each 
wheel post collapse oscillates—this is due to the swaying of 
the ROSA.  

In this scenario, the MBR module cross checks the four 
sensors measuring the force on the wheels with each other to 
determine if one of the sensors is faulty. Having confirmed 
that all four are showing anomalous behaviors, it concludes 
that sensor faults are not the cause of the anomaly. MBR then 
inspects the list of anomalous sensors for any patterns that 
indicate particular causes of failure. Here, it finds that the 
four sensors associated with the wheels and the two gimbal 
accelerations are anomalous and determines that the soil must 
be undergoing an asymmetric collapse. In our simulation test 
run, MBR took 2.7 milliseconds to process, measured from 
when the telemetry data is received to when the diagnosis for 
the current step has been made. TRIAD notices an anomaly 
0.15 seconds after the collapse, determines the nature of the 
anomaly correctly instantly, and confirms with confidence 
0.3 seconds after collapse. 

  
Figure 8. Sketch of soil slipping scenario, which labels 

the X, Y, and Z axes and shows the direction of slipping 
with the red arrow in the right most sketch 

We will now discuss the symmetric soil slipping scenario. 
Refer to Figure 8 for a visual representation of how the rover 
is sliding down the slope. The red arrow in the right most 
sketch is the direction of motion. In this scenario, the rover 
lies on a 6-degree incline slope. Friction between the wheels 
and the lunar surface gives out, and the rover begins to slip. 
Friction is recovered in discrete shocks, which causes the 
rover to shudder. See Figure 9 for a visual representation 
showing VOLT picking up speed as it begins to slip, followed 
by velocity oscillations as the wheels repeatedly regain and 
lose traction and the final state where the vehicle again has 
zero velocity. The VOLT in total slides roughly 2.5 meters in 
the Y direction and 0.25 meters downward. Note that the 
slipping fault is triggered at 5 seconds and that before that the 
rover is stationary. MAIFLOWER will detect and diagnose 
the fault from the unexpected movement within 0.3 seconds 
after the sliding begins.  Figure 8 shows a red arrow in the 
direction of the rover slipping down the slope in the Y 

direction and down the slope.  

 
Figure 9. Y component of velocity in symmetric slipping 
scenario. The negative velocities occur because the slope 

goes downward in the -Y direction.  

 

Figure 10. Normal force exerted on front (top image) 
and back (bottom image) wheels in the symmetric 

slipping scenario.  

Note in Figure 10 that the normal force on the wheels 
oscillates -- this is a downstream effect of the oscillation of 
the ROSA. In this scenario, MBR again detects and diagnosis 
the error by inspecting the anomalous sensors for patterns that 
indicate specific faults, and it completes the diagnosis in less 
than 4 msec. TRIAD detects an anomaly at 0.18 seconds after 
slipping begins and correctly determines that the wheels are 
under soil slippage. TRIAD makes an accurate high-
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confidence prediction of 0.30 seconds after the VOLT begins 
to slip.  

For all scenarios, the MBR loop takes between 2 and 4 ms to 
perform. In our simulation run, MBR properly detected and 
diagnosed all major faults and detected all sensor errors. 
TRIAD was highly successful in detecting faults and 
anomalies. TRIAD detected each anomaly with standard 
noise within 0.15 seconds and offered a diagnosis in 0.33 
seconds. See Appendix C for a full table of runtimes for both 
MBR and TRIAD in all scenarios.  

 
5. CONCLUSION 

The goal of this effort was to develop a general fault detection 
system that can intelligently detect and diagnose faults across 
a wide range of subsystems that are present on unmanned 
spacecraft. The next goal of this effort is to apply 
MAIFLOWER’s fault detection and diagnosis capabilities to 
real hardware.  Towards this goal, Astrobotic has tested the 
VOLT at the NASA Glenn Research Center (GRC) 
Simulated Lunar Operations Laboratory (SLOPE) lab in 
summer 2024, and the team is currently working on training, 
validating and testing MAIFLOWER using that data. We are 
also beginning to investigate autonomous safing actions (i.e. 
actions that put the system in a safe mode). In the future, we 
will further test and mature the system for deployment 
onboard VOLT in a lunar mission.  

Although, as described earlier, the component technologies 
of MAIFLOWER have been applied to a wide array of 
spacecraft subsystems, this is the first involving a primarily 
mechanical system. We have found three key benefits from 
applying MAIFLOWER to a mechanical system. First, 
MAIFLOWER provides a generalized modular fault 
management architecture that can quickly be spun up for any 
number of different subsystems. Second, MAIFLOWER 
provides autonomous, high-speed anomaly detection along 
with “root cause” analysis by correlating time-series data 
across subsystems. Correlating across subsystems enables the 
detection of cascading impacts of a single fault on a 
spacecraft as a whole. Third, Astrobotic’s VOLT, which 
provides a real hardware platform to test on will prove 
MAIFLOWER’s feasibility for adaptation for other 
spacecraft. The VOLT system will first be tested in the 
NASA SLOPE lab and then on the lunar surface.   

 
APPENDICES  

A.  AGGREGATE VALUES 
This appendix contains a list of all aggregate values that 
TRIAD analyzes to find anomalies. TRIAD has a generating 
function that takes time-series of telemetry data as input and 
produces a specific aggregate value. Note that there is a 
distinct generating function for different number of samples.  

• Mean (taken over 10, 100, 250, 500 data points) 

• Variance (taken over 10, 100, 250, 500 data points) 
• Maximum value (taken over 10, 100, 250, 500 data 

points) 
• Minimum Value (taken over 10, 100, 250, 500 data 

points) 
• Maximum Distance Between Consecutive Sensor 

Readings (taken over 10, 100, 250, 500 data points) 
• Maximum Consecutive Identical Readings (taken 

over 10, 100, 250, 500 data points) 
• Average Fourier Frequency (calculated using Fast 

Fourier Transform) (taken over 10, 100, 250, 500 
data points) 

• Peak Frequency (calculated using Fast Fourier 
Transform) (taken over 250, 500 data points) 

• Second Highest Peak Frequency (calculated using  
• Fast Fourier Transform) (taken over 250, 500 data 

points) 
• Peak Frequency Amplitude (calculated using Fast 

Fourier Transform) (taken over 250, 500 data 
points) 

• (calculated using Fast Fourier Transform) (taken 
over 250, 500 data points) 

• Dot Product Similarity Between Two Sensors (taken 
over 250, 500 data points) 

• Dot Product Similarity Fast Fourier Transform of 
Two Sensors (taken over 250, 500 data points) 

 
B.  PROTOTYPE SCENARIOS 

This appendix contains detailed descriptions of all of the 
scenarios that we used to test MAIFLOWER. We simulated 
each of these scenarios using our physical simulator and then 
produced sensor data for every sensor on the VOLT that we 
then analyzed with our hybrid MBR and TRIAD fault 
detection and diagnosis system.  

• Symmetric Soil Collapse: Soil collapses 1cm under 
both wheels on one side of the rover at 5 seconds. 
This induces oscillation in the ROSA but does not 
result in tipping.  

• Asymmetric Soil Collapse: Soil collapses beneath 
all wheels barring the front left wheel, triggering 
oscillations in the ROSA in both the X and Y 
directions.  

• Soil Collapse Causes VOLT to Tip: Soil collapses 
half a meter along its fragile axis, causing the rover 
to tip. The collapse itself doesn’t tip the rover – it 
destabilizes the ROSA, and its ensuing oscillation 
while the VOLT is less steady causes the collapse. 

• Symmetric Soil Slipping: The rover lies on a 6-
degree inline. Friction gives out, and the rover 
begins to slip. Friction is recovered in discrete 
shocks which causes the rover to shutter. The VOLT 
in total slides roughly 2.5 meters in the Y direction 
and .25 meters downward.  

• Asymmetric Soil Slipping: The rover slips 
backwards and to the left, at a 6-degree incline. In 
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this scenario, friction is returned to the system faster 
(creating more dramatic oscillations in the ROSA) 
but is never fully recovered. This lower fraction 
creates subtle slipping and more erratic normal force 
distributions even after the VOLT is no longer 
sliding as the torque normally exerted by friction 
helps to counteract the oscillation of the ROSA. As 
a result of this, the VOLT itself briefly tilts at around 
18 seconds – this corresponds to two nearly 
simultaneous peaks along the two axes of the 
ROSA’s oscillation, which is enough to lift two legs 
up. Upon Recovering, the VOLT briefly tips in due 
to increased friction by this point, the VOLT no 
longer tips.  

• ROSA Leveling Error: The upper gimbal was 
unable to completely level the ROSA before 
deployment and is deploying it at an angle offset by 
one degree. The offset produces subtler oscillation 
in the ROSA, as the equilibrium angle increases 
while the ROSA deploys. This scenario concerns the 
ROSA mid-deployment, at a height of 15 meters (by 
contrast with its final height of 20 meters) 

• Frozen Sensor Error: Strain sensor on the back left 
leg freezes.  

• Zeroes Sensor Error: The angular velocity readings 
coming from one of the horizontal cameras drop to 
zero. This could be due to the camera’s vision being 
obscured, a hardware fault in the camera itself, or a 
failure in the flow algorithm used to derive angular 
velocity measurements.  

• Varied Sensor Error: In this scenario, a broken IMU 
on the lower gimbal freezes some measurements and 
drops other measurements to zero.  

• Simultaneous Sensor Error and Soil Collapse: A soil 
collapse is triggered and there is a simultaneous 
sensor error for the lower gimbal IMU pitch 
measurement which is relevant to the diagnosis of 
this collapse. Scenarios like these are important 
considerations as physical faults such as soil 
collapse can cause sensor failure. 

 
C.  TRIAD SCENARIO RUNTIMES 

Table 1 shows the amount of time until TRIAD detects and 
diagnoses each fault after it is triggered. This includes both 
the TRIAD run time and the time required to gather enough 
data to detect and diagnose a fault. Note that in some 
scenarios TRIAD detects and diagnoses an error at the same 
time, and there is no delay between the detection and the 
diagnosis.  

 

 

 

 

Table 1. The amount of time until TRIAD detects and 
diagnoses each fault after it is triggered, including 
TRIAD run time and the time needed for sufficient 
observations to confirm the fault 

Scenario Detect (s) Diagnose (s) 

Sym. Soil Collapse .15 .27 

Asym. Soil Collapse .15 .3 

Soil Collapse Causes 
VOLT to Tip 

.15 .3 

Sym. Soil Slipping .18 .3 

Asym. Soil Slipping .15 .36 

ROSA Leveling Error 1.49 1.49 

Random Sensor Error .15 .27 

Frozen Sensor Error .33 .33 

Zeroed Sensor Error .33 .33 

Varied Sensor Error .27 .33 

Simultaneous Sensor 
Error and Soil Collapse 

.15 .33 

 

D.  MBR SCENARIO RUNTIMES 
Table 2 shows the amount of processing time required for 
MBR to detect and diagnose the fault in each scenario after 
the fault was triggered.  

Table 2. The amount of processing time required for 
MBR to detect and diagnose the fault in each scenario 
after the fault was triggered  

Scenario Detect and Diagnose (ms) 

Sym. Soil Collapse 1.7 

Asym. Soil Collapse 3.6 

Soil Collapse Causes 
VOLT to Tip 

4 

Sym. Soil Slipping 3 

Asym. Soil Slipping 3 

ROSA Leveling Error 2.9 

Random Sensor Error 3.5 

Frozen Sensor Error  
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Zeroed Sensor Error 3.2 

Varied Sensor Error  

Simultaneous Sensor 
Error and Soil Collapse 
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