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Abstract—High-quality software is indispensable for mission-
critical systems like those developed for NASA and the DoD. 
Reliable, maintainable code with minimal technical debt is 
fundamental to achieving these goals. Automated code review 
has become a cornerstone of the software quality pipeline, with 
SonarQube a leading tool in the field. This paper shares our 
practical experience integrating SonarQube into two long-
standing aerospace software development projects, previously 
documented in IEEE Aerospace publications. Our primary 
objective is to disseminate best practices and lessons learned 
from our use of automated code review to assist others in 
enhancing their software quality pipelines. 
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1. INTRODUCTION 
High-quality software is paramount for mission-critical 
systems, such as those developed for NASA and the DoD, 
and for software product lines demanding long-term 
sustainability and reusability. Reliable, maintainable code 
with minimal technical debt is fundamental to achieving 
these goals. Software development teams typically balance 
code quality with project constraints by employing a variety 
of design techniques, processes, and tools. 

Automated code review has emerged as a cornerstone of the 
software quality pipeline, with SonarQube a leading tool in 
the field. This paper shares our practical experience 
integrating SonarQube into two long-standing, deployed, 
aerospace software development projects previously 
documented in IEEE Aerospace publications. In the first 
project, SonarQube is seamlessly integrated into the DevOps 
pipeline, analyzing every code change (known as a pull 

request in git parlance). In the second, it is employed as a 
periodic gatekeeper, identifying potential security 
vulnerabilities and critical defects outside the primary 
development workflow. These distinct approaches yield 
interesting and instructive outcomes over time. 

Our primary objective is to disseminate best practices and 
lessons learned from our use of automated code review to 
assist others in enhancing their software quality pipelines. 

In the remainder of this paper, we first provide background 
information on the concept of technical debt and the 
SonarQube static code analysis tool. Following this, we 
discuss related work applying SonarQube to software 
development. We then present two use cases: SonarQube as 
a continuous integration tool and as a periodic gatekeeper. 
We conclude with best practices and lessons learned. 

2. BACKGROUND 
This section provides a brief overview of software quality, 
technical debt, automated code review, and the SonarQube 
tool.  

Software quality models articulate what is meant by 
‘software quality.’ These models define the desired 
characteristics and sub-characteristics of software and the 
relationship between these characteristics and measurable 
properties of the software. The ISO-IEC 25010: 2011 [1] 
quality model defines eight desired characteristics of 
software product quality: Functional Suitability, Performance 
Efficiency, Compatibility, Usability, Reliability, Security, 
Maintainability, and Portability. While all these 
characteristics are important, this paper focuses specifically 
on Reliability, Maintainability, and Security. 

Software quality models based on static source code analysis 
generally follow a three-step pattern. They identify specific 
source code metrics to be calculated, describe how the 
measurements of these metrics are aggregated, and define 
how the aggregations are used to assess characteristics of 
software quality (e.g., Reliability) [2]. The SQALE model  
[3] assesses software quality by identifying and quantifying 
potential issues line-by-line, and is the basis for automated 
code review tools such as  SonarQube. 
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Technical debt is a measure of how much work would be 
needed to move from the current code to higher-quality code 
[4]. The source of technical debt during development and 
sustainment stems primarily from making design, 
implementation, documentation, and testing decisions that 
focus on short-term value [5]. As technical debt increases, 
changes to the software become more difficult, error-prone, 
and time-consuming, and this threatens the reliability, 
maintainability, and security software characteristics.  

This is an especially important take-away for software 
product lines, where long-lived, reusable modules are 
intended to be shared by multiple systems. Each module will 
want to invest in high code quality (low technical debt) 
initially and maintain this investment in quality over time as 
it is extended and updated. That is, as part of planned re-
usability, each module commits to making a long-term 
investment to software quality. The likely alternative is that 
the software quality will gradually degrade until, eventually, 
the problems become overwhelming [6]. 

There are several practical tools aimed at improving source 
code quality, managing technical debt, and improving 
security such as SonarQube, Codacy, and Fortify. These and 
similar static code analysis tools use rules to analyze every 
line of code to identify likely bugs, maintainability issues, 
and security flaws. SonarQube appears to be one of the most 
commonly used automated code review tools [7], [8], [9], 
with their own site listing 400,000 organizations that use 
SonarQube [10].  

SonarQube comes with a set of default rules that span 30+ 
programming languages. For example, there are 600+ 
analysis rules for Java. Rules are bundled into Quality 
Profiles, where project administrators can select the set of 
rules that should be applied to a project. The default Java 
quality profile has about 500 rules. Each rule is associated 
with a Software Quality (security, reliability, and 
maintainability), a Severity (high, medium, low), and a Type 
(bug, vulnerability, code smell).  An example rule is shown 
in Figure 1. Each rule includes an explanation about what the 
specific problem is and how to fix it. As rules are applied to 
the code, they generate issues where a line (or lines) of code 
violates a rule. Customizable Quality Gates define minimum 
acceptable standards, for example code with only few low 
severity issues or better can pass the gate. The SonarQube 
dashboard supports viewing trends in issues over time, with 
a focus on what has happened in ‘new code’ (this is 
configurable, e.g., last 45 days or only changes in the current 
pull request) vs. the existing codebase. The objective of 
highlighting new code is to write code at the highest standard 
going forward, which SonarQube calls “Clean As You Code” 

[11]. Over time, issues will pile up if nothing is done or 
slowly disappear if addressed. 

It is important to note that Stottler Henke has no financial, 
personal, or business relationship with Sonar or its tool 
SonarQube. The views, opinions, and/or findings contained 
in this paper are those of the author and should not be 
interpreted as representing the official views or policies, 
either expressed or implied, of Sonar. While this paper is 
based on experience with SonarQube, we do not aim to 
promote any one tool, and the implications of the presented 
work apply to other commonly used static code analysis 
tools. 

3. RELATED WORK 
This section provides a brief overview of a few related studies 
that examine how SonarQube issues are triaged by software 
engineers during development. See [8] for an in depth review. 

Yu et al. [7] examined which SonarQube identified issues 
were actually fixed or closed across 30 long-lived and 
popular Java open source projects. While it would be 
expected that issues would be triaged by type and severity, 
what they found was that whether an issue was fixed mainly 
related to (i) ease of understanding and fixing, (ii) likely harm 
caused, (iii) the context surrounding the issue, (iv) the 
specifics of the triggering rule, and (v) the specific developer. 
Some of the implications they discussed include the need to 
customize the project rule base to what will actually be fixed, 
for developers to continue to learn such that they can 
understand and fix more complex issues quickly, and to 
integrate static analysis tools with the development pipeline 
for continuous analysis. The authors also stress the need for 
tool builders like SonarQube to continually improve their 
analysis rules to reduce false positives and to identify the 
actual severity of issues as accurately as possible.  

Alfayez et al. [8] investigated similar research questions 
about how SonarQube issues were prioritized, recruiting 
research participants, training them on technical debt, and 
then giving them a technical debt prioritization activity. The 
activity involved selecting which issues in a list to select 
given a fixed amount of time to spend, where each item had 
an estimated time cost. The majority tried to balance the 
severity of an issue with costs in selecting which to address, 
though a solid minority uses a severity-only approach. One 
individual used a cost-only approach. Across this, a group 
consisting mostly of highly experienced software developers 
identified some issues as ‘must fix’ and did not include these 
issues in their prioritization. That is, irrespective of costs 
some issues must be fixed and so were considered to be 

 
Figure 1. Example SonarQube rule. 
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outside of prioritization. A primary takeaway from their work 
is that there is not a one-size-fits-all solution for technical 
debt prioritization. 

Lenarduzzi et al. [12] used SonarQube to analyze 33 Apache 
open source projects written in Java. They measured fault-
proneness of Java classes by analyzing the Git history, and 
then looked at relationships between classes with more severe 
bugs, classes with lower severity or no bugs, and fault-
proneness. They found that while one bug-finding rule was 
related to increased fault-proneness, most were not regardless 
of severity. While there are issues with attempting to 
determine whether a bug actually caused a fault from 
reviewing the commit history (or if it might cause a fault in 
the future), the implications of their work are still worth 
noting. One implication is the importance of customizing the 
rule set to the specific project – even though most open-
source projects surveyed (98%; 14,732 of 14,957) use the 
default rule set. A second implication is that it is important 
for tool builders to continually update their tools based on the 
actual harmfulness of issues. 

We expect that factors influencing technical debt issue 
identification and resolution in open-source projects and in 
research studies are likely to differ from those in proprietary 
development environments. However, the related work 
reinforces the notion that tools such as SonarQube are a 
work-in-progress and that better results will be achieved if 
they are customized to the specific project and development 
team. 

4. SONARQUBE AS A CONTINUOUS  
INTEGRATION TOOL  

Stottler Henke is applying SonarQube to the development of 
critical software for scheduling and deconflicting satellite 
communications for the US Air Force [13], [14]. It is 
important to note that this software, like many projects, 
started as a rapid prototype to demonstrate proof of concept 
and then began transitioning into a production-level system. 
This section provides a high-level view of how SonarQube is 
used to reduce technical debt over time as part of a software 
quality pipeline.  
 
A software quality pipeline is a combination of a team’s or 
organization’s culture, processes, and tools aimed at 
producing high quality software – sharing much in common 
with their DevOps pipeline [15]. Just like there is no single 
DevOps solution that works in all contexts, there is also no 
single software quality pipeline that works everywhere for all 
software. In this use case, the culture includes a focus on 
developing reliable, maintainable, and secure software as a 
long-term investment, the processes are those common to 
lean and agile software development, in this case Jira, 
Bitbucket, Jenkins, and SonarQube all integrated into an 
automated DevOps pipeline. 
 
Jira, by Atlassian, is used for issue tracking and serves as the 
primary interface point between project management and 
development. Bitbucket, also by Atlasssian, is used as the 

version control system. Jenkins, an open-source project, is 
used to compile and test the software, and build software 
releases, to support continuous delivery. Finally, SonarQube 
is used for automated code review.  
 
Beginning work on an issue involves starting a new source 
code branch in Bitbucket, which we will call the feature 
branch. A software developer(s) then makes any changes in 
this branch. Once the changes are made, the developer issues 
a pull request that signals the feature branch is ready to merge 
the change into the main development branch. This triggers 
several actions. First, Jenkins compiles the feature branch and 
runs automated tests on this branch. The developer needs to 
correct any compilation or failed test issues to proceed. 
Second, the feature branch is analyzed by SonarQube. Any 
problems that SonarQube finds in the new code are posted to 
the pull request in Bitbucket. Software developers are 
expected to correct all identified problems before proceeding 
to the next step. Third, the feature branch undergoes a manual 
code review by another software developer. The reviewer 
will create tasks in Bitbucket to be addressed. Once the 
reviewer has verified all the tasks have been corrected, then 
the feature branch is finally merged with the main 
development branch.  
 
The combination of automated and peer review has three 
main benefits. First, the resulting code is more reliable, 
maintainable, and secure. Occasionally, a bug is found, but 
more often what is addressed are future maintainability 
issues. Second, these reviews mentor less experienced 
software developers. Requiring developers to fix all issues, 
whether from SonarQube or the team lead, before merging in 
their code generally encourages them to start doing the right 
thing the first time. Third, the manual reviews spread 
knowledge of the code out across the development team. 
While developed independently, this lightweight review 
system is very similar to that used by Google in terms of 
tools, process, and motivation [16]. The downside to this 
approach is that it is difficult to clearly assign credit for 
improvement, where both manual an automated code review 
are likely to be responsible for a reduction in technical debt 
as measured by SonarQube. 
 
As shown in Figure 3, this approach yields steady 
improvements. This figure shows decreases in the number of 
potential code smells, vulnerabilities, and bugs over time. 
Code smells make up the largest percentage of potential 
technical debt, followed by vulnerabilities and then bugs. All 
areas improved, with potential bugs and vulnerabilities 
reaching near zero.  
 
At the same time, Figure 2 illustrates how percent duplicate 
code decreases over time, a big win for code quality. Percent 
of comments relative to lines of code also increases, but this 
is likely due to peer review (and not SonarQube). Note that 
in general, these fixes do not require dedicated development 
time because corrections are made only on code that is being 
created or updated as part of the normal development process. 
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Slow and steady gains improve the reliability, 
maintainability, security of the code with essentially zero cost 
in terms of additional development time – even while the 
overall lines of code continues to grow. 
 
There are two interesting things to note. First, we say 
potential issues because there are a significant number of 
false positives across all categories as well as suggestions that 
are simply not worthwhile to correct. Second, there are 
several noticeable spikes in the graph. These are generally 
caused by changes to the specific set of rules SonarQube is 
applying, which are often updated with each major and minor 
release. While the project started with highly customized 
rules, we reverted to mostly the default rule sets for each 
language, disabling rules that were found to occur often and 
always be labelled ‘won’t fix’. The upgrade spikes are visible 
across all three issue types. 
 
This approach provides several benefits. First, it enables early 
detection of potential quality issues, preventing them from 
being merged into the codebase. Second, it fosters a culture 
of quality among developers, encouraging them to write 
clean, maintainable code following best practices the first 
time around. Additionally, developers get immediate 
feedback that encourages them to not keeping making the 

same mistake. Finally, addressing issues as they arose in each 
pull request helps to reduce the overall cost of software 
development by preventing bugs and vulnerabilities from 
being discovered later in the development lifecycle. It is 
faster and easier for a developer to fix a problem right away 
than it is to go back and fix the same problem later. 
 
While integrating SonarQube into the DevOps pipeline 
generates benefits, there are some challenges to overcome. 
One issue is the need to configure Bitbucket, Jenkins, and 
SonarQube to correctly analyze each pull request, and then to 
keep the configuration working in the face of updates to each 
of these tools. A second issue is that the rules applied to each 
language do need to be customized for the code base. 
Specifically, rules that are false positive prone or are always 
marked as ‘won’t fix’ need to be turned off to maintain 
developer engagement. As the people most impacted by 
automated code review, and in the best position to see how it 
could be done better, developers need to be empowered to 
suggest improvements such as changes to rules and quality 
gates.  Additionally, SonarQube constantly updates the 
default rules for each language which requires integration 
with the existing rule updates. Overall, these DevOps costs 
are fairly limited, leading to a good cost/benefit ratio in favor 
of SonarQube for this project.  

 
Figure 2. Percent duplicated lines and percent comments relative to code over time. 

 

 
Figure 3. Bugs, code smells, and vulnerabilities as identified by SonarQube. 
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A third issue we found with SonarQube is that it is important 
to establish clear guidelines for handling SonarQube 
violations detected in pull requests. Specifically, educating 
the development team that every issue flagged by SonarQube 
should be addressed or senior developers should sign off on 
a ’won’t fix’. Initially, peers approved pull requests with un-
addressed SonarQube issues or reviewed and merged pull 
requests that were never even analyzed (e.g., when a security 
token expires SonarQube stopped running).  Making the best 
possible use of SonarQube requires training and commitment 
from the development team.  

5. SONARQUBE AS A PERIODIC GATEKEEPER 
The second aerospace software development project, a crew 
trainer and experimentation tool for the MH-60R and MH-
60S helicopters [17], required a more flexible approach to 
code review. Due to the project's DevOps constraints, it is not 
feasible to integrate SonarQube into the DevOps pipeline for 
every pull request. Instead, SonarQube is used as a periodic 
gatekeeper, analyzing the codebase at regular intervals 
through the Gradle build tool. 

The DevOps pipeline for this project involves Jira for issue 
tracking, a stand-alone Git repository for source version 
control, and Gradle as a build tool. As in the previous project, 
the development workflow involves creating a feature 
branch, writing code, and then generating a request for peer 
review before merging the new code into the main branch. 
The main difference between this project and the previous 
project is that SonarQube is not integrated into the DevOps 
pipeline and instead requires a developer to manually run a 
Gradle task to perform the analysis and upload the results to 
the SonarQube web application. This approach allows the 
development team to identify potential code quality issues 
that may have been missed during the primary development 
workflow.  

The primary challenge with this method, not present in the 
other project, is that the issues found by SonarQube must be 
prioritized. As previously mentioned, developers greatly 
prefer to make forward progress on feature requests rather 
than address potential SonarQube issues from the past. It also 
takes time to go back and fix issues once developers have 
committed changes and moved onto something else. Because 
of this, it isn’t reasonable to address all the new issues that 
have been added to the code.  

Prioritization is done using the SonarQube functionality for 
filtering issues by type (vulnerability, bug, code smell) and 
by severity (high, medium, low). First, all vulnerabilities are 
addressed. Second, all potential bugs marked high are 
addressed. These two filters catch the issues most likely to 
affect maintainability, reliability, and security. All other 
issues are ignored. This Java code is an example of the types 
of things that are ignored: 

if (!isVisible())  
return; 

These statements are flagged as a code smell with severity 
high for not putting the return call into curly braces (or 
alternately putting all the code on a single line). This code is 
technically correct, but if a future developer adds more 
statements before the return, they will need to remember to 
add curly braces or it will not execute properly.  

Our prioritized approach to code review strikes a balance 
between the clean as you code philosophy and no automated 
code review. By focusing on the most critical issues, we 
significantly enhance software reliability, maintainability, 
and security without incurring excessive costs. While it is 
ideal to address all potential issues, this strategy offers a 
practical solution that delivers substantial benefits in the case 
where SonarQube could not be more closely integrated into 
the development pipeline. 

While this approach successfully improves software quality, 
there were some drawbacks to using SonarQube as a periodic 
gatekeeper. First, the long delay between making a code 
mistake and the correction reduces the developer’s ability to 
learn from their mistake. This is really a lost opportunity for 
the development team to continue to learn and grow. Second, 
the manual process of running SonarQube, filtering issues, 
and then addressing or creating Jira tasks for most critical 
items is tedious, adding a bit of friction into the DevOps 
pipeline. In a busy production environment, tasks with 
friction do not happen as often as you would like. 

6. BEST PRACTICES AND LESSONS LEARNED 
Based on our experiences with these two projects and related 
work, we identify several best practices for integrating 
SonarQube into software development pipelines: 

• Early adoption: Integrate SonarQube as early as 
possible in the development lifecycle to catch issues 
before they become more difficult and costly to fix. 

• Customization: Configure SonarQube to meet the 
specific needs of your project by customizing the Quality 
Profile (rules) and Quality Gates. 

• Education: Provide training and support to developers 
to help them understand how to use analysis results from 
SonarQube effectively. 

• Integration: Integrate SonarQube into your existing 
development tools and processes to streamline the 
automated code review process. Consider putting a 
merge check in place that prevents merging new code 
that has unaddressed SonarQube issues. 

• Prioritization: Establish a process for prioritizing and 
addressing SonarQube issues in existing code based on 
their severity and potential impact on the software's 
reliability and security. 

In addition to these best practices, we have also learned 
several important lessons from our experiences with 
SonarQube: 
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• Continuous improvement: It is essential to use 
SonarQube consistently throughout the development 
lifecycle to ensure that code quality is maintained and 
improved over time. It is much more agreeable to the 
development team to address issues as they go rather 
than spending time fixing issues from the past.  

• Collaboration: Effective use of SonarQube requires 
collaboration across the entire development team. 
Everyone needs to be on board with the goal of 
improving the reliability, maintainability, and security of 
the code base and empowered to help with this process. 

By following these best practices and lessons learned, other 
teams can effectively leverage SonarQube to enhance their 
software quality pipelines and deliver high-quality software 
products. 
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