
979-8-3503-5597-0/25/$31.00 ©2025 IEEE

Enhancing Aerospace Software Quality
with Automated Code Review

Jeremy Ludwig
Stottler Henke Associates, Inc.

San Mateo, CA 94402

Abstract—High-quality software is indispensable for mission-
critical systems like those developed for NASA and the DoD.
Reliable, maintainable code with minimal technical debt is
fundamental to achieving these goals. Automated code review
has become a cornerstone of the software quality pipeline, with
SonarQube a leading tool in the field. This paper shares our
practical experience integrating SonarQube into two long-
standing aerospace software development projects, previously
documented in IEEE Aerospace publications. Our primary
objective is to disseminate best practices and lessons learned
from our use of automated code review to assist others in
enhancing their software quality pipelines.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. BACKGROUND ... 1
3. RELATED WORK .. 2
4. SONARQUBE AS A CONTINUOUS INTEGRATION
TOOL ... 3
5. SONARQUBE AS A PERIODIC GATEKEEPER 5
6. BEST PRACTICES AND LESSONS LEARNED 5
REFERENCES .. 6
BIOGRAPHY .. 6

1. INTRODUCTION
High-quality software is paramount for mission-critical
systems, such as those developed for NASA and the DoD,
and for software product lines demanding long-term
sustainability and reusability. Reliable, maintainable code
with minimal technical debt is fundamental to achieving
these goals. Software development teams typically balance
code quality with project constraints by employing a variety
of design techniques, processes, and tools.

Automated code review has emerged as a cornerstone of the
software quality pipeline, with SonarQube a leading tool in
the field. This paper shares our practical experience
integrating SonarQube into two long-standing, deployed,
aerospace software development projects previously
documented in IEEE Aerospace publications. In the first
project, SonarQube is seamlessly integrated into the DevOps
pipeline, analyzing every code change (known as a pull

request in git parlance). In the second, it is employed as a
periodic gatekeeper, identifying potential security
vulnerabilities and critical defects outside the primary
development workflow. These distinct approaches yield
interesting and instructive outcomes over time.

Our primary objective is to disseminate best practices and
lessons learned from our use of automated code review to
assist others in enhancing their software quality pipelines.

In the remainder of this paper, we first provide background
information on the concept of technical debt and the
SonarQube static code analysis tool. Following this, we
discuss related work applying SonarQube to software
development. We then present two use cases: SonarQube as
a continuous integration tool and as a periodic gatekeeper.
We conclude with best practices and lessons learned.

2. BACKGROUND
This section provides a brief overview of software quality,
technical debt, automated code review, and the SonarQube
tool.

Software quality models articulate what is meant by
‘software quality.’ These models define the desired
characteristics and sub-characteristics of software and the
relationship between these characteristics and measurable
properties of the software. The ISO-IEC 25010: 2011 [1]
quality model defines eight desired characteristics of
software product quality: Functional Suitability, Performance
Efficiency, Compatibility, Usability, Reliability, Security,
Maintainability, and Portability. While all these
characteristics are important, this paper focuses specifically
on Reliability, Maintainability, and Security.

Software quality models based on static source code analysis
generally follow a three-step pattern. They identify specific
source code metrics to be calculated, describe how the
measurements of these metrics are aggregated, and define
how the aggregations are used to assess characteristics of
software quality (e.g., Reliability) [2]. The SQALE model
[3] assesses software quality by identifying and quantifying
potential issues line-by-line, and is the basis for automated
code review tools such as SonarQube.

2

Technical debt is a measure of how much work would be
needed to move from the current code to higher-quality code
[4]. The source of technical debt during development and
sustainment stems primarily from making design,
implementation, documentation, and testing decisions that
focus on short-term value [5]. As technical debt increases,
changes to the software become more difficult, error-prone,
and time-consuming, and this threatens the reliability,
maintainability, and security software characteristics.

This is an especially important take-away for software
product lines, where long-lived, reusable modules are
intended to be shared by multiple systems. Each module will
want to invest in high code quality (low technical debt)
initially and maintain this investment in quality over time as
it is extended and updated. That is, as part of planned re-
usability, each module commits to making a long-term
investment to software quality. The likely alternative is that
the software quality will gradually degrade until, eventually,
the problems become overwhelming [6].

There are several practical tools aimed at improving source
code quality, managing technical debt, and improving
security such as SonarQube, Codacy, and Fortify. These and
similar static code analysis tools use rules to analyze every
line of code to identify likely bugs, maintainability issues,
and security flaws. SonarQube appears to be one of the most
commonly used automated code review tools [7], [8], [9],
with their own site listing 400,000 organizations that use
SonarQube [10].

SonarQube comes with a set of default rules that span 30+
programming languages. For example, there are 600+
analysis rules for Java. Rules are bundled into Quality
Profiles, where project administrators can select the set of
rules that should be applied to a project. The default Java
quality profile has about 500 rules. Each rule is associated
with a Software Quality (security, reliability, and
maintainability), a Severity (high, medium, low), and a Type
(bug, vulnerability, code smell). An example rule is shown
in Figure 1. Each rule includes an explanation about what the
specific problem is and how to fix it. As rules are applied to
the code, they generate issues where a line (or lines) of code
violates a rule. Customizable Quality Gates define minimum
acceptable standards, for example code with only few low
severity issues or better can pass the gate. The SonarQube
dashboard supports viewing trends in issues over time, with
a focus on what has happened in ‘new code’ (this is
configurable, e.g., last 45 days or only changes in the current
pull request) vs. the existing codebase. The objective of
highlighting new code is to write code at the highest standard
going forward, which SonarQube calls “Clean As You Code”

[11]. Over time, issues will pile up if nothing is done or
slowly disappear if addressed.

It is important to note that Stottler Henke has no financial,
personal, or business relationship with Sonar or its tool
SonarQube. The views, opinions, and/or findings contained
in this paper are those of the author and should not be
interpreted as representing the official views or policies,
either expressed or implied, of Sonar. While this paper is
based on experience with SonarQube, we do not aim to
promote any one tool, and the implications of the presented
work apply to other commonly used static code analysis
tools.

3. RELATED WORK
This section provides a brief overview of a few related studies
that examine how SonarQube issues are triaged by software
engineers during development. See [8] for an in depth review.

Yu et al. [7] examined which SonarQube identified issues
were actually fixed or closed across 30 long-lived and
popular Java open source projects. While it would be
expected that issues would be triaged by type and severity,
what they found was that whether an issue was fixed mainly
related to (i) ease of understanding and fixing, (ii) likely harm
caused, (iii) the context surrounding the issue, (iv) the
specifics of the triggering rule, and (v) the specific developer.
Some of the implications they discussed include the need to
customize the project rule base to what will actually be fixed,
for developers to continue to learn such that they can
understand and fix more complex issues quickly, and to
integrate static analysis tools with the development pipeline
for continuous analysis. The authors also stress the need for
tool builders like SonarQube to continually improve their
analysis rules to reduce false positives and to identify the
actual severity of issues as accurately as possible.

Alfayez et al. [8] investigated similar research questions
about how SonarQube issues were prioritized, recruiting
research participants, training them on technical debt, and
then giving them a technical debt prioritization activity. The
activity involved selecting which issues in a list to select
given a fixed amount of time to spend, where each item had
an estimated time cost. The majority tried to balance the
severity of an issue with costs in selecting which to address,
though a solid minority uses a severity-only approach. One
individual used a cost-only approach. Across this, a group
consisting mostly of highly experienced software developers
identified some issues as ‘must fix’ and did not include these
issues in their prioritization. That is, irrespective of costs
some issues must be fixed and so were considered to be

Figure 1. Example SonarQube rule.

3

outside of prioritization. A primary takeaway from their work
is that there is not a one-size-fits-all solution for technical
debt prioritization.

Lenarduzzi et al. [12] used SonarQube to analyze 33 Apache
open source projects written in Java. They measured fault-
proneness of Java classes by analyzing the Git history, and
then looked at relationships between classes with more severe
bugs, classes with lower severity or no bugs, and fault-
proneness. They found that while one bug-finding rule was
related to increased fault-proneness, most were not regardless
of severity. While there are issues with attempting to
determine whether a bug actually caused a fault from
reviewing the commit history (or if it might cause a fault in
the future), the implications of their work are still worth
noting. One implication is the importance of customizing the
rule set to the specific project – even though most open-
source projects surveyed (98%; 14,732 of 14,957) use the
default rule set. A second implication is that it is important
for tool builders to continually update their tools based on the
actual harmfulness of issues.

We expect that factors influencing technical debt issue
identification and resolution in open-source projects and in
research studies are likely to differ from those in proprietary
development environments. However, the related work
reinforces the notion that tools such as SonarQube are a
work-in-progress and that better results will be achieved if
they are customized to the specific project and development
team.

4. SONARQUBE AS A CONTINUOUS
INTEGRATION TOOL

Stottler Henke is applying SonarQube to the development of
critical software for scheduling and deconflicting satellite
communications for the US Air Force [13], [14]. It is
important to note that this software, like many projects,
started as a rapid prototype to demonstrate proof of concept
and then began transitioning into a production-level system.
This section provides a high-level view of how SonarQube is
used to reduce technical debt over time as part of a software
quality pipeline.

A software quality pipeline is a combination of a team’s or
organization’s culture, processes, and tools aimed at
producing high quality software – sharing much in common
with their DevOps pipeline [15]. Just like there is no single
DevOps solution that works in all contexts, there is also no
single software quality pipeline that works everywhere for all
software. In this use case, the culture includes a focus on
developing reliable, maintainable, and secure software as a
long-term investment, the processes are those common to
lean and agile software development, in this case Jira,
Bitbucket, Jenkins, and SonarQube all integrated into an
automated DevOps pipeline.

Jira, by Atlassian, is used for issue tracking and serves as the
primary interface point between project management and
development. Bitbucket, also by Atlasssian, is used as the

version control system. Jenkins, an open-source project, is
used to compile and test the software, and build software
releases, to support continuous delivery. Finally, SonarQube
is used for automated code review.

Beginning work on an issue involves starting a new source
code branch in Bitbucket, which we will call the feature
branch. A software developer(s) then makes any changes in
this branch. Once the changes are made, the developer issues
a pull request that signals the feature branch is ready to merge
the change into the main development branch. This triggers
several actions. First, Jenkins compiles the feature branch and
runs automated tests on this branch. The developer needs to
correct any compilation or failed test issues to proceed.
Second, the feature branch is analyzed by SonarQube. Any
problems that SonarQube finds in the new code are posted to
the pull request in Bitbucket. Software developers are
expected to correct all identified problems before proceeding
to the next step. Third, the feature branch undergoes a manual
code review by another software developer. The reviewer
will create tasks in Bitbucket to be addressed. Once the
reviewer has verified all the tasks have been corrected, then
the feature branch is finally merged with the main
development branch.

The combination of automated and peer review has three
main benefits. First, the resulting code is more reliable,
maintainable, and secure. Occasionally, a bug is found, but
more often what is addressed are future maintainability
issues. Second, these reviews mentor less experienced
software developers. Requiring developers to fix all issues,
whether from SonarQube or the team lead, before merging in
their code generally encourages them to start doing the right
thing the first time. Third, the manual reviews spread
knowledge of the code out across the development team.
While developed independently, this lightweight review
system is very similar to that used by Google in terms of
tools, process, and motivation [16]. The downside to this
approach is that it is difficult to clearly assign credit for
improvement, where both manual an automated code review
are likely to be responsible for a reduction in technical debt
as measured by SonarQube.

As shown in Figure 3, this approach yields steady
improvements. This figure shows decreases in the number of
potential code smells, vulnerabilities, and bugs over time.
Code smells make up the largest percentage of potential
technical debt, followed by vulnerabilities and then bugs. All
areas improved, with potential bugs and vulnerabilities
reaching near zero.

At the same time, Figure 2 illustrates how percent duplicate
code decreases over time, a big win for code quality. Percent
of comments relative to lines of code also increases, but this
is likely due to peer review (and not SonarQube). Note that
in general, these fixes do not require dedicated development
time because corrections are made only on code that is being
created or updated as part of the normal development process.

4

Slow and steady gains improve the reliability,
maintainability, security of the code with essentially zero cost
in terms of additional development time – even while the
overall lines of code continues to grow.

There are two interesting things to note. First, we say
potential issues because there are a significant number of
false positives across all categories as well as suggestions that
are simply not worthwhile to correct. Second, there are
several noticeable spikes in the graph. These are generally
caused by changes to the specific set of rules SonarQube is
applying, which are often updated with each major and minor
release. While the project started with highly customized
rules, we reverted to mostly the default rule sets for each
language, disabling rules that were found to occur often and
always be labelled ‘won’t fix’. The upgrade spikes are visible
across all three issue types.

This approach provides several benefits. First, it enables early
detection of potential quality issues, preventing them from
being merged into the codebase. Second, it fosters a culture
of quality among developers, encouraging them to write
clean, maintainable code following best practices the first
time around. Additionally, developers get immediate
feedback that encourages them to not keeping making the

same mistake. Finally, addressing issues as they arose in each
pull request helps to reduce the overall cost of software
development by preventing bugs and vulnerabilities from
being discovered later in the development lifecycle. It is
faster and easier for a developer to fix a problem right away
than it is to go back and fix the same problem later.

While integrating SonarQube into the DevOps pipeline
generates benefits, there are some challenges to overcome.
One issue is the need to configure Bitbucket, Jenkins, and
SonarQube to correctly analyze each pull request, and then to
keep the configuration working in the face of updates to each
of these tools. A second issue is that the rules applied to each
language do need to be customized for the code base.
Specifically, rules that are false positive prone or are always
marked as ‘won’t fix’ need to be turned off to maintain
developer engagement. As the people most impacted by
automated code review, and in the best position to see how it
could be done better, developers need to be empowered to
suggest improvements such as changes to rules and quality
gates. Additionally, SonarQube constantly updates the
default rules for each language which requires integration
with the existing rule updates. Overall, these DevOps costs
are fairly limited, leading to a good cost/benefit ratio in favor
of SonarQube for this project.

Figure 2. Percent duplicated lines and percent comments relative to code over time.

Figure 3. Bugs, code smells, and vulnerabilities as identified by SonarQube.

5

A third issue we found with SonarQube is that it is important
to establish clear guidelines for handling SonarQube
violations detected in pull requests. Specifically, educating
the development team that every issue flagged by SonarQube
should be addressed or senior developers should sign off on
a ’won’t fix’. Initially, peers approved pull requests with un-
addressed SonarQube issues or reviewed and merged pull
requests that were never even analyzed (e.g., when a security
token expires SonarQube stopped running). Making the best
possible use of SonarQube requires training and commitment
from the development team.

5. SONARQUBE AS A PERIODIC GATEKEEPER
The second aerospace software development project, a crew
trainer and experimentation tool for the MH-60R and MH-
60S helicopters [17], required a more flexible approach to
code review. Due to the project's DevOps constraints, it is not
feasible to integrate SonarQube into the DevOps pipeline for
every pull request. Instead, SonarQube is used as a periodic
gatekeeper, analyzing the codebase at regular intervals
through the Gradle build tool.

The DevOps pipeline for this project involves Jira for issue
tracking, a stand-alone Git repository for source version
control, and Gradle as a build tool. As in the previous project,
the development workflow involves creating a feature
branch, writing code, and then generating a request for peer
review before merging the new code into the main branch.
The main difference between this project and the previous
project is that SonarQube is not integrated into the DevOps
pipeline and instead requires a developer to manually run a
Gradle task to perform the analysis and upload the results to
the SonarQube web application. This approach allows the
development team to identify potential code quality issues
that may have been missed during the primary development
workflow.

The primary challenge with this method, not present in the
other project, is that the issues found by SonarQube must be
prioritized. As previously mentioned, developers greatly
prefer to make forward progress on feature requests rather
than address potential SonarQube issues from the past. It also
takes time to go back and fix issues once developers have
committed changes and moved onto something else. Because
of this, it isn’t reasonable to address all the new issues that
have been added to the code.

Prioritization is done using the SonarQube functionality for
filtering issues by type (vulnerability, bug, code smell) and
by severity (high, medium, low). First, all vulnerabilities are
addressed. Second, all potential bugs marked high are
addressed. These two filters catch the issues most likely to
affect maintainability, reliability, and security. All other
issues are ignored. This Java code is an example of the types
of things that are ignored:

if (!isVisible())
return;

These statements are flagged as a code smell with severity
high for not putting the return call into curly braces (or
alternately putting all the code on a single line). This code is
technically correct, but if a future developer adds more
statements before the return, they will need to remember to
add curly braces or it will not execute properly.

Our prioritized approach to code review strikes a balance
between the clean as you code philosophy and no automated
code review. By focusing on the most critical issues, we
significantly enhance software reliability, maintainability,
and security without incurring excessive costs. While it is
ideal to address all potential issues, this strategy offers a
practical solution that delivers substantial benefits in the case
where SonarQube could not be more closely integrated into
the development pipeline.

While this approach successfully improves software quality,
there were some drawbacks to using SonarQube as a periodic
gatekeeper. First, the long delay between making a code
mistake and the correction reduces the developer’s ability to
learn from their mistake. This is really a lost opportunity for
the development team to continue to learn and grow. Second,
the manual process of running SonarQube, filtering issues,
and then addressing or creating Jira tasks for most critical
items is tedious, adding a bit of friction into the DevOps
pipeline. In a busy production environment, tasks with
friction do not happen as often as you would like.

6. BEST PRACTICES AND LESSONS LEARNED
Based on our experiences with these two projects and related
work, we identify several best practices for integrating
SonarQube into software development pipelines:

• Early adoption: Integrate SonarQube as early as
possible in the development lifecycle to catch issues
before they become more difficult and costly to fix.

• Customization: Configure SonarQube to meet the
specific needs of your project by customizing the Quality
Profile (rules) and Quality Gates.

• Education: Provide training and support to developers
to help them understand how to use analysis results from
SonarQube effectively.

• Integration: Integrate SonarQube into your existing
development tools and processes to streamline the
automated code review process. Consider putting a
merge check in place that prevents merging new code
that has unaddressed SonarQube issues.

• Prioritization: Establish a process for prioritizing and
addressing SonarQube issues in existing code based on
their severity and potential impact on the software's
reliability and security.

In addition to these best practices, we have also learned
several important lessons from our experiences with
SonarQube:

6

• Continuous improvement: It is essential to use
SonarQube consistently throughout the development
lifecycle to ensure that code quality is maintained and
improved over time. It is much more agreeable to the
development team to address issues as they go rather
than spending time fixing issues from the past.

• Collaboration: Effective use of SonarQube requires
collaboration across the entire development team.
Everyone needs to be on board with the goal of
improving the reliability, maintainability, and security of
the code base and empowered to help with this process.

By following these best practices and lessons learned, other
teams can effectively leverage SonarQube to enhance their
software quality pipelines and deliver high-quality software
products.

REFERENCES
[1] Organización Internacional de Normalización, ISO-IEC

25010: 2011 Systems and software engineering -
Systems and software Quality Requirements and
Evaluation (SQuaRE) - System and software quality
models. Geneva: ISO, 2011.

[2] R. Ferenc, P. Hegedűs, and T. Gyimóthy, “Software
Product Quality Models,” in Evolving Software
Systems, T. Mens, A. Serebrenik, and A. Cleve, Eds.,
Springer Berlin Heidelberg, 2014, pp. 65–100. doi:
10.1007/978-3-642-45398-4_3.

[3] Squale Consortium, “Visualization of Practices and
Metrics,” Mar. 2010. Accessed: Feb. 07, 2017. [Online].
Available: http://www.squale.org/quality-models-
site/research-deliverables/WP1.2_Visualization-of-
Practices-and-Metrics_v1.1.pdf

[4] W. Cunningham, “The WyCash portfolio management
system,” SIGPLAN OOPS Mess, vol. 4, no. 2, pp. 29–
30, Dec. 1992, doi: 10.1145/157710.157715.

[5] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I.
Gorton, “Measure It? Manage It? Ignore It? Software
Practitioners and Technical Debt,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, in ESEC/FSE 2015. New York, NY, USA:
ACM, 2015, pp. 50–60. doi: 10.1145/2786805.2786848.

[6] E. Lim, N. Taksande, and C. Seaman, “A Balancing Act:
What Software Practitioners Have to Say about
Technical Debt,” IEEE Softw., vol. 29, no. 6, pp. 22–27,
Nov. 2012, doi: 10.1109/MS.2012.130.

[7] P. Yu, Y. Wu, J. Peng, J. Zhang, and P. Xie, “Towards
Understanding Fixes of SonarQube Static Analysis
Violations: A Large-Scale Empirical Study,” in 2023
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), Mar. 2023, pp.
569–580. doi: 10.1109/SANER56733.2023.00059.

[8] R. Alfayez, R. Winn, W. Alwehaibi, E. Venson, and B.
Boehm, “How SonarQube-identified technical debt is
prioritized: An exploratory case study,” Inf. Softw.
Technol., vol. 156, p. 107147, Apr. 2023, doi:
10.1016/j.infsof.2023.107147.

[9] “The 2019 State of Code Review Report,” SmartBear

Software. Accessed: Oct. 05, 2020. [Online]. Available:
https://smartbear.com/resources/ebooks/the-state-of-
code-review-2019/

[10] “Customers & Organizations Using Sonar.” Accessed:
Sep. 27, 2024. [Online]. Available:
https://www.sonarsource.com/company/customers/

[11] “Clean Code: The Essential Approach.” Accessed: Sep.
25, 2024. [Online]. Available:
https://www.sonarsource.com/solutions/our-unique-
approach/

[12] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some
SonarQube issues have a significant but small effect on
faults and changes. A large-scale empirical study,” J.
Syst. Softw., vol. 170, p. 110750, Dec. 2020, doi:
10.1016/j.jss.2020.110750.

[13] J. Ludwig, D. Cline, and A. Novstrup, “A Case Study
Using CBR-Insight to Visualize Source Code Quality,”
in Proceedings of IEEE Aerospace Conference 2020,
Big Sky, MT, Mar. 2020.

[14] R. Stottler and R. Richards, “Managed intelligent
deconfliction and scheduling for satellite
communication,” in 2018 IEEE Aerospace Conference,
Mar. 2018, pp. 1–7. doi: 10.1109/AERO.2018.8396654.

[15] A. Wiedemann, N. Forsgren, M. Wiesche, H. Gewald,
and H. Krcmar, “Research for practice: the DevOps
phenomenon,” Commun ACM, vol. 62, pp. 44–49,
2019, doi: 10.1145/3331138.

[16] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A.
Bacchelli, “Modern Code Review: A Case Study at
Google,” in Proceedings of the 40th International
Conference on Software Engineering: Software
Engineering in Practice, in ICSE-SEIP ’18. New York,
NY, USA: ACM, 2018, pp. 181–190. doi:
10.1145/3183519.3183525.

[17] R. Richards and B. Presnell, “OMIA: MH-60R
Helicopter Desktop Crew Trainer & Software Change
Experimentation Tool,” in 2022 IEEE Aerospace
Conference (AERO), IEEE, 2022, pp. 1–7. Accessed:
Sep. 26, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9843720/

BIOGRAPHY
Jeremy Ludwig, Ph.D., is a group
manager at Stottler Henke Associates,
Inc. Dr. Ludwig leads AI research
teams, applying reasoning, knowledge
representation, and machine learning
to develop innovative solutions for
complex challenges.

