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Abstract—This paper describes an intelligent software system 
for controlling satellites in a swarm to avoid space debris. This 
software system, called Coordinated Autonomous Debris 
Avoidance (CADANCE), was developed with funding and 
direction from NASA. CADANCE uses trajectory optimization 
and case-based reasoning (CBR) to create a sequence of thrust 
controls for every satellite in the swarm, based on incoming 
Conjunction Data Messages (CDMs) and mission objectives. 
CADANCE uses a trajectory optimization algorithm called 
Particle Swarm Optimization (PSO) to plan the sequence of 
maneuvers required to execute the high-level plan. This 
approach can plan maneuvers to avoid space debris for satellites 
in diverse swarm and formation types, including but not limited 
to massive internet provider swarms, science missions, Earth 
observation swarms, and trailing formations. The main 
significance of this work is to prove, in simulation, the feasibility 
of autonomously controlling satellites in a swarm to avoid 
conjunctions, so we tested CADANCE in eight unique simulated 
scenarios with CDM data from real satellites. The scenarios 
were diverse, with different swarm types, mission constraints, 
and conjunction risks. We used a different satellite simulation 
software for PSO then we used for testing to avoid bias. 
CADANCE could find a conjunction avoidance maneuver for 
every scenario that reduced the Probability of Collision (Pc) to 
below a given threshold while obeying all mission constraints. 
Additionally, CADANCE’s trajectory optimizer was always 
capable of planning a series of maneuvers to match the 
trajectory requested by the High-Level Planner to within 5 
meters. CADANCE is computationally efficient, which will 
enable it to run on radiation- tolerant computers in space.  
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1. INTRODUCTION 
Safely managing a swarm of SmallSats operating in Low 
Earth Orbit (LEO) is a challenging task that requires 
measuring the risk of collision with nearby objects and 
planning conjunction avoidance maneuvers to minimize 
those risks. At the same time, the conjunction avoidance 
maneuvers cannot increase the risk of collision with objects 
in nearby orbits. Additionally, to avoid mission impacts, 
conjunction avoidance planning should comply with mission 
requirements when possible. For example, the mission may 
require that the swarm provide coverage to view an event 
happening at a certain location at a certain time or may 
require consistent coverage of a region.  

The process of managing satellite conjunctions starts when a 
satellite Owner/Operator (O/O) receives a Conjunction Data 
Message (CDM). A CDM is a standard format for 
exchanging spacecraft conjunction information and contains 
the position and velocity of both the primary and secondary 
object involved in the possible conjunction as well as the 
Probability of Collision (Pc). The CDM also contains 
information about the uncertainty of the position of both the 
primary and secondary satellites in the form of covariance 
volumes. Currently, managing swarms of SmallSats is a 
primarily manual process, where satellite operators receive a 
Conjunction Data Message (CDM), decide whether to avoid 
the conjunction, create a plan to avoid the conjunction with 
the owner of the other satellite, provide that maneuver to the 
Space Force for validation, and then execute the plan. This 
manual process is feasible now, but some satellite operators 
are planning on placing thousands of satellites into LEO 
which will result in an order of magnitude increase in the 
number of conjunctions. Within 5-10 years, performing 
conjunction avoidance maneuver planning manually will be 
a huge operational burden. One solution to this challenge is 
to automate the process of satellite swarm conjunction 
avoidance. This paper describes Coordinated Autonomous 
Debris Avoidance (CADANCE), an AI-based solution 
intended to run on each SmallSat in a swarm and 
collaboratively plan conjunction avoidance maneuvers.  

CADANCE consists of two primary modules that achieve the 
automated conjunction avoidance capability. The first is the 
High-Level Planner module which processes CDMs while 
considering the satellite’s capabilities, the swarm 
configuration, and the mission to develop one or more 
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candidate high-level plans to avoid the conjunction. This 
module produces a constrained trajectory optimization 
problem for each candidate high-level plan which is then 
processed by the Trajectory Optimizer module to produce 
a series of actions to execute each plan. Finally, each plan is 
analyzed to calculate a quality score based on fuel use, 
amount of reduction of the Pc, and adherence to mission 
constraints. The plan with the highest quality score is the 
active plan, unless another CDM with updated information 
arrives. At the maneuver commitment point, if the Pc is still 
above the allowable threshold set by the O/O, the active plan 
will be executed, resulting in a series of maneuvers for one or 
more satellites in the swarm that will avoid conjunctions and 
allow the swarm to respect mission constraints.  

As an illustrative example of how these modules work 
together, consider two satellites flying in a trailing formation 
that need to maintain a specified distance to achieve their 
mission. CADANCE receives a CDM that affects the leading 
satellite. The High-Level Planner module will create a plan 
to adjust the leading satellite’s orbit to avoid the conjunction 
and then rejoin the formation after the conjunction risk has 
decreased to below a threshold (1E-6 could be a threshold for 
a high value satellite). This plan is called a phased orbit 
restoring plan, and will consist of an orbit raising maneuver, 
followed by an orbit lowering maneuver into a catch-up orbit 
and finally an orbit raising maneuver to return to the initial 
orbit. This three-step plan requires three separate constrained 
optimization problems, which the High-Level Planner will 
create and provide to the Trajectory Optimizer. In this 
example, the High-Level Planner only produced one plan, 
so it will by default be the active plan and will be used unless 
a new CDM becomes available.  

There are two main benefits of using CADANCE as opposed 
to a manual process. The first is the reduction in human labor 
required, which enables managing larger swarms in orbital 
regimes with more obstacles. The second is that our trajectory 
optimization approach optimizes for plans with low fuel use, 
which results in longer satellite lifespans.  

The primary contribution of this paper is to explain how 
constrained optimization can be used as a common 
representation by both the High-Level Planner module and 
the Trajectory Optimizer module. This is the key aspect of 
the work, because it is what enables an end-to-end solution 
that can start with CDMs and end with thrust commands for 
every satellite in the swarm. Constrained optimization is also 
beneficial because it enables CADANCE to place safety 
guardrails on the satellites.  

The Related Work section briefly describes techniques 
already used to plan conjunction avoidance maneuvers and 
existing technologies that CADANCE builds on top of. 
Following that, the Methods and Results and Discussion 
section will cover the CADANCE software and the initial 
evaluation process. The Conclusion summarizes progress on 
CADANCE to date and outlines future work.  

2. RELATED WORK 
A common manual approach for planning a conjunction 
avoidance maneuver is to use a maneuver trade space [1]. 
This approach simplifies the maneuver into only prograde 
and retrograde maneuvers and maps out the Pc relative to both 
delta-v and thrust times. With this approach, a satellite O/O 
can then choose a delta-v and thrust time that minimizes the 
Pc to below their threshold while not wasting fuel. This 
approach only handles the conjunction avoidance maneuver 
itself, and further orbit restoring maneuvers would again need 
to be planned manually.  

There are already approaches for autonomous SmallSat 
swarm conjunction avoidance being developed in the satellite 
industry. For example, the SpaceX Starlink satellites have an 
automated collision avoidance system. However, this 
software cannot be fully trusted to manage their satellite 
swarms. Recent examples where SpaceX could have used 
their autonomous conjunction avoidance system resulted in 
them requesting the other satellite in the conjunction make a 
maneuver instead [2]. Additionally, once developed, SpaceX 
will likely not license their software for other satellite O/Os, 
making it impossible for universities or small science 
missions to use. 

CADANCE leverages several existing technologies. First, 
CADANCE uses Case-Based Reasoning (CBR) to 
implement its High-Level Planner module. CBR matches a 
current problem to a library of past problems with 
accompanying solutions. CBR essentially divides the 
decision space into different possible cases, each with a 
solution or solution-generating method, then analyzes each 
case to choose the most similar one. CBR uses a scoring 
function which computes a weighted sum of the differences 
between the features of a current case and the features of each 
case in the case base. CBR then adapts the solution for the 
most similar case to current variables like the number of 
satellites, their orbits, and required orbit adjustment time [3].  

CADANCE uses trajectory optimization to plan the series of 
thrust maneuvers and attitude adjustments required to 
execute the high-level plan developed by the High-Level 
Planner. Trajectory optimization is a subfield of optimal 
control. Broadly, it is the process of finding a trajectory—
with a trajectory being defined as a set of states and control 
inputs—that minimizes or maximizes an objective function 
for a dynamical system over time. There are numerous 
approaches for satellite trajectory optimization, such as 
collocation, direct shooting, and linear/non-linear 
programming [4]. Metaheuristic approaches, which are a 
kind of approximate optimization algorithm, have been 
increasingly popular for their computational efficiency and 
ability to discover high quality solutions that are 
approximations of the global optima. These methods include 
evolutionary algorithms such as Genetic Algorithms, 
Differential Evolution, and Particle Swarm Optimization 
(PSO) [5]. Metaheuristic algorithms can often be used to 
provide an initial solution to trajectory optimization methods 
that are particularly sensitive to the initial solution [5]. 
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CADANCE uses PSO because of its potential to scale with 
computational resources; ability to handle nonlinear 
constraints and costs; ability to handle non-differentiable 
cost; and ease of integration with the High-Level Planner. 
Past work already used PSO to plan conjunction avoidance 
maneuvers [6]. However, this past work does not provide the 
swarm level orchestration that CADANCE does. CADANCE 
can maneuver one or more of the satellites in the swarm to 
avoid a conjunction and reconfigure the swarm to still 
complete mission objectives. Also, CADANCE is more 
computationally efficient than this past work.  

 
3. METHODS 

This section first summarizes the two main components of 
the CADANCE software and then describes the evaluation 
process that proves its feasibility. The two components are 
the High-Level Planner and the Trajectory 
Optimizer. Note that the prototype version of CADANCE 
is a centralized algorithm, while the in-space version will be 
distributed across the swarm.  

High-Level Planner 

The High-Level Planner uses an implementation of CBR 
that considers the following features: Pc threshold, upcoming 
station keeping maneuvers, support from other satellites, 
ability to fulfill mission requirements while thrusting, breaks 
in the mission requirements, and mission constraints. The 
mission constraints that CADANCE can handle are attitude 
constraints, temporal constraints, and relative satellite motion 
constraints. An attitude constraint specifies a range of 
allowable pitch, roll and yaw values for the satellite while 
performing and/or after the maneuver. For example, an 
attitude constraint could be used to keep a phased array 
antenna pointing towards the Earth so the satellite can keep 
communicating while it is maneuvering. Temporal 
constraints prohibit the satellite from performing a maneuver 
in predefined time windows. For example, the mission might 
require that the satellites only perform maneuvers when they 
are over the Earth’s poles because those are times when 
maneuvering will not interfere with mission tasks. Relative 
satellite motion constraints are useful for satellites in a tight 
formation, where the satellites need to raise their orbit in a 
synchronized manner.  

The case in the case-base with the set of features most similar 
to the current scenario is the matching case, and other highly 
similar cases will be stored as potential secondary 
options. Each case in the case-base has an associated solution 
template which is a high-level plan for the correct maneuvers 
for the case. It is called a solution template because it is a 
general plan that requires details specific to the current 
scenario to be added.  

The High-Level Planner uses CBR to match the current 
scenario to one of the following solutions: 

1. No maneuver: Empty Plan, no actions 
2. Orbit raising: Single orbit raising maneuver 

3. Orbit lowering: Single orbit-lowering maneuver 
4. Orbit raise and restore the original orbit: Orbit 

raising maneuver followed by an orbit lowering 
maneuver of the same magnitude 

5. Orbit raise and phase restore the original orbit: 
Orbit raise, then orbit lower into a catch-up orbit; 
finally, orbit raise to return to the initial orbit 

6. Orbit raise with backup satellite: Orbit raise 
maneuver for the satellite with the conjunction and 
an orbit plane adjustment maneuver for a backup 
satellite 

 
The High-Level Planner will fill in the selected solution 
template with additional data to limit the search space of the 
Trajectory Optimizer. The key approach for this is to use 
approximate formulas to calculate how much the satellite’s 
orbit needs to be raised or lowered to avoid a conjunction. 
This process will use the covariance volumes of the satellite 
and the space debris to compute a magnitude of in-track miss 
distance that would reduce the Pc to below the threshold. This 
desired in-track miss distance is converted to a required delay 
time using the velocity of the satellite. Then, this delay time 
is added to the satellite’s original period to find the desired 
final orbital period 𝑇! after the maneuver. To solve for the 
amount of orbit raising to achieve a required final orbital 
period Tf, our software will find the required final semi-major 
axis af. Formula 1 shows Kepler’s third law rewritten to show 
how to convert from desired final orbital period 𝑇! to final 
desired semi-major axis af.  
 

                               𝑎! = #"#$"
#

%&#
$

                        (1) 
 
G is the gravitational constant and M is the mass of the Earth. 
The required amount to raise the orbit is the difference 
between the final orbit af and the initial semi-major axis. 
 
The High-Level Planner will generate one or more 
constrained optimization problems, depending on the number 
of maneuvers in the high-level plan, and send them to the 
Trajectory Optimizer. Each of these constrained 
optimization problems has fuel use as primary cost, and then 
a set of constraints on the final orbit and on the transient state 
of the satellite while it is maneuvering. Consider an orbit 
raising maneuver as an example of how to design a constraint 
for a certain type of maneuver. An orbit raising maneuver has 
a range of allowable altitudes higher than the starting altitude 
as one constraint on the final orbit. Refer to Figure 1 for a 
diagram of how the altitude constraint works. There is a target 
vector that specifies the point in space that the new orbit is 
supposed to intersect with. This point is chosen to be a safe 
distance above the object causing the conjunction. There is a 
spherical region at the end of the target vector, with radius 
equal to the allowable distance between the desired orbit 
raising vector and the actual result. In our implementation, 
the radius of the spherical region was 5 meters, so the final 
orbit always passes through a point at most 5 meters away 
from the target vector.   
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The final orbit is also constrained to have at most a small 
change in eccentricity, inclination, and longitude of the 
ascending node. An orbit lowering maneuver has a similar set 
of constraints, except the final altitude has an allowable range 
of altitudes lower than the original orbit. A plane change 
maneuver is again similar, but where the target vector is 
perpendicular to the original orbital plane. Another constraint 
type is an ephemeris matching constraint, which is described 
in more detail in the description of the Trajectory 
Optimizer. The ephemeris-matching function is useful for 
returning a satellite to its original position in a formation and 
for enforcing a relative motion constraint between two 
satellites. The High-Level Planner can also produce 
multiple maneuver plans such as an orbit restoring plan and 
a phased orbit restoring plan. All of the maneuvers in a 
multiple maneuver plan have the same set of constraints as an 
orbit lowering and orbit raising maneuver on its own. 

In addition to the constrained optimization problem, the 
High-Level Planner also creates a schedule for when to 
perform each maneuver. This schedule is built using a 
heuristic guideline. Specifically, the maneuver will be 
performed when the satellite is on the opposite side of the 
Earth from the projected location where the satellite and 
conjunction object will be closest. This is the location where 
the smallest delta-v will produce the largest increase in the 
distance between the two objects at the time of closest 
approach (TCA).  The High-Level Planner will shift the 
maneuver time earlier by one or more period if needed to 
avoid time windows imposed by any temporal constraints.  

Trajectory Optimizer 

The goal of the CADANCE trajectory optimization algorithm 
is to discover a trajectory for each satellite which reduces the 
Pc with a secondary object while minimizing fuel use and 
following mission constraints.  

CADANCE uses PSO for trajectory optimization, which 
stochastically generates candidate solutions within the search 
space and then intelligently updates the search space position 
of every particle in the swarm each epoch (iteration). In our 

case, the search space is fully parameterized by thrust 
duration, thrust azimuth, and thrust elevation. Here swarm 
refers to the swarm of particles used by PSO, not the swarm 
of SmallSats. Each particle uses an update function that is a 
weighted combination of its own best-known position and the 
best-known position of the entire swarm. The former’s 
weighting is known as the “cognitive coefficient” (𝑐%), and 
the latter, as the “social coefficient” (𝑐&). This update function 
creates an effect that mimics the swarming behavior of a 
flock of birds, where the swarm flocks together toward the 
optimal solution. As a heuristic, PSO does not guarantee that 
the optimal solution is discovered; however, it excels at 
searching a large search-space for a solution that is near-
optimal. 

Below is pseudo-code that outlines the general approach of 
PSO as implemented in CADANCE [7]: 

 

Note the velocity and position update functions. These 
comprise the weighted update that determines the particle’s 
next values in the search process. Consider the velocity 
update function, Formula 2. 
 
           𝑣',)~𝜔𝑣',) + 𝑐%𝑟%(𝑝',) − 𝑥',), + 𝑐&𝑟&(𝑔) − 𝑥',))    (2) 
 
Note the variable 𝜔, which is a predefined constant for inertia 
that specifies the weight placed on the previous velocity 
value. Also note the variables 𝑟*and 𝑟+. These are simply 
uniform random variables between 0 and 1 that help facilitate 
the randomness in the stochastic search process [6]. The 
value 𝑝',) is the best solution the particle has encountered 
while 𝑔) is the best solution the entire swarm has 
encountered. The values 𝑏,- and 𝑏./ are the lower and upper 
boundaries of the search-space respectively.  

To simplify the optimization problem as much as possible, 
we assume that the spacecraft operates at maximum thrust, 
and that the High-Level Planner plans the start time for each 

 
Figure 1. Diagram of the orbit raising constraint 
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maneuver. PSO uses the latest values for duration, azimuth, 
and elevation for each particle to define a thrust maneuver 
which is dynamically propagated forward toward the TCA 
using orbital propagation. The resulting trajectory is 
evaluated using the objective function, and the epoch is 
complete once every particle has performed this process. 
Each particle then updates its position using the PSO update 
function, repeating until a desired number of epochs is 
reached. 

For impulsive maneuvers, pure analytic approximations exist 
which are sufficient to propagate the spacecraft forward in 
time. Pure analytical propagation approximates the equations 
of motion with closed-form expressions, instead of 
numerically integrating the forces, which is much faster, but 
can be less accurate over extended periods of time [8]. 
However, in our case—that is, low-thrust continuous 
maneuvers—the spacecraft requires numerical, or semi-
analytic, propagation. This is because the multiple forces 
need to be modeled over an extended period of time, and 
there are no good analytical models for this. Therefore, 
CADANCDE uses the Orekit implementation of the 8th order 
Dormand-Prince numerical integrator for propagation, which 
uses the Runge-Kutta iterative method for integration. The 
Runge-Kutta method is widely used in space applications 
today [9]. The Runge-Kutta method offers adaptive step-size 
integration, which resulted in shorter maneuvers requiring 
longer to integrate because they required a smaller step size.  

The most important design consideration for trajectory 
optimization is the objective function which needs to be 
designed such that a desired trajectory is the global minima. 
The CADANCE trajectory optimizer uses an objective 
function that follows the Bolza form, which is shown in 
Formula 3. The Bolza form accepts the control state function 
x (vector describing both state and control) [10].  
 
									𝐽(𝑥) = 𝑙 5𝑥(𝑡'), 𝑥(𝑡!,8 + ∫ 𝐿(𝑡, 𝑥(𝑡), �̇�(𝑡),𝑑𝑡0!

0"
       (3) 

 
Note the two terms: the first is a boundary term at 𝑡!, while 
the second is a continuous term across the entire time span 𝑡1 
to 𝑡!.  𝑙 represents a cost associated with the final state and 𝐿 
represents a cost throughout the entire trajectory. The first 
term is often called the Mayer term, and the latter term is 
referred to the Lagrange term (which is not to be confused 
with Lagrange Multipliers, which will be discussed later). 

CADANCE contains implementations of two primary 
objective functions: target vector and ephemeris matching 
which correspond to different constraints created by the 
High-Level Planner.  

The target vector function corresponds to a constraint 
created by the High-Level Planner to ensure that the final 
orbit passes through a given position in space. The target 
vector function has a global minimum at a spacecraft 
trajectory that passes through a specified range of positions 
near a target position vector defined in the Earth-centered 
Inertial (ECI) frame. This position vector is provided to the 

function as a relative position vector defined in the spacecraft 
UVW frame (a coordinate frame relative to the spacecraft) 
and then converted to the ECI frame. For instance, a target 
vector representing an orbit raising maneuver of 1 kilometer 
can simply be defined in the spacecraft frame as [0, 0, 1000]. 
This way of defining desired orbits makes it simpler for the 
High-Level Planner to generate human-understandable 
inputs to PSO as well as for the High-Level Planner to allow 
for a range of possible satisfying orbits that can be narrowed 
down with other constraints. The objective function is 
structured primarily as a penalty that correlates with the 
minimum distance between the spacecraft’s new orbit and the 
target point. Since this is a cost that needs to be evaluated 
across the trajectory, this can be considered as a part of the 
Lagrange term of the objective function. 

The ephemeris-matching function has a global minimum for 
a trajectory that matches an ephemeris provided by the High-
Level Planner. This function is implemented by sampling 
points at regular time intervals in the ephemeris and finding 
the maximum separation between a particle’s position and the 
ephemeris over those sampled times. Sampling points across 
the trajectory is a discretized estimate of the Lagrange term 
in the objective function, chosen for its simplicity and speed 
of evaluation. The global minimum thus corresponds to a 
trajectory where this separation is minimized.   

Both classes of objective function also ensure their global 
minimum lies where fuel-use is minimized. This is achieved 
with a fuel penalty on top of the objective function. In 
practice, this penalty leads the optimizer toward the 
theoretically most efficient maneuver. On top of finding the 
most energy-efficient maneuver, the fuel penalty reduces the 
number of local minima in the objective function. This is 
because for two solutions with otherwise equivalent objective 
costs, the fuel penalty penalizes the solution that uses more 
fuel. In reducing the number of local minima, the optimizer 
outputs more predictable results. 

PSO does not natively handle constraints. As such the 
trajectory optimizer uses a Lagrangian Relaxation for 
constraints on the final orbital elements. Lagrangian 
Relaxation is a common technique in optimization that 
converts a constrained optimization problem into an 
unconstrained optimization problem by adding costs for 
constraint violations. This new unconstrained optimization 
problem will have a global minimum that is close to the 
global minimum of the original constrained optimization 
problem. CADANCE matches Lagona et al.’s form of 
Lagrangian Relaxation [6]. In their example, their constraints 
on the orbital elements takes the form in Formula 4.  
 
              𝐽 = 𝐽∗ +𝜔3 =

/40!5	7	/!
/#

> + 𝜔3 =
840!5	7	8!

8#
>                (4) 

 
𝐽∗ is the unconstrained objective function, 𝜔3is a weighting 
on the constraints, and 𝑝 and 𝑔 represent a function of orbital 
elements over time for the evaluated maneuver. 𝑝!, 𝑔! and  
𝑝', 𝑔' represent the final and initial values for those orbital 
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elements, assuming no maneuver is performed. Note how 
each Lagrange Multiplier is normalized by its initial value. 
This is critical for the optimization to work on our objective 
functions, since each orbital element can vary by orders of 
magnitude. 

These Lagrange Multipliers are primarily used for orbital 
constraints; they make sure the satellite stays within 
operating ranges after the maneuver is performed. Since these 
constraints are only evaluated after the maneuver is 
completed, for our purposes, these constraints can be 
considered a part of the Mayer term of the objective function. 
In Formula 4, each constraint is weighted with 𝜔3 but each 
term can also be assigned a different weight if some 
constraints are more important than others. 

For simple, search-space limiting constraints, such as hard 
boundaries on thrust duration and angle, a simple solution is 
to use the largest penalty value possible in the programming 
language when the constraint is violated. While this solution 
does not guarantee continuity on the objective function, PSO 
does not require continuity, and in practice this is not an issue. 

Evaluation Process 

An important part of our evaluation methodology was to 
avoid bias by testing the CADANCE approach with 
simulation software that was not used inside of CADANCE 
itself. To this end, we used Orekit in our software for the 
trajectory optimization step and we used GMAT to evaluate 
the results. We tested CADANCE in the following eight 
diverse scenarios to demonstrate its capability to handle 
different satellite swarm types and constraints.  

1. No Maneuver: Satellite in LEO with no constraints, 
which has a conjunction but with a Pc below the 
threshold. Satellite will not perform any 
maneuvers.  

2. Orbit Raising: Satellite in LEO with no constraints, 
which has a possible conjunction with Pc above the 
threshold. Satellite will perform an orbit raising 
maneuver, where the amount to raise the orbit will 
depend on the uncertainty of the location and 
velocity of the secondary object.  

3. Orbit Lowering: Satellite in LEO with a flight 
ceiling constraint, and a possible conjunction with 
Pc above the threshold. Satellite will perform an 
orbit lowering maneuver, where the amount to lower 
the orbit will depend on the uncertainty of the 
location and velocity of the secondary object.  

4. Landsat with Orbit Coordination: The two active 
Landsat satellites, Landsat 8 and Landsat 9, are in 
the same orbit but on opposing sides of the Earth. 
The Landsat satellites are constrained to a fixed 
orbit. The satellite with a possible conjunction with 
Pc above the threshold will perform an orbit raising 
maneuver followed by an orbit lowering maneuver 
to return to its original orbit.  

5. Trailing Satellites: Two satellites flying in a 
formation where one satellite is supposed to follow 

in the same orbit but with a separation distance from 
the leading satellite. The satellites are constrained to 
a set orbit and range of allowable separation 
distances. The satellite with the possible 
conjunction with a Pc above the threshold will 
perform an orbit raising maneuver and then a multi-
step maneuver to return to the formation.  

6. Massive Internet Provider Swarm with No 
Constraints:  Swarm with many satellites, including 
a satellite with a possible conjunction with Pc higher 
than the threshold and a satellite in a nearby orbit 
that can provide backup coverage of an important 
region. The satellite with the possible conjunction 
will perform an orbit raising maneuver, which will 
result in an important region not having coverage 
during a time window. The backup satellite will then 
adjust its orbit slightly to provide coverage.  

7.    Massive Internet Provider Swarm with Attitude 
Constraint: Like scenario (6) with the addition of an 
attitude constraint restricting the allowable pitch of 
all satellites in the swarm. The satellite with the 
possible conjunction with Pc higher than the 
threshold will again perform an orbit raising 
maneuver, but now, the trajectory optimizer will 
have an added constraint forcing the pitch to stay in 
the allowable range. The satellite providing backup 
coverage will have the same attitude constraint. 

8.    Massive Internet Provider Swarm with Temporal 
Constraint: Like scenario (6) but with the addition 
of a time window constraint. The satellite with the 
possible conjunction will therefore need to wait until 
after this window to perform the thrust maneuver. 
CADANCE will still try to schedule the maneuver 
for a time when the satellite is on the opposite side 
of the Earth from where it will be at the TCA but 
may have to choose another time depending on the 
time window.  

For each scenario, we ran CADANCE on real CDM data, 
which contained positions, velocities and covariance 
volumes for both the primary satellite and the secondary 
object causing the possible conjunction. For each scenario, 
our integrated pipeline first ran the High-Level Planner to 
produce a series of constrained trajectory optimization 
problems. Then the Trajectory Optimizer produced a series 
of thrust maneuvers based on the constrained trajectory 
optimization problems. The Trajectory Optimizer produces 
a satellite trajectory and an estimated fuel use. To verify the 
quality of the result, we simulated the new trajectory for the 
satellite and the trajectory for the secondary object in GMAT. 
We used the GMAT simulation to estimate the new distance 
at TCA and new Pc and verified that the new Pc was below 
the threshold.  

Figure 2 shows how orbit raising affects a satellite’s orbit. 
Before the maneuver, the debris and the satellite are 
approximately 348 meters apart which produces a Pc of 
7.947E-6. After the maneuver, the satellite and debris have a 
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much larger in-track distance between them, which produces 
a distance of 1574 meters and a Pc of 5.240E-7. Appendix A 
shows the Pc’s and miss distances at TCA if a conjunction 
avoidance maneuver is performed and if one is not performed 
for all scenarios.  

 
4. RESULTS AND DISCUSSION 

This section summarizes the results from our simulation-
based testing of CADANCE. First, the Trajectory 
Optimizer in CADANCE should produce the most fuel 
efficient thrust controls for basic maneuvers. For example, 
for a simple orbit raising maneuver with no other constraints 
on the resulting orbit, the Trajectory Optimizer finds a 
thrust vector that is almost in-track and prograde. 
Specifically, the Trajectory Optimizer produced a thrust 
maneuver where the satellite has pitch and yaw angles equal 
to -8.457E-4 and 7.451E-4 respectively, which is very close 
to the expected in-track prograde burn. Likewise, for an orbit-
lowering maneuver with no other constraints on the resulting 
orbit the Trajectory Optimizer finds a thrust vector that is 
very close to in-track and retrograde.  

Appendix A provides a summary of Pc’s and miss distances 
at TCA with and without the conjunction avoidance 
maneuver for all eight scenarios. Each scenario uses a 
different type of satellite swarm with different mission 
constraints. Additionally, each scenario uses a different 
covariance volume, which is why different scenarios need 
different amount of orbit raising to achieve similar reductions 
in Pc. In every scenario, CADANCE could plan a satellite 
maneuver that allowed the satellite to reduce the Pc to below 
the required threshold of 1E-6. Additionally, the final Pc 

range is between 5.070E-7 and 9.481E-7, which is less than 
half an order of magnitude away from the threshold. This is 
important because it would often be possible to use an 
excessive amount of delta-v to create an unnecessarily large 
miss distance at TCA, which would reduce the Pc to nearly 
zero. However, this would use more fuel than was necessary, 
which would ultimately reduce the lifespan of the satellite.  

Computational efficiency is an important aspect of 
CADANCE, to ensure that it can run on radiation-tolerant 
computers in space. The total amount of wall clock time 
required to run each scenario on an Apple M1 Max processor 
with a clock speed of 3.2 GHz and 64 GB of memory was 
less than 142 seconds and some runs took as little as 30 
seconds (Appendix B contains the runtimes for all the 
scenarios). This is a runtime that is more efficient than a 
similar approach that also uses PSO and takes 30.5 minutes 
to plan a single orbit raising maneuver [6]. Our approach is 
more efficient, because our implementation of PSO searches 
a smaller search space confined by the constraints produced 
by the High-Level Planner. 

Additionally, PSO is easily and efficiently parallelizable by 
design. Clusters of particles can be optimized basically 
independently, only transferring the best-known set of 
parameters (social values) between cores. This means that 
there is very little overhead required for the parallelization 
and that the runtime could be significantly reduced by fully 
utilizing multiple processor cores.  

Transitioning CADANCE for use on SmallSats in LEO will 
require running the software on a flight computer.  A 
common computer for SmallSats operating in LEO is the 

 
Figure 2. Visualization of the position of the space debris and the satellite after the maneuver and if the maneuver 
did not happen. Note this image is a screenshot of the 3D GMAT software with some additional overlays to show 

distances in 3D space. The 2D distances in the image are not to scale with distances in 3D space. 
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Versalogic Sabertooth, which is a multi-core rugged 
embedded computer utilizing commercial off-the-shelf 
(COTS) components [11]. The Sabertooth can be based on 
either the 4 core Intel i3 or the 6 core Xeon E processor, 
which have clock speeds of 1.6 GHz and 2.0 GHz 
respectively. The individual cores of each processor will be 
slower than the computer we tested on, but if the algorithm is 
parallelized, the overall runtime will be less. SmallSat and 
CubeSat Operations in LEO swarms tend to utilize more 
COTS components than satellites in higher orbits. This is 
acceptable because there are generally lower radiation levels 
in LEO compared to higher orbits [12] and LEO missions 
tend to be shorter so long duration reliability is not as much 
of a requirement.  This means that LEO missions can take 
advantage of the lower cost, and higher performance of 
COTS components [13].  

For longer term missions, CADNACE is also efficient 
enough for radiation-hardened and radiation-tolerant 
computers. Radiation-hardened computers are specifically 
designed to withstand intense radiation levels while 
radiation-tolerant computers can resist radiation but only 
when it is not as intense or long-lasting. The RAD750 
radiation-hardened processor has a single 220 MHz core 
which is an order of magnitude slower than the Apple M1 
Max processor we tested CADANCE on. While the RAD750 
is not typically used on low-cost SmallSats in LEO, it serves 
as a good baseline for radiation-tolerant computer speeds.  
Even with an order of magnitude slowdown the system will 
still be able to react fast enough considering that the 
maneuver commitment point is typically 1 to 0.5 days before 
the TCA [1].  In addition, multi-core processors are becoming 
more ubiquitous, and CADANCE is well positioned to take 
advantage due to easy parallelization of the PSO algorithm. 
In fact, the newer version of the RAD750, the RAD5545, has 
4 cores and has 10 times higher throughput than the RAD750 
[14]. Lastly, CADANCE’s design can be easily adapted to 
the specific computational requirements of the mission. The 
High-Level Planner can be adapted to provide tighter or 
looser search space constraints to reduce or increase reliance 
on the more computationally taxing trajectory optimizer. 
Tighter search constraints will increase computational 
efficiency but may result in the less optimal results.  

It is important to also consider how the efficiency of 
CADANCE will change with different types of maneuvers 
and different swarm sizes. We found that orbital plane 
adjustment maneuvers require more epochs of PSO to reach 
a good solution than simpler orbit raising or lowering 
maneuvers. Also, optimizing smaller maneuvers is more time 
consuming because small maneuvers require smaller step 
sizes for propagation which makes the simulation take longer. 
Therefore, if CADANCE needs to perform many small 
maneuvers, or many orbital plane adjustment algorithms, its 
runtime may increase.  

The CADANCE runtime scales linearly with both the number 
of satellites in the swarm and with the number of maneuvers 
required by the conjunction avoidance plan. This is because 

orbital propagation dominates the runtime, and one orbital 
propagation is required for each maneuver of each satellite. 
However, these runtimes are not negatively affected by 
relative motion constraints between satellites. This is because 
CADANCE will optimize one satellite first and then optimize 
the trajectory for the other satellite using the single satellite 
constraints (e.g. on attitude) and the produced ephemeris of 
the other satellite. In other words, CADANCE does not 
perform a joint optimization which would have twice the 
number of parameters and therefore would be much slower. 

 
5. CONCLUSION 

CADANCE was able to reduce Pc to below the required 
threshold for a diverse set of scenarios with different mission 
objectives, covariance volumes, orbital regimes, and types of 
mission constraints. In other words, these scenarios were 
varied enough to give us confidence that the CADANCE 
concept can be generalized to most SmallSat swarms. In 
addition to correctness, CADANCE is also very efficient, 
taking less than 142 seconds to plan multi-maneuver 
trajectories.  

While our prototype demonstrates the correctness and 
efficiency of CADANCE, there are several items of future 
work that are required. First, CADANCE needs to be tested 
against real conjunction avoidance scenarios and the 
conjunction avoidance maneuver that CADANCE produces 
needs to be compared against the actual maneuver that was 
used in that scenario. If CADANCE can produce a more fuel-
efficient conjunction avoidance maneuver or a maneuver 
with less mission impact, it would provide extra evidence of 
CADANCE being able to produce better solutions in addition 
to handling conjunctions autonomously.  

In addition, future work is required to create an in-space 
version of CADANCE. The first step is to port the system to 
NASA’s core Flight System (cFS), which is a middleware 
framework for flight software used on the types of academic 
and small science mission satellites that CADANCE is 
targeted towards. This would require porting the software 
from Java to C++ and integrating it as a cFS application. 
Porting CADANCE to C++ would also allow for tightly 
optimized code that can better utilize the limited cache sizes 
and memory for radiation-tolerant and radiation-hardened 
computers. In addition, CADANCE needs to be tuned with a 
higher-fidelity orbital propagation model. The current 
prototype uses Orekit’s default orbital models while flight 
software typically uses custom designed models. CADANCE 
will also need to be configured for the real satellite swarm 
with information about the mission constraints and satellite 
capabilities. Finally, in future work, the centralized controller 
that the current version of CADANCE uses will be replaced 
with a decentralized controller based on Consensus-Based 
Bundle Algorithm (CBBA). CBBA is a decentralized market-
based protocol that iterates between a bundle building phase 
where each SmallSat will greedily generate a plan meeting its 
own mission and conjunction avoidance requirements and a 
consensus phase where conflicting plans are identified and 
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resolved with SmallSats nearest to each other [15].  

APPENDICES 
A.  PC WITH AND WITHOUT MANEUVER 

Table 1 shows the distance at TCA and Pc if the conjunction 
avoidance maneuver is performed and if no maneuver is 
performed. The key feature to note in this data is that the Pc 
starts at above the threshold of 1E-6 for all scenarios except 
the first (No Maneuver) scenario. Then, the maneuver always 
creates a larger distance at TCA then would have occurred 
with no maneuver, resulting in a Pc below the threshold. 
However, the Pc is always only slightly below the threshold 
to avoid wasting fuel.  

Table 1. Distance at TCA and PC values 

Scen-
ario 

No Maneuver Maneuver 

 
Distance 
(m) 

Pc Distance(m) Pc 

1 398.529 1.464E-11 N/A N/A 

2 348.713 7.947E-6 1574.000 5.240E-7 

3 87.420 9.414E-4 5127.089 6.315E-7 

4 249.967 7.607E-5 2967.424 5.070E-7 

5 350.520 9.609E-6 1996.000 5.321E-7 

6 279.362 2.620E-5 12011.452 6.235E-7 

7 314.038 3.142E-5 7912.969 9.481E-7 

8 210.012 9.663E-5 9690.403 8.573E-7 

Scenarios: 1=No Maneuver; 2=Orbit Raising; 3=Orbit 
Lowering; 4=Landsat with Orbit Coordination; 5=Trailing 
Satellites; 6= Massive Internet Provider Swarm with No 
Constraints; 7= Massive Internet Provider Swarm with 
Attitude Constraint; 8= Massive Internet Provider Swarm 
with Temporal Constraint 
 

B. RUNTIMES FOR SCENARIOS 
Table 2 shows the runtimes required to complete the entire 
high-level planning and trajectory optimization process, 
starting from the CDM and ending with thrust and attitude 
controls. These runtimes were recorded on an Apple M1 Max 
processor with 64 GB of memory. There is no runtime 
recorded for the “No Maneuver” scenario as it does not 
actually do any optimization, which dominates the runtime. 
Note that these runtimes reflect CADANCE operating with 
single-threaded trajectory optimization, and the runtimes 
should scale down with multiple threads distributed across 
over multiple processor cores. 

Table 2. Runtimes for each scenario 

Scenario Runtime (s) 

1 N/A 

2 39.265624 

3 116.021613 

4 51.123566799 

5 86.410465695 

6 141.489585273 

7 58.386330 

8 19.366113243 

Scenarios: 1=No Maneuver; 2=Orbit Raising; 3=Orbit 
Lowering; 4=Landsat with Orbit Coordination; 5=Trailing 
Satellites; 6= Massive Internet Provider Swarm with No 
Constraints; 7= Massive Internet Provider Swarm with 
Attitude Constraint; 8= Massive Internet Provider Swarm 
with Temporal Constraint 

Note that the attitude and temporal constraints in the 
“Massive Internet Provider Swarm with Attitude 
Constraints” and “Massive Internet Provider Swarm with 
Temporal Constraints” scenarios decrease the runtime when 
compared to the unconstrained “Massive Internet Provider 
Swarm with No Constraints” scenario. This is because the 
constraints limit the search space for the trajectory optimizer, 
enabling it to find a solution faster.   
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