
979-8-3503-5597-0/25/$31.00 ©2025 IEEE

Intelligent Small Satellite Swarm Control System for
Avoiding in Space Debris

Evan Finnigan, Brandon Liu, Dick Stottler
Stottler Henke Associates, Inc.

1650 S Amphlett Blvd # 300
San Mateo, CA 94402

efinnigan, bliu, stottler @stottlerhenke.com

Abstract—This paper describes an intelligent software system
for controlling satellites in a swarm to avoid space debris. This
software system, called Coordinated Autonomous Debris
Avoidance (CADANCE), was developed with funding and
direction from NASA. CADANCE uses trajectory optimization
and case-based reasoning (CBR) to create a sequence of thrust
controls for every satellite in the swarm, based on incoming
Conjunction Data Messages (CDMs) and mission objectives.
CADANCE uses a trajectory optimization algorithm called
Particle Swarm Optimization (PSO) to plan the sequence of
maneuvers required to execute the high-level plan. This
approach can plan maneuvers to avoid space debris for satellites
in diverse swarm and formation types, including but not limited
to massive internet provider swarms, science missions, Earth
observation swarms, and trailing formations. The main
significance of this work is to prove, in simulation, the feasibility
of autonomously controlling satellites in a swarm to avoid
conjunctions, so we tested CADANCE in eight unique simulated
scenarios with CDM data from real satellites. The scenarios
were diverse, with different swarm types, mission constraints,
and conjunction risks. We used a different satellite simulation
software for PSO then we used for testing to avoid bias.
CADANCE could find a conjunction avoidance maneuver for
every scenario that reduced the Probability of Collision (Pc) to
below a given threshold while obeying all mission constraints.
Additionally, CADANCE’s trajectory optimizer was always
capable of planning a series of maneuvers to match the
trajectory requested by the High-Level Planner to within 5
meters. CADANCE is computationally efficient, which will
enable it to run on radiation- tolerant computers in space.

TABLE OF CONTENTS
1. INTRODUCTION ..1
2. RELATED WORK ...2
3. METHODS ...3
4. RESULTS AND DISCUSSION7
5. CONCLUSION ...8
APPENDICES ..9
A. PC WITH AND WITHOUT MANEUVER9
B. RUNTIMES FOR SCENARIOS9
ACKNOWLEDGEMENTS ...9
REFERENCES ...10
BIOGRAPHY ...10

1. INTRODUCTION
Safely managing a swarm of SmallSats operating in Low
Earth Orbit (LEO) is a challenging task that requires
measuring the risk of collision with nearby objects and
planning conjunction avoidance maneuvers to minimize
those risks. At the same time, the conjunction avoidance
maneuvers cannot increase the risk of collision with objects
in nearby orbits. Additionally, to avoid mission impacts,
conjunction avoidance planning should comply with mission
requirements when possible. For example, the mission may
require that the swarm provide coverage to view an event
happening at a certain location at a certain time or may
require consistent coverage of a region.

The process of managing satellite conjunctions starts when a
satellite Owner/Operator (O/O) receives a Conjunction Data
Message (CDM). A CDM is a standard format for
exchanging spacecraft conjunction information and contains
the position and velocity of both the primary and secondary
object involved in the possible conjunction as well as the
Probability of Collision (Pc). The CDM also contains
information about the uncertainty of the position of both the
primary and secondary satellites in the form of covariance
volumes. Currently, managing swarms of SmallSats is a
primarily manual process, where satellite operators receive a
Conjunction Data Message (CDM), decide whether to avoid
the conjunction, create a plan to avoid the conjunction with
the owner of the other satellite, provide that maneuver to the
Space Force for validation, and then execute the plan. This
manual process is feasible now, but some satellite operators
are planning on placing thousands of satellites into LEO
which will result in an order of magnitude increase in the
number of conjunctions. Within 5-10 years, performing
conjunction avoidance maneuver planning manually will be
a huge operational burden. One solution to this challenge is
to automate the process of satellite swarm conjunction
avoidance. This paper describes Coordinated Autonomous
Debris Avoidance (CADANCE), an AI-based solution
intended to run on each SmallSat in a swarm and
collaboratively plan conjunction avoidance maneuvers.

CADANCE consists of two primary modules that achieve the
automated conjunction avoidance capability. The first is the
High-Level Planner module which processes CDMs while
considering the satellite’s capabilities, the swarm
configuration, and the mission to develop one or more

2

candidate high-level plans to avoid the conjunction. This
module produces a constrained trajectory optimization
problem for each candidate high-level plan which is then
processed by the Trajectory Optimizer module to produce
a series of actions to execute each plan. Finally, each plan is
analyzed to calculate a quality score based on fuel use,
amount of reduction of the Pc, and adherence to mission
constraints. The plan with the highest quality score is the
active plan, unless another CDM with updated information
arrives. At the maneuver commitment point, if the Pc is still
above the allowable threshold set by the O/O, the active plan
will be executed, resulting in a series of maneuvers for one or
more satellites in the swarm that will avoid conjunctions and
allow the swarm to respect mission constraints.

As an illustrative example of how these modules work
together, consider two satellites flying in a trailing formation
that need to maintain a specified distance to achieve their
mission. CADANCE receives a CDM that affects the leading
satellite. The High-Level Planner module will create a plan
to adjust the leading satellite’s orbit to avoid the conjunction
and then rejoin the formation after the conjunction risk has
decreased to below a threshold (1E-6 could be a threshold for
a high value satellite). This plan is called a phased orbit
restoring plan, and will consist of an orbit raising maneuver,
followed by an orbit lowering maneuver into a catch-up orbit
and finally an orbit raising maneuver to return to the initial
orbit. This three-step plan requires three separate constrained
optimization problems, which the High-Level Planner will
create and provide to the Trajectory Optimizer. In this
example, the High-Level Planner only produced one plan,
so it will by default be the active plan and will be used unless
a new CDM becomes available.

There are two main benefits of using CADANCE as opposed
to a manual process. The first is the reduction in human labor
required, which enables managing larger swarms in orbital
regimes with more obstacles. The second is that our trajectory
optimization approach optimizes for plans with low fuel use,
which results in longer satellite lifespans.

The primary contribution of this paper is to explain how
constrained optimization can be used as a common
representation by both the High-Level Planner module and
the Trajectory Optimizer module. This is the key aspect of
the work, because it is what enables an end-to-end solution
that can start with CDMs and end with thrust commands for
every satellite in the swarm. Constrained optimization is also
beneficial because it enables CADANCE to place safety
guardrails on the satellites.

The Related Work section briefly describes techniques
already used to plan conjunction avoidance maneuvers and
existing technologies that CADANCE builds on top of.
Following that, the Methods and Results and Discussion
section will cover the CADANCE software and the initial
evaluation process. The Conclusion summarizes progress on
CADANCE to date and outlines future work.

2. RELATED WORK
A common manual approach for planning a conjunction
avoidance maneuver is to use a maneuver trade space [1].
This approach simplifies the maneuver into only prograde
and retrograde maneuvers and maps out the Pc relative to both
delta-v and thrust times. With this approach, a satellite O/O
can then choose a delta-v and thrust time that minimizes the
Pc to below their threshold while not wasting fuel. This
approach only handles the conjunction avoidance maneuver
itself, and further orbit restoring maneuvers would again need
to be planned manually.

There are already approaches for autonomous SmallSat
swarm conjunction avoidance being developed in the satellite
industry. For example, the SpaceX Starlink satellites have an
automated collision avoidance system. However, this
software cannot be fully trusted to manage their satellite
swarms. Recent examples where SpaceX could have used
their autonomous conjunction avoidance system resulted in
them requesting the other satellite in the conjunction make a
maneuver instead [2]. Additionally, once developed, SpaceX
will likely not license their software for other satellite O/Os,
making it impossible for universities or small science
missions to use.

CADANCE leverages several existing technologies. First,
CADANCE uses Case-Based Reasoning (CBR) to
implement its High-Level Planner module. CBR matches a
current problem to a library of past problems with
accompanying solutions. CBR essentially divides the
decision space into different possible cases, each with a
solution or solution-generating method, then analyzes each
case to choose the most similar one. CBR uses a scoring
function which computes a weighted sum of the differences
between the features of a current case and the features of each
case in the case base. CBR then adapts the solution for the
most similar case to current variables like the number of
satellites, their orbits, and required orbit adjustment time [3].

CADANCE uses trajectory optimization to plan the series of
thrust maneuvers and attitude adjustments required to
execute the high-level plan developed by the High-Level
Planner. Trajectory optimization is a subfield of optimal
control. Broadly, it is the process of finding a trajectory—
with a trajectory being defined as a set of states and control
inputs—that minimizes or maximizes an objective function
for a dynamical system over time. There are numerous
approaches for satellite trajectory optimization, such as
collocation, direct shooting, and linear/non-linear
programming [4]. Metaheuristic approaches, which are a
kind of approximate optimization algorithm, have been
increasingly popular for their computational efficiency and
ability to discover high quality solutions that are
approximations of the global optima. These methods include
evolutionary algorithms such as Genetic Algorithms,
Differential Evolution, and Particle Swarm Optimization
(PSO) [5]. Metaheuristic algorithms can often be used to
provide an initial solution to trajectory optimization methods
that are particularly sensitive to the initial solution [5].

3

CADANCE uses PSO because of its potential to scale with
computational resources; ability to handle nonlinear
constraints and costs; ability to handle non-differentiable
cost; and ease of integration with the High-Level Planner.
Past work already used PSO to plan conjunction avoidance
maneuvers [6]. However, this past work does not provide the
swarm level orchestration that CADANCE does. CADANCE
can maneuver one or more of the satellites in the swarm to
avoid a conjunction and reconfigure the swarm to still
complete mission objectives. Also, CADANCE is more
computationally efficient than this past work.

3. METHODS

This section first summarizes the two main components of
the CADANCE software and then describes the evaluation
process that proves its feasibility. The two components are
the High-Level Planner and the Trajectory
Optimizer. Note that the prototype version of CADANCE
is a centralized algorithm, while the in-space version will be
distributed across the swarm.

High-Level Planner

The High-Level Planner uses an implementation of CBR
that considers the following features: Pc threshold, upcoming
station keeping maneuvers, support from other satellites,
ability to fulfill mission requirements while thrusting, breaks
in the mission requirements, and mission constraints. The
mission constraints that CADANCE can handle are attitude
constraints, temporal constraints, and relative satellite motion
constraints. An attitude constraint specifies a range of
allowable pitch, roll and yaw values for the satellite while
performing and/or after the maneuver. For example, an
attitude constraint could be used to keep a phased array
antenna pointing towards the Earth so the satellite can keep
communicating while it is maneuvering. Temporal
constraints prohibit the satellite from performing a maneuver
in predefined time windows. For example, the mission might
require that the satellites only perform maneuvers when they
are over the Earth’s poles because those are times when
maneuvering will not interfere with mission tasks. Relative
satellite motion constraints are useful for satellites in a tight
formation, where the satellites need to raise their orbit in a
synchronized manner.

The case in the case-base with the set of features most similar
to the current scenario is the matching case, and other highly
similar cases will be stored as potential secondary
options. Each case in the case-base has an associated solution
template which is a high-level plan for the correct maneuvers
for the case. It is called a solution template because it is a
general plan that requires details specific to the current
scenario to be added.

The High-Level Planner uses CBR to match the current
scenario to one of the following solutions:

1. No maneuver: Empty Plan, no actions
2. Orbit raising: Single orbit raising maneuver

3. Orbit lowering: Single orbit-lowering maneuver
4. Orbit raise and restore the original orbit: Orbit

raising maneuver followed by an orbit lowering
maneuver of the same magnitude

5. Orbit raise and phase restore the original orbit:
Orbit raise, then orbit lower into a catch-up orbit;
finally, orbit raise to return to the initial orbit

6. Orbit raise with backup satellite: Orbit raise
maneuver for the satellite with the conjunction and
an orbit plane adjustment maneuver for a backup
satellite

The High-Level Planner will fill in the selected solution
template with additional data to limit the search space of the
Trajectory Optimizer. The key approach for this is to use
approximate formulas to calculate how much the satellite’s
orbit needs to be raised or lowered to avoid a conjunction.
This process will use the covariance volumes of the satellite
and the space debris to compute a magnitude of in-track miss
distance that would reduce the Pc to below the threshold. This
desired in-track miss distance is converted to a required delay
time using the velocity of the satellite. Then, this delay time
is added to the satellite’s original period to find the desired
final orbital period 𝑇! after the maneuver. To solve for the
amount of orbit raising to achieve a required final orbital
period Tf, our software will find the required final semi-major
axis af. Formula 1 shows Kepler’s third law rewritten to show
how to convert from desired final orbital period 𝑇! to final
desired semi-major axis af.

 𝑎! = #"#$"
#

%&#
$

 (1)

G is the gravitational constant and M is the mass of the Earth.
The required amount to raise the orbit is the difference
between the final orbit af and the initial semi-major axis.

The High-Level Planner will generate one or more
constrained optimization problems, depending on the number
of maneuvers in the high-level plan, and send them to the
Trajectory Optimizer. Each of these constrained
optimization problems has fuel use as primary cost, and then
a set of constraints on the final orbit and on the transient state
of the satellite while it is maneuvering. Consider an orbit
raising maneuver as an example of how to design a constraint
for a certain type of maneuver. An orbit raising maneuver has
a range of allowable altitudes higher than the starting altitude
as one constraint on the final orbit. Refer to Figure 1 for a
diagram of how the altitude constraint works. There is a target
vector that specifies the point in space that the new orbit is
supposed to intersect with. This point is chosen to be a safe
distance above the object causing the conjunction. There is a
spherical region at the end of the target vector, with radius
equal to the allowable distance between the desired orbit
raising vector and the actual result. In our implementation,
the radius of the spherical region was 5 meters, so the final
orbit always passes through a point at most 5 meters away
from the target vector.

4

The final orbit is also constrained to have at most a small
change in eccentricity, inclination, and longitude of the
ascending node. An orbit lowering maneuver has a similar set
of constraints, except the final altitude has an allowable range
of altitudes lower than the original orbit. A plane change
maneuver is again similar, but where the target vector is
perpendicular to the original orbital plane. Another constraint
type is an ephemeris matching constraint, which is described
in more detail in the description of the Trajectory
Optimizer. The ephemeris-matching function is useful for
returning a satellite to its original position in a formation and
for enforcing a relative motion constraint between two
satellites. The High-Level Planner can also produce
multiple maneuver plans such as an orbit restoring plan and
a phased orbit restoring plan. All of the maneuvers in a
multiple maneuver plan have the same set of constraints as an
orbit lowering and orbit raising maneuver on its own.

In addition to the constrained optimization problem, the
High-Level Planner also creates a schedule for when to
perform each maneuver. This schedule is built using a
heuristic guideline. Specifically, the maneuver will be
performed when the satellite is on the opposite side of the
Earth from the projected location where the satellite and
conjunction object will be closest. This is the location where
the smallest delta-v will produce the largest increase in the
distance between the two objects at the time of closest
approach (TCA). The High-Level Planner will shift the
maneuver time earlier by one or more period if needed to
avoid time windows imposed by any temporal constraints.

Trajectory Optimizer

The goal of the CADANCE trajectory optimization algorithm
is to discover a trajectory for each satellite which reduces the
Pc with a secondary object while minimizing fuel use and
following mission constraints.

CADANCE uses PSO for trajectory optimization, which
stochastically generates candidate solutions within the search
space and then intelligently updates the search space position
of every particle in the swarm each epoch (iteration). In our

case, the search space is fully parameterized by thrust
duration, thrust azimuth, and thrust elevation. Here swarm
refers to the swarm of particles used by PSO, not the swarm
of SmallSats. Each particle uses an update function that is a
weighted combination of its own best-known position and the
best-known position of the entire swarm. The former’s
weighting is known as the “cognitive coefficient” (𝑐%), and
the latter, as the “social coefficient” (𝑐&). This update function
creates an effect that mimics the swarming behavior of a
flock of birds, where the swarm flocks together toward the
optimal solution. As a heuristic, PSO does not guarantee that
the optimal solution is discovered; however, it excels at
searching a large search-space for a solution that is near-
optimal.

Below is pseudo-code that outlines the general approach of
PSO as implemented in CADANCE [7]:

Note the velocity and position update functions. These
comprise the weighted update that determines the particle’s
next values in the search process. Consider the velocity
update function, Formula 2.

 𝑣',)~𝜔𝑣',) + 𝑐%𝑟%(𝑝',) − 𝑥',), + 𝑐&𝑟&(𝑔) − 𝑥',)) (2)

Note the variable 𝜔, which is a predefined constant for inertia
that specifies the weight placed on the previous velocity
value. Also note the variables 𝑟*and 𝑟+. These are simply
uniform random variables between 0 and 1 that help facilitate
the randomness in the stochastic search process [6]. The
value 𝑝',) is the best solution the particle has encountered
while 𝑔) is the best solution the entire swarm has
encountered. The values 𝑏,- and 𝑏./ are the lower and upper
boundaries of the search-space respectively.

To simplify the optimization problem as much as possible,
we assume that the spacecraft operates at maximum thrust,
and that the High-Level Planner plans the start time for each

Figure 1. Diagram of the orbit raising constraint

5

maneuver. PSO uses the latest values for duration, azimuth,
and elevation for each particle to define a thrust maneuver
which is dynamically propagated forward toward the TCA
using orbital propagation. The resulting trajectory is
evaluated using the objective function, and the epoch is
complete once every particle has performed this process.
Each particle then updates its position using the PSO update
function, repeating until a desired number of epochs is
reached.

For impulsive maneuvers, pure analytic approximations exist
which are sufficient to propagate the spacecraft forward in
time. Pure analytical propagation approximates the equations
of motion with closed-form expressions, instead of
numerically integrating the forces, which is much faster, but
can be less accurate over extended periods of time [8].
However, in our case—that is, low-thrust continuous
maneuvers—the spacecraft requires numerical, or semi-
analytic, propagation. This is because the multiple forces
need to be modeled over an extended period of time, and
there are no good analytical models for this. Therefore,
CADANCDE uses the Orekit implementation of the 8th order
Dormand-Prince numerical integrator for propagation, which
uses the Runge-Kutta iterative method for integration. The
Runge-Kutta method is widely used in space applications
today [9]. The Runge-Kutta method offers adaptive step-size
integration, which resulted in shorter maneuvers requiring
longer to integrate because they required a smaller step size.

The most important design consideration for trajectory
optimization is the objective function which needs to be
designed such that a desired trajectory is the global minima.
The CADANCE trajectory optimizer uses an objective
function that follows the Bolza form, which is shown in
Formula 3. The Bolza form accepts the control state function
x (vector describing both state and control) [10].

									𝐽(𝑥) = 𝑙 5𝑥(𝑡'), 𝑥(𝑡!,8 + ∫ 𝐿(𝑡, 𝑥(𝑡), �̇�(𝑡),𝑑𝑡0!

0"
 (3)

Note the two terms: the first is a boundary term at 𝑡!, while
the second is a continuous term across the entire time span 𝑡1
to 𝑡!. 𝑙 represents a cost associated with the final state and 𝐿
represents a cost throughout the entire trajectory. The first
term is often called the Mayer term, and the latter term is
referred to the Lagrange term (which is not to be confused
with Lagrange Multipliers, which will be discussed later).

CADANCE contains implementations of two primary
objective functions: target vector and ephemeris matching
which correspond to different constraints created by the
High-Level Planner.

The target vector function corresponds to a constraint
created by the High-Level Planner to ensure that the final
orbit passes through a given position in space. The target
vector function has a global minimum at a spacecraft
trajectory that passes through a specified range of positions
near a target position vector defined in the Earth-centered
Inertial (ECI) frame. This position vector is provided to the

function as a relative position vector defined in the spacecraft
UVW frame (a coordinate frame relative to the spacecraft)
and then converted to the ECI frame. For instance, a target
vector representing an orbit raising maneuver of 1 kilometer
can simply be defined in the spacecraft frame as [0, 0, 1000].
This way of defining desired orbits makes it simpler for the
High-Level Planner to generate human-understandable
inputs to PSO as well as for the High-Level Planner to allow
for a range of possible satisfying orbits that can be narrowed
down with other constraints. The objective function is
structured primarily as a penalty that correlates with the
minimum distance between the spacecraft’s new orbit and the
target point. Since this is a cost that needs to be evaluated
across the trajectory, this can be considered as a part of the
Lagrange term of the objective function.

The ephemeris-matching function has a global minimum for
a trajectory that matches an ephemeris provided by the High-
Level Planner. This function is implemented by sampling
points at regular time intervals in the ephemeris and finding
the maximum separation between a particle’s position and the
ephemeris over those sampled times. Sampling points across
the trajectory is a discretized estimate of the Lagrange term
in the objective function, chosen for its simplicity and speed
of evaluation. The global minimum thus corresponds to a
trajectory where this separation is minimized.

Both classes of objective function also ensure their global
minimum lies where fuel-use is minimized. This is achieved
with a fuel penalty on top of the objective function. In
practice, this penalty leads the optimizer toward the
theoretically most efficient maneuver. On top of finding the
most energy-efficient maneuver, the fuel penalty reduces the
number of local minima in the objective function. This is
because for two solutions with otherwise equivalent objective
costs, the fuel penalty penalizes the solution that uses more
fuel. In reducing the number of local minima, the optimizer
outputs more predictable results.

PSO does not natively handle constraints. As such the
trajectory optimizer uses a Lagrangian Relaxation for
constraints on the final orbital elements. Lagrangian
Relaxation is a common technique in optimization that
converts a constrained optimization problem into an
unconstrained optimization problem by adding costs for
constraint violations. This new unconstrained optimization
problem will have a global minimum that is close to the
global minimum of the original constrained optimization
problem. CADANCE matches Lagona et al.’s form of
Lagrangian Relaxation [6]. In their example, their constraints
on the orbital elements takes the form in Formula 4.

 𝐽 = 𝐽∗ +𝜔3 =

/40!5	7	/!
/#

> + 𝜔3 =
840!5	7	8!

8#
> (4)

𝐽∗ is the unconstrained objective function, 𝜔3is a weighting
on the constraints, and 𝑝 and 𝑔 represent a function of orbital
elements over time for the evaluated maneuver. 𝑝!, 𝑔! and
𝑝', 𝑔' represent the final and initial values for those orbital

6

elements, assuming no maneuver is performed. Note how
each Lagrange Multiplier is normalized by its initial value.
This is critical for the optimization to work on our objective
functions, since each orbital element can vary by orders of
magnitude.

These Lagrange Multipliers are primarily used for orbital
constraints; they make sure the satellite stays within
operating ranges after the maneuver is performed. Since these
constraints are only evaluated after the maneuver is
completed, for our purposes, these constraints can be
considered a part of the Mayer term of the objective function.
In Formula 4, each constraint is weighted with 𝜔3 but each
term can also be assigned a different weight if some
constraints are more important than others.

For simple, search-space limiting constraints, such as hard
boundaries on thrust duration and angle, a simple solution is
to use the largest penalty value possible in the programming
language when the constraint is violated. While this solution
does not guarantee continuity on the objective function, PSO
does not require continuity, and in practice this is not an issue.

Evaluation Process

An important part of our evaluation methodology was to
avoid bias by testing the CADANCE approach with
simulation software that was not used inside of CADANCE
itself. To this end, we used Orekit in our software for the
trajectory optimization step and we used GMAT to evaluate
the results. We tested CADANCE in the following eight
diverse scenarios to demonstrate its capability to handle
different satellite swarm types and constraints.

1. No Maneuver: Satellite in LEO with no constraints,
which has a conjunction but with a Pc below the
threshold. Satellite will not perform any
maneuvers.

2. Orbit Raising: Satellite in LEO with no constraints,
which has a possible conjunction with Pc above the
threshold. Satellite will perform an orbit raising
maneuver, where the amount to raise the orbit will
depend on the uncertainty of the location and
velocity of the secondary object.

3. Orbit Lowering: Satellite in LEO with a flight
ceiling constraint, and a possible conjunction with
Pc above the threshold. Satellite will perform an
orbit lowering maneuver, where the amount to lower
the orbit will depend on the uncertainty of the
location and velocity of the secondary object.

4. Landsat with Orbit Coordination: The two active
Landsat satellites, Landsat 8 and Landsat 9, are in
the same orbit but on opposing sides of the Earth.
The Landsat satellites are constrained to a fixed
orbit. The satellite with a possible conjunction with
Pc above the threshold will perform an orbit raising
maneuver followed by an orbit lowering maneuver
to return to its original orbit.

5. Trailing Satellites: Two satellites flying in a
formation where one satellite is supposed to follow

in the same orbit but with a separation distance from
the leading satellite. The satellites are constrained to
a set orbit and range of allowable separation
distances. The satellite with the possible
conjunction with a Pc above the threshold will
perform an orbit raising maneuver and then a multi-
step maneuver to return to the formation.

6. Massive Internet Provider Swarm with No
Constraints: Swarm with many satellites, including
a satellite with a possible conjunction with Pc higher
than the threshold and a satellite in a nearby orbit
that can provide backup coverage of an important
region. The satellite with the possible conjunction
will perform an orbit raising maneuver, which will
result in an important region not having coverage
during a time window. The backup satellite will then
adjust its orbit slightly to provide coverage.

7. Massive Internet Provider Swarm with Attitude
Constraint: Like scenario (6) with the addition of an
attitude constraint restricting the allowable pitch of
all satellites in the swarm. The satellite with the
possible conjunction with Pc higher than the
threshold will again perform an orbit raising
maneuver, but now, the trajectory optimizer will
have an added constraint forcing the pitch to stay in
the allowable range. The satellite providing backup
coverage will have the same attitude constraint.

8. Massive Internet Provider Swarm with Temporal
Constraint: Like scenario (6) but with the addition
of a time window constraint. The satellite with the
possible conjunction will therefore need to wait until
after this window to perform the thrust maneuver.
CADANCE will still try to schedule the maneuver
for a time when the satellite is on the opposite side
of the Earth from where it will be at the TCA but
may have to choose another time depending on the
time window.

For each scenario, we ran CADANCE on real CDM data,
which contained positions, velocities and covariance
volumes for both the primary satellite and the secondary
object causing the possible conjunction. For each scenario,
our integrated pipeline first ran the High-Level Planner to
produce a series of constrained trajectory optimization
problems. Then the Trajectory Optimizer produced a series
of thrust maneuvers based on the constrained trajectory
optimization problems. The Trajectory Optimizer produces
a satellite trajectory and an estimated fuel use. To verify the
quality of the result, we simulated the new trajectory for the
satellite and the trajectory for the secondary object in GMAT.
We used the GMAT simulation to estimate the new distance
at TCA and new Pc and verified that the new Pc was below
the threshold.

Figure 2 shows how orbit raising affects a satellite’s orbit.
Before the maneuver, the debris and the satellite are
approximately 348 meters apart which produces a Pc of
7.947E-6. After the maneuver, the satellite and debris have a

7

much larger in-track distance between them, which produces
a distance of 1574 meters and a Pc of 5.240E-7. Appendix A
shows the Pc’s and miss distances at TCA if a conjunction
avoidance maneuver is performed and if one is not performed
for all scenarios.

4. RESULTS AND DISCUSSION

This section summarizes the results from our simulation-
based testing of CADANCE. First, the Trajectory
Optimizer in CADANCE should produce the most fuel
efficient thrust controls for basic maneuvers. For example,
for a simple orbit raising maneuver with no other constraints
on the resulting orbit, the Trajectory Optimizer finds a
thrust vector that is almost in-track and prograde.
Specifically, the Trajectory Optimizer produced a thrust
maneuver where the satellite has pitch and yaw angles equal
to -8.457E-4 and 7.451E-4 respectively, which is very close
to the expected in-track prograde burn. Likewise, for an orbit-
lowering maneuver with no other constraints on the resulting
orbit the Trajectory Optimizer finds a thrust vector that is
very close to in-track and retrograde.

Appendix A provides a summary of Pc’s and miss distances
at TCA with and without the conjunction avoidance
maneuver for all eight scenarios. Each scenario uses a
different type of satellite swarm with different mission
constraints. Additionally, each scenario uses a different
covariance volume, which is why different scenarios need
different amount of orbit raising to achieve similar reductions
in Pc. In every scenario, CADANCE could plan a satellite
maneuver that allowed the satellite to reduce the Pc to below
the required threshold of 1E-6. Additionally, the final Pc

range is between 5.070E-7 and 9.481E-7, which is less than
half an order of magnitude away from the threshold. This is
important because it would often be possible to use an
excessive amount of delta-v to create an unnecessarily large
miss distance at TCA, which would reduce the Pc to nearly
zero. However, this would use more fuel than was necessary,
which would ultimately reduce the lifespan of the satellite.

Computational efficiency is an important aspect of
CADANCE, to ensure that it can run on radiation-tolerant
computers in space. The total amount of wall clock time
required to run each scenario on an Apple M1 Max processor
with a clock speed of 3.2 GHz and 64 GB of memory was
less than 142 seconds and some runs took as little as 30
seconds (Appendix B contains the runtimes for all the
scenarios). This is a runtime that is more efficient than a
similar approach that also uses PSO and takes 30.5 minutes
to plan a single orbit raising maneuver [6]. Our approach is
more efficient, because our implementation of PSO searches
a smaller search space confined by the constraints produced
by the High-Level Planner.

Additionally, PSO is easily and efficiently parallelizable by
design. Clusters of particles can be optimized basically
independently, only transferring the best-known set of
parameters (social values) between cores. This means that
there is very little overhead required for the parallelization
and that the runtime could be significantly reduced by fully
utilizing multiple processor cores.

Transitioning CADANCE for use on SmallSats in LEO will
require running the software on a flight computer. A
common computer for SmallSats operating in LEO is the

Figure 2. Visualization of the position of the space debris and the satellite after the maneuver and if the maneuver
did not happen. Note this image is a screenshot of the 3D GMAT software with some additional overlays to show

distances in 3D space. The 2D distances in the image are not to scale with distances in 3D space.

8

Versalogic Sabertooth, which is a multi-core rugged
embedded computer utilizing commercial off-the-shelf
(COTS) components [11]. The Sabertooth can be based on
either the 4 core Intel i3 or the 6 core Xeon E processor,
which have clock speeds of 1.6 GHz and 2.0 GHz
respectively. The individual cores of each processor will be
slower than the computer we tested on, but if the algorithm is
parallelized, the overall runtime will be less. SmallSat and
CubeSat Operations in LEO swarms tend to utilize more
COTS components than satellites in higher orbits. This is
acceptable because there are generally lower radiation levels
in LEO compared to higher orbits [12] and LEO missions
tend to be shorter so long duration reliability is not as much
of a requirement. This means that LEO missions can take
advantage of the lower cost, and higher performance of
COTS components [13].

For longer term missions, CADNACE is also efficient
enough for radiation-hardened and radiation-tolerant
computers. Radiation-hardened computers are specifically
designed to withstand intense radiation levels while
radiation-tolerant computers can resist radiation but only
when it is not as intense or long-lasting. The RAD750
radiation-hardened processor has a single 220 MHz core
which is an order of magnitude slower than the Apple M1
Max processor we tested CADANCE on. While the RAD750
is not typically used on low-cost SmallSats in LEO, it serves
as a good baseline for radiation-tolerant computer speeds.
Even with an order of magnitude slowdown the system will
still be able to react fast enough considering that the
maneuver commitment point is typically 1 to 0.5 days before
the TCA [1]. In addition, multi-core processors are becoming
more ubiquitous, and CADANCE is well positioned to take
advantage due to easy parallelization of the PSO algorithm.
In fact, the newer version of the RAD750, the RAD5545, has
4 cores and has 10 times higher throughput than the RAD750
[14]. Lastly, CADANCE’s design can be easily adapted to
the specific computational requirements of the mission. The
High-Level Planner can be adapted to provide tighter or
looser search space constraints to reduce or increase reliance
on the more computationally taxing trajectory optimizer.
Tighter search constraints will increase computational
efficiency but may result in the less optimal results.

It is important to also consider how the efficiency of
CADANCE will change with different types of maneuvers
and different swarm sizes. We found that orbital plane
adjustment maneuvers require more epochs of PSO to reach
a good solution than simpler orbit raising or lowering
maneuvers. Also, optimizing smaller maneuvers is more time
consuming because small maneuvers require smaller step
sizes for propagation which makes the simulation take longer.
Therefore, if CADANCE needs to perform many small
maneuvers, or many orbital plane adjustment algorithms, its
runtime may increase.

The CADANCE runtime scales linearly with both the number
of satellites in the swarm and with the number of maneuvers
required by the conjunction avoidance plan. This is because

orbital propagation dominates the runtime, and one orbital
propagation is required for each maneuver of each satellite.
However, these runtimes are not negatively affected by
relative motion constraints between satellites. This is because
CADANCE will optimize one satellite first and then optimize
the trajectory for the other satellite using the single satellite
constraints (e.g. on attitude) and the produced ephemeris of
the other satellite. In other words, CADANCE does not
perform a joint optimization which would have twice the
number of parameters and therefore would be much slower.

5. CONCLUSION

CADANCE was able to reduce Pc to below the required
threshold for a diverse set of scenarios with different mission
objectives, covariance volumes, orbital regimes, and types of
mission constraints. In other words, these scenarios were
varied enough to give us confidence that the CADANCE
concept can be generalized to most SmallSat swarms. In
addition to correctness, CADANCE is also very efficient,
taking less than 142 seconds to plan multi-maneuver
trajectories.

While our prototype demonstrates the correctness and
efficiency of CADANCE, there are several items of future
work that are required. First, CADANCE needs to be tested
against real conjunction avoidance scenarios and the
conjunction avoidance maneuver that CADANCE produces
needs to be compared against the actual maneuver that was
used in that scenario. If CADANCE can produce a more fuel-
efficient conjunction avoidance maneuver or a maneuver
with less mission impact, it would provide extra evidence of
CADANCE being able to produce better solutions in addition
to handling conjunctions autonomously.

In addition, future work is required to create an in-space
version of CADANCE. The first step is to port the system to
NASA’s core Flight System (cFS), which is a middleware
framework for flight software used on the types of academic
and small science mission satellites that CADANCE is
targeted towards. This would require porting the software
from Java to C++ and integrating it as a cFS application.
Porting CADANCE to C++ would also allow for tightly
optimized code that can better utilize the limited cache sizes
and memory for radiation-tolerant and radiation-hardened
computers. In addition, CADANCE needs to be tuned with a
higher-fidelity orbital propagation model. The current
prototype uses Orekit’s default orbital models while flight
software typically uses custom designed models. CADANCE
will also need to be configured for the real satellite swarm
with information about the mission constraints and satellite
capabilities. Finally, in future work, the centralized controller
that the current version of CADANCE uses will be replaced
with a decentralized controller based on Consensus-Based
Bundle Algorithm (CBBA). CBBA is a decentralized market-
based protocol that iterates between a bundle building phase
where each SmallSat will greedily generate a plan meeting its
own mission and conjunction avoidance requirements and a
consensus phase where conflicting plans are identified and

9

resolved with SmallSats nearest to each other [15].

APPENDICES
A. PC WITH AND WITHOUT MANEUVER

Table 1 shows the distance at TCA and Pc if the conjunction
avoidance maneuver is performed and if no maneuver is
performed. The key feature to note in this data is that the Pc
starts at above the threshold of 1E-6 for all scenarios except
the first (No Maneuver) scenario. Then, the maneuver always
creates a larger distance at TCA then would have occurred
with no maneuver, resulting in a Pc below the threshold.
However, the Pc is always only slightly below the threshold
to avoid wasting fuel.

Table 1. Distance at TCA and PC values

Scen-
ario

No Maneuver Maneuver

Distance
(m)

Pc Distance(m) Pc

1 398.529 1.464E-11 N/A N/A

2 348.713 7.947E-6 1574.000 5.240E-7

3 87.420 9.414E-4 5127.089 6.315E-7

4 249.967 7.607E-5 2967.424 5.070E-7

5 350.520 9.609E-6 1996.000 5.321E-7

6 279.362 2.620E-5 12011.452 6.235E-7

7 314.038 3.142E-5 7912.969 9.481E-7

8 210.012 9.663E-5 9690.403 8.573E-7

Scenarios: 1=No Maneuver; 2=Orbit Raising; 3=Orbit
Lowering; 4=Landsat with Orbit Coordination; 5=Trailing
Satellites; 6= Massive Internet Provider Swarm with No
Constraints; 7= Massive Internet Provider Swarm with
Attitude Constraint; 8= Massive Internet Provider Swarm
with Temporal Constraint

B. RUNTIMES FOR SCENARIOS
Table 2 shows the runtimes required to complete the entire
high-level planning and trajectory optimization process,
starting from the CDM and ending with thrust and attitude
controls. These runtimes were recorded on an Apple M1 Max
processor with 64 GB of memory. There is no runtime
recorded for the “No Maneuver” scenario as it does not
actually do any optimization, which dominates the runtime.
Note that these runtimes reflect CADANCE operating with
single-threaded trajectory optimization, and the runtimes
should scale down with multiple threads distributed across
over multiple processor cores.

Table 2. Runtimes for each scenario

Scenario Runtime (s)

1 N/A

2 39.265624

3 116.021613

4 51.123566799

5 86.410465695

6 141.489585273

7 58.386330

8 19.366113243

Scenarios: 1=No Maneuver; 2=Orbit Raising; 3=Orbit
Lowering; 4=Landsat with Orbit Coordination; 5=Trailing
Satellites; 6= Massive Internet Provider Swarm with No
Constraints; 7= Massive Internet Provider Swarm with
Attitude Constraint; 8= Massive Internet Provider Swarm
with Temporal Constraint

Note that the attitude and temporal constraints in the
“Massive Internet Provider Swarm with Attitude
Constraints” and “Massive Internet Provider Swarm with
Temporal Constraints” scenarios decrease the runtime when
compared to the unconstrained “Massive Internet Provider
Swarm with No Constraints” scenario. This is because the
constraints limit the search space for the trajectory optimizer,
enabling it to find a solution faster.

ACKNOWLEDGEMENTS
This material is based upon work supported by NASA under
Contract No. 80NSSC23PB595. The views, opinions, and/or
findings contained in this article/presentation are those of the
author/presenter and should not be interpreted as representing
the official view of policies, either expressed or implied, of
NASA.

10

REFERENCES
[1] “Step 3 Close Approach Risk Mitigation - NASA.”

Accessed: Sep. 18, 2024. [Online]. Available:
https://www.nasa.gov/cara/step-3-close-approach-risk-
mitigation/

[2] P. M. Sutter and U. Today, “Starlink and OneWeb have
their first avoidance maneuver with each other’s
constellations.” Accessed: Sep. 24, 2024. [Online].
Available: https://phys.org/news/2021-05-starlink-
oneweb-maneuver-constellations.html

[3] A. Aamodt and E. Plaza, “Case-Based Reasoning:
Foundational Issues, Methodological Variations, and
System Approaches,” AI Commun., vol. 7, no. 1, pp. 39–
59, 1994, doi: 10.3233/AIC-1994-7104.

[4] M. Kelly, “Transcription Methods for Trajectory
Optimization: a beginners tutorial,” ArXiv Optim.
Control, Jul. 2017, Accessed: Sep. 18, 2024. [Online].
Available:
https://www.semanticscholar.org/paper/Transcription-
Methods-for-Trajectory-Optimization%3A-
Kelly/0e36e16a09ede112a99370e8d669eb066a631bdc

[5] A. Shirazi, J. Ceberio, and J. A. Lozano, “Spacecraft
trajectory optimization: A review of models, objectives,
approaches and solutions,” Prog. Aerosp. Sci., vol. 102,
pp. 76–98, Oct. 2018, doi:
10.1016/j.paerosci.2018.07.007.

[6] E. Lagona, S. Hilton, A. Afful, A. Gardi, and R. Sabatini,
“Autonomous Trajectory Optimisation for Intelligent
Satellite Systems and Space Traffic Management,” Acta
Astronaut., vol. 194, pp. 185–201, May 2022, doi:
10.1016/j.actaastro.2022.01.027.

[7] M. Clerc, “Standard Particle Swarm Optimisation”.
[8] D. Vallado, Fundamentals of Astrodynamics and

Applications, 4th Edition. Microcosm Press, 2013.
[9] J. Aristoff and A. Poore, “Implicit Runge-Kutta Methods

for Orbit Propagation,” Aug. 2012. doi: 10.2514/6.2012-
4880.

[10] P. D. Loewen and R. T. Rockafellar, “New Necessary
Conditions for the Generalized Problem of Bolza,”
SIAM J. Control Optim., vol. 34, no. 5, pp. 1496–1511,
Sep. 1996, doi: 10.1137/S0363012994275932.

[11] “Sabertooth - PCIe/104 Embedded Computer,”
VersaLogic. Accessed: Oct. 03, 2024. [Online].
Available:
https://www.versalogic.com/product/sabertooth/

[12] M. M. Rahman, D. Shankar, and S. Santra, “Analysis of
Radiation Environment and its Effect on Spacecraft in
Different Orbits,” Sep. 2017.

[13] “8.0 Small Spacecraft Avionics - NASA.” Accessed:
Oct. 04, 2024. [Online]. Available:
https://www.nasa.gov/smallsat-institute/sst-soa/small-
spacecraft-avionics/#8.3.2

[14] “Space Product Literature | BAE Systems.” Accessed:
Oct. 03, 2024. [Online]. Available:
https://www.baesystems.com/en-us/our-company/inc-
businesses/electronic-systems/product-sites/space-
products-and-processing/radiation-hardened-electronics

[15] “Consensus-Based Bundle Algorithm (CBBA) -

Aerospace Controls Laboratory.” Accessed: Sep. 25,
2024. [Online]. Available:
https://acl.mit.edu/projects/consensus-based-bundle-
algorithm

BIOGRAPHY

Evan Finnigan is an artificial
intelligence software engineer at
Stottler Henke Associates, Inc. He has
built case-based reasoning, fault
management, training, scheduling
and planning software for a wide
variety of complex real-world
problems. Before working at Stottler

Henke, Evan was a student researcher at UC Berkeley
designing and building assistive robotics.

Brandon Liu is an engineer at
Stottler Henke Associates, Inc. He has
built and designed algorithms for a
variety of space and terrestrial
applications, ranging from
networking optimization to trajectory
optimization.

Richard Stottler co-founded Stottler
Henke in 1988 as a software company
dedicated to providing practical
solutions to difficult problems by
skillfully drawing upon a large
repertoire of artificial intelligence
technologies. Under his leadership,
Stottler Henke has grown steadily and

profitably into a 40-person research and software
development company with distinctive expertise in
intelligent tutoring systems, intelligent simulation,
automated planning and scheduling, and intelligent
knowledge management. Dick provides technical
leadership in the design and development of intelligent
tutoring systems, intelligent planning and scheduling
systems, and automated design systems. He combines a
strong applied research record in artificial intelligence
with practical experience in rapid and efficient knowledge
engineering. He also led the development of intelligent
planning systems for NASA space shuttle missions and
aircraft assembly and automated scheduling for the
International Space Station. Dick has written or presented
dozens of papers and articles for publications such as the
proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). He received his BS in
engineering from Cornell University and his MS in
computer science (artificial intelligence) from Stanford.

