Intelligent Small Satellite Swarm Control for Avoiding in Space Debris

IEEE Aerospace Conference 2025 Evan Finnigan, Brandon Liu, Dick Stottler Stottler Henke Associates, Inc.

Large SmallSat Swarms

Amazon OneWeb

SpaceX Starlink

Landsat Satellites

• The Landsat satellites have constraints based on a need to image the entire Earth every 16 days.

Scenarios

- 1. No Maneuver
- 2. Orbit Raising
- 3. Orbit Lowering
- 4. Landsat with Orbit Coordination
- 5. Trailing Satellites
- 6. Massive Internet Provider with No Constraints
- 7. Massive Internet Provider with Attitude Constraints
- 8. Massive Internet Provider with Temporal Constraint

Scenario Visualization: Basic Orbit Raising

Mission Constraints

Attitude constraint, e.g. keep a phased array antenna pointed at the ground

Temporal constraint, for avoiding performing a maneuver when a mission task needs to be done

Rela betv

Relative motion constraint, when satellites need to maintain a certain distance between them

CADANCE (Coordinated Debris Avoidance) Architecture

Geometric Constraints for Orbit Raising

Case-Based Reasoning

Trajectory Optimization with Particle Swarm Optimization

Orbit Raise and Restore Example

Scenario Runtimes

Scenario	Runtime (s)	
No Maneuver	N/A	
Orbit Raising	39.265624	
Orbit Lowering	116.021613	
Landsat with Orbit Coordination	51.123566799	
Trailing Satellites	86.410465695	
Massive Internet Provider with No Constraints	141.489585273	
Massive Internet Provider with Attitude Constraints	58.386330	
Massive Internet Provider with Temporal Constraint	19.366113243	

Final Trajectories

The

 acceptable
 threshold for
 P_c for all
 constellations
 is 1E-6

Scenario	No Maneuver		Maneuver	
	Distance (m)	P _c	Distance(m)	P _c
No Maneuver	398.529	1.464E-11	N/A	N/A
Orbit Raising	348.713	7.947E-6	1574.000	5.240E-7
Orbit Lowering	87.420	9.414E-4	5127.089	6.315E-7
Landsat with Orbit Coordination	249.967	7.607E-5	2967.424	5.070E-7
Trailing Satellites	350.520	9.609E-6	1996.000	5.321E-7
Massive Internet Provider with No Constraints	279.362	2.620E-5	12011.452	6.235E-7
Massive Internet Provider with Attitude Constraints	314.038	3.142E-5	7912.969	9.481E-7
Massive Internet Provider with Temporal Constraint	210.012	9.663E-5	9690.403	8.573E-7

Advantages

- Fuel efficiency can be easily included in the optimization process
- Can add safety constraints
- Computationally efficient

Disadvantages

 Optimization is not guaranteed to find a feasible solution (might need to be re-run)

Applications

Science Missions

Future Work

- Test CADANCE against real, not simulated, conjunction avoidance scenarios
- Replace centralized controller with a distributed algorithm
- Implement version that can be integrated into a flight framework, and run on a flight computer

Summary

- CADANCE can reduce the probability of collision to below a required threshold for a variety of different satellite swarms
- CADANCE uses constrained optimization as a shared representation between high-level planner and trajectory optimizer to create an end-to-end approach
- CADANCE is efficient (<142 seconds to plan multi-maneuver trajectories)

Questions?

IEEE Aerospace Conference 2025

Evan Finnigan

Stottler Henke Associates, Inc.

