
Lessons Learned from a Schedule Optimization Tool for
Prototype Vehicle Testing

Jeremy Ludwig1, Annaka Kalton2, Robert Richards3,
Brian Bautsch4, Luke Walker5

Stottler Henke Associates, Inc.,1,2,3
Honda Development & Manufacturing of America, LLC 4,5

{ludwig1, kalton2, richards3} @ stottlerhenke.com {bbautsch4, lwalker5}@na.honda.com

Abstract
This industrial case study describes the customization of an
existing general scheduling framework that generates solu-
tions for the specialized and highly constrained problem of
prototype vehicle test scheduling. In addition to creating op-
timized solutions, the deployed scheduling system both sup-
ports novice planners and integrates with existing processes.
Going beyond the prior work, this case study focuses on the
challenges encountered, updated implementation, and les-
sons learned from six years of operational use.

Introduction
Vehicle testing is an essential part of building new cars and
trucks. Whether an auto manufacturer refreshes an existing
model or builds a new one, the model will undergo hundreds
if not thousands of tests. Some tests are exciting, such as a
56 km/h frontal flat barrier crash test measuring the impact
on the crash-test dummies. Other tests are not quite as sen-
sational but still important, like testing the heating and air
conditioning system.
 What these tests have in common is that they are gener-
ally carried out on hand-built prototype vehicles because the
new factory lines for the models do not exist yet. These ve-
hicles can each cost as much as a Bentley or Lamborghini,
which results in pressure to reduce the number of vehicles.
There are two additional complications with the test vehi-
cles. First, the hand-built vehicles take time to build and are
not all available at once, but instead become available
throughout the testing process based on the build pitch of
the test vehicles. An example of this is one new test vehicle
being made available each weekday. Second, there are many
particular types of a model, and each test might require a
particular type or any of a set of types (e.g., any all-wheel-
drive vehicle). There may be dozens of types of a particular
vehicle model to choose from, varying by frame, market,
drivetrain, and trim.
 At the same time, market forces dictate when new or re-
freshed models must be released. The result is additional

pressure to complete testing by certain dates so model pro-
duction can begin.
 Finally, testing personnel and facilities are limited re-
sources. For example, it would be desirable to schedule all
the crash tests at the very end of the project so other tests
could be carried out on those vehicles first. However, there
aren’t enough crash labs or personnel to support this so the
crashes must be staggered throughout the project.
 This case study builds on prior work (Ludwig et al.,
2016) that describes how an existing intelligent scheduling
software framework was modified to include domain-spe-
cific algorithms and heuristics used in the vehicle test plan-
ning process.
 The framework combines graph analysis techniques with
heuristic scheduling techniques to quickly produce an effec-
tive schedule based on a defined set of activities, prece-
dence, and resource requirements. These heuristics are
tuned on a domain-specific basis to ensure a high-quality
schedule for a given domain. An outer optimization loop
embeds this tuned scheduling system. The heuristic-guided
optimization incrementally attempts to remove vehicles,
scheduling in between, to determine whether a lower vehicle
count is feasible.
 The resulting domain-specific scheduler is named Hot-
shot. The end product of this work is a deployed system that
automatically generates a valid schedule from a set of con-
straints provided by the planner. The generated test schedule
will complete the work in a given project time window and
enforce all of the scheduling constraints if possible.
 The schedule optimization process includes determining
which vehicle types are built and the order in which they are
built while minimizing the total number of vehicles required
for the entire test schedule. Results using the deployed sys-
tem were presented as part of Ludwig et al. (2016), where
Hotshot was applied to a large-scale testing effort for a ve-
hicle model update. This effort was not considered manage-
able using the existing manual scheduling process, so there

is no direct comparison to the pre-existing scheduling pro-
cess.
 As this system has been in continuous use since the initial
publication, this case study focuses on the challenges en-
countered, updated implementation, and lessons learned
from six years of operational use. Related work is presented
first, followed by operational challenges, updated imple-
mentation, and a concluding section.

Related Work
The current version of the software extends prior work on
the Hotshot system (Ludwig et al., 2014, 2016), which
demonstrated the ability to generate a valid testing schedule
with a significant reduction in the number of vehicles re-
quired relative to the existing planning process.
 Schwindt & Zimmerman (Schwindt & Zimmermann,
2015) provide a thorough review of related work aimed at
creating test schedules that respect testing constraints and
minimize the number of prototype vehicles required.
 The work presented in this paper is most similar to that of
Limtanyakul and Schwiegelshohn (Limtanyakul &
Schwiegelshohn, 2007, 2012). They use constraint program-
ming to solve nearly the same problem of creating a test
schedule for prototype vehicles. Both papers work towards
a valid test schedule that meets the same scheduling con-
straints described previously (temporal, resource, ordering,
build pitch, etc.), minimizes how many vehicles are built,
determines the vehicle types to build, and determines the or-
der in which the prototypes should be built according to a
build pitch.
 Bartels and Zimmerman (Bartels & Zimmermann, 2009)
also worked on the problem of scheduling tests on prototype
vehicles meeting temporal, resource, and ordering con-
straints while minimizing the number of vehicles required.
Initially they use a mixed integer linear program model for
smaller schedules, moving to a heuristic scheduling method
to find solutions for larger schedules. They found that dy-
namic, multi-pass heuristics produced the best results. These
are the same type of prioritization heuristics used in Aurora.
 Zakarian (Zakarian, 2010) took a different approach in
their prototype scheduling work for General Motors. They
focused on developing a scheduling and decision support
tool that considers the uncertainty in the test process, such
as duration of tests, possibility of failure, and prototype
availability. The tool helps users trade off between compet-
ing goals such as completing the tests according to schedule,
quality of testing, and number of prototype vehicles re-
quired. Similar to their work, Aurora will highlight con-
flicted tests that cannot be scheduled because of insufficient
resource availability in the given time frame.

 Work done for Ford (Shi et al., 2017) on prototype vehicle
test scheduling is also highly related, not only in the sched-
uling constraints but also in how engineers from each test
department define the tests required in Excel spreadsheets.
Their work reports good results from their pilot program us-
ing a Fit-and-Swap heuristic algorithm combined with an
integer programming model for grouping crash tests on the
same vehicle.
 Glos et. al., (Glos et al., 2022) solve a similar problem as
part of the BMW Quantum Computing Challenge "Optimiz-
ing the Production of Test Vehicles", though their particular
problem focuses on configuration of test vehicles. Their ap-
proach is to formulate the schedule model as a satisfiability
problem and then use hybrid constrained quantum annealing
to minimize the number of vehicles required for testing.
Their approach found results similar to classical solvers but
required more time than classical solvers.
 One primary difference from previous research is that our
work focuses on domain specific customization of a general-
purpose scheduling framework already in use in other appli-
cations. A scheduling framework takes advantage of the
large degree of commonality among the scheduling pro-
cesses required by different domains, while still accommo-
dating their significant difference. This is accomplished by
breaking parts of the scheduling process into discrete com-
ponents that can easily be replaced and interchanged for new
domains.
 Framinan and Ruiz (Framinan & Ruiz, 2010) present a
design for a general scheduling framework for manufactur-
ing. Aurora, used in our work, is one example of an imple-
mented scheduling framework (Kalton, 2006). Aurora dis-
tills the various operations involved in most scheduling
problems into reconfigurable modules that can be ex-
changed, substituted, adapted, and extended to accommo-
date new domains (Ludwig et al., 2017). The OZONE
Scheduling Framework (Smith et al., 1996) is another ex-
ample of a system that provides the basis of a scheduling
solution through a hierarchical model of components to be
extended and evolved by end-developers. Becker (Becker,
1998) describes the validation of the OZONE concept
through its application to a diverse set of real-world prob-
lems, such as transportation logistics and resource-con-
strained project scheduling.
 Another difference from existing research is that the
scope of the work presented in this paper extends beyond
the prior work in several ways. The work presented in this
paper is part of a deployed system that includes visualiza-
tion, analysis, and integration with existing processes; is
currently in use by novice planners; includes methods to
identify and automatically resolve common types of model-
ing errors created by novice planners; and includes methods
to transition the testing schedule from planning stage to ex-
ecution phase.

Operational Challenges

Challenge 1: Manually Entered Request Data
The test information and corresponding vehicle require-
ments are entered manually into individual Excel spread-
sheets by many department project managers and then com-
bined on import. This data entry process results in several
pitfalls, including poorly formatted data, missing data, and
data that is logically incompatible with other information in
the request.

For example, a master spreadsheet indicates which vehi-
cle types are available for the current test cycle. Individual
departments independently enter information about the tests
they need to perform, and which vehicle types would work
for those tests. The department information can be correctly
formatted and accurate, but if there is no overlap between
their required vehicles and the available vehicles, they have
effectively defined a test that cannot be satisfied.

Checks for these types of data issues have been added in-
crementally. In each case the verification process now in-
cludes a default data repair and notification for the user. The
goal with this challenge is to allow the user to proceed with-
out manually repairing the data, while still warning them
that some of the results may be problematic.

Challenge 2: Model Consistency Complications
There are a range of model issues that are not data entry is-
sues, but instead reflect a collision between the defined
model constraints and reality. This category of issue cannot
readily be identified as part of the import process. They only
become apparent when the model is scheduled or analyzed.
A few examples include:

The number of vehicles required to support testing cannot
be built with the specified build pitch, within the bounds de-
fined for the project. In this case, the user needs to extend
the project bounds, increase the build rate, or eliminate test
duration.

A series of inter-constrained tests will not fit within the
bounds defined by the earliest possible availability of a ve-
hicle type option and the project end. In this case, the test
series would be treated as an exception to the project end
(effectively violating the target end), but the user would be
informed of the override.

A series of tests are supposed to be performed on the same
vehicle, but the actual referenced vehicle types are incom-
patible.

Test 1 requires vehicle type A or B.
Test 2 requires vehicle type B or C.
Test 3 requires vehicle type C.
This set of requirements may pass a preliminary check,

but on further analysis, the intersection of (A | B), (B | C),
and C is empty.

As with challenge 1, the goal is to ensure that the user can
get preliminary results as quickly as possible, while still be-
ing notified of the model issues. When possible, the model
is repaired with a default strategy and the user is notified of
the change. Otherwise, the user must address the model is-
sue in the excel spreadsheets before continuing.

Challenge 3: Shifting User Goals
In the original Hotshot implementation, the dominant use
case was for the user to define the desired vehicle types, and
the maximum number of vehicles of each type. Within those
constraints, Hotshot would then attempt to find a solution
involving as few individual vehicles as possible. However,
more recently the focus has shifted to determining whether
a defined test set can be accomplished with a given overall
number of vehicles.

On the surface, this seems like a very similar problem, but
it has some fundamental differences. The two most signifi-
cant differences are that vehicle types can be added (an op-
eration that was not supported in the original implementa-
tion), and the optimization target is different (meeting a total
number of types, while taking secondary criteria into ac-
count).

This shift in focus also reflects a wish to be able to check
whether the target vehicle count is attainable quickly, easily,
and with rough data. This reflects both the common data is-
sues noted in the first two challenges, as well as the human
tendency to over-ask. That is, the first set of requests is usu-
ally too demanding and so the user needs a fast analysis to
determine whether to follow up with the department project
managers to reduce and fine-tune their demands.

Updated Implementation
The original implementation, which was based on heuristic
iterative optimization using repeated scheduling cycles to
reduce vehicles, was computationally intensive, and could
take many minutes for a large model. Conflicts caused by
data issues discussed in challenges 1 and 2 also prevented
some aspects of the optimization from working properly,
since normally it uses the presence or absence of conflicts to
determine whether the vehicle reduction is feasible. As such,
it is not well suited to quickly answering the new question
of whether the test requests are feasible with the target vehi-
cle count, with data that may be preliminary or problematic.

The original implementation’s strength is that it was
based on a more general scheduling system, and so it could
handle novel situations in the data, in many cases without
any code modification or tailoring. However, it could not
truly take advantage of the dominant structure of the do-
main. Also, it could not take shortcuts to produce the sort of
analysis that would allow the user to produce a rough but
reasonable schedule with dirty data.

To answer this new need, without losing the generality
presented by the original implementation, we implemented
a pre-optimization analyzer. Its goal is to take advantage of
the problem’s structure to quickly give a preview of likely
vehicle utilization. Although it will miss edge cases that the
full optimizer can cover, it can provide the user with a vehi-
cle utilization preview in seconds instead of in many
minutes. Achieving this goal is a four-step process.

Combine Related Tasks
A number of the tests are series of tests that are supposed to
be performed sequentially on the same vehicle. Combining
many tests into a single meta-test chunk makes reasoning
significantly easier. An example of this is shown in Figure
1, where ten tests are combined into a single test for
Vehicle 2.

Construct a Graph of Task Chunks and Vehicle
Types
This graph-based model allows each task chunk to know
what vehicle type(s) it could use, and each vehicle type to
know which task(s) want to use it. The graph-based structure
makes it easy to move tests from one vehicle type to another.
The process of producing this graph also provides useful sta-
tistics about overall type-based utilization that can help
guide the assignment process. An example of this is shown
in Figure 2.

Iteratively Assign and Refine Vehicle Instances
The algorithm then iteratively adds test tasks to vehicle in-
stances, starting with the longest and/or most restrictive test
tasks. Tasks may be added to vehicle instances that are al-
ready in use, or they may require a vehicle to be added to

the build list. As tasks are added, the algorithm checks for
issues and bottlenecks, and may potentially reallocate an
earlier task, change the vehicle build order (moving test time
from one vehicle to another), or make other common, minor
model fixes.

The graph structure makes these changes computationally
inexpensive and allows the model to remain fluid. This
makes it easier to perform localized optimization at different
points in the process and makes it easier to pursue secondary
goals (e.g., keep a vehicle for a specific department, rather
than switching among three departments).

Preview and Reporting
When the analysis is complete, the schedule model is up-
dated to show the version of the schedule that the analyzer
produced. This is then used to prime the regular scheduling
process, which allows the regular scheduling algorithm to
give the same outcome if there are no significant edge cases
missed by the analyzer. It also provides the user with de-
tailed utilization information.

This reporting makes it easier for the user to determine
whether there is significant flexibility in the schedule. For
example, if they were hoping to use 75 vehicles, and the
analysis produced a preview scheduling using 76 vehicles,
all of which are at 80% load, it is unlikely that 75 vehicles
is actually feasible without adjusting the test parameters.

However, they might then look at the vehicle statistics,
and see that one department has requested 400 days of test
time. If that is double what they used in the last test cycle,
then the user can go back and double-check the data with the
department. The objective throughout is to allow the user to
check the feasibility of their goal quickly, easily, and ro-
bustly.

Figure 1. Combining individual tasks into chunks. Colors note departments.

Conclusion
The primary lesson learned over the last few years is that the
project team greatly underestimated the difficulties that de-
partments would have in using the Excel input format. Even
with a plethora of data checks embedded in the Excel file,
and even more checks during the import process, it is simply
too easy to create the ill-defined scheduling models de-
scribed in Challenges 1 and 2. This is especially true in a
task like this that is not done very often so no expertise is
developed. The result was a burden on the scheduler, who
needs to work with each department to update their portion
of the schedule. The updated solution that highlights the is-
sues, repairs as best as possible, and lets the scheduler get
on with their job of creating a rough estimate is a significant
usability improvement.
 Challenge 3, shifting user goals, is not a lesson learned so
much as another example of an old adage – the only constant
is change. In this case, the modular architecture of the Au-
rora scheduling framework allowed us to pivot and respond
to the client’s needs while limiting the scope of the required
changes.
 In the short term, the initial scheduling and optimization
process is still used to ensure all edge cases are covered. Our
ongoing work focuses on adding the more common of those
edge cases to the analysis step, making follow-on schedul-
ing less and less necessary.

References
Bartels, J.-H., & Zimmermann, J. (2009). Scheduling tests in auto-
motive R&D projects. European Journal of Operational Research,
193(3), 805–819.
Becker, M. A. (1998). Reconfigurable Architectures for Mixed-in-
itiative Planning and Scheduling. Carnegie Mellon University.
Framinan, J. M., & Ruiz, R. (2010). Architecture of manufacturing
scheduling systems: Literature review and an integrated proposal.
European Journal of Operational Research, 205(2), 237–246.
https://doi.org/10.1016/j.ejor.2009.09.026
Glos, A., Kundu, A., & Salehi, Ö. (2022). Optimizing the Produc-
tion of Test Vehicles using Hybrid Constrained Quantum Anneal-
ing. ArXiv Preprint ArXiv:2203.15421.
Kalton, A. (2006). Applying an Intelligent Reconfigurable Sched-
uling System to Large-Scale Production Scheduling. International
Conference on Automated Planning & Scheduling (ICAPS) 2006.
International Conference on Automated Planning & Scheduling
(ICAPS) 2006, Ambleside, The English Lake District, U.K.
Limtanyakul, K., & Schwiegelshohn, U. (2007). Scheduling tests
on vehicle prototypes using constraint programming. Proceedings
of the 3rd Multidisciplinary International Scheduling Conference:
Theory and Applications, 336–343.
Limtanyakul, K., & Schwiegelshohn, U. (2012). Improvements of
constraint programming and hybrid methods for scheduling of tests
on vehicle prototypes. Constraints, 17, 172–203.
Ludwig, J., Kalton, A., Richards, R., Bautsch, B., Markusic, C., &
Jones, C. (2016). Deploying a Schedule Optimization Tool for Ve-
hicle Testing. Proceedings of the 10th Scheduling and Planning
Applications WoRKshop (SPARK), 44–51.

Figure 2. Striping indicates viable vehicle types for each task. Tasks with just a corner tag can only use one vehicle type,

multiple corner tags indicate greater flexibility.

Ludwig, J., Kalton, A., Richards, R., Bautsch, B., Markusic, C., &
Schumacher, J. (2014). A Schedule Optimization Tool for Destruc-
tive and Non-destructive Vehicle Tests. Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2998–
3003. http://dl.acm.org/citation.cfm?id=2892753.2892967
Ludwig, J., Richards, R., Kalton, A., & Stottler, D. (2017). Apply-
ing a heuristic-based scheduling framework in manufacturing, ser-
vice, and communication domains. 2017 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC), 1–4.
https://doi.org/10.1109/SMC.2017.8122568
Schwindt, C., & Zimmermann, J. (2015). Handbook on project
management and scheduling vol. 1. Springer.
Shi, Y., Reich, D., Epelman, M., Klampfl, E., & Cohn, A. (2017).
An analytical approach to prototype vehicle test scheduling.
Omega, 67, 168–176.
Smith, S. F., Lassila, O., & Becker, M. (1996). Configurable,
Mixed-Initiative Systems for Planning and Scheduling. In A. Tate
(Ed.), Advanced Planning Technology. AAAI Press.
Zakarian, A. (2010). A methodology for the performance analysis
of product validation and test plans. International Journal of Prod-
uct Development, 10(4), 369–392.

