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Abstract—To realize NASA’s ambition of a solar system wide
Internet (starting with the Earth-Moon system’s LunaNet) will re-
quire optimized communications through limited data bandwidth
communication. Our project, DREAMS, focuses on two aspects of
optimal communications: routing and link optimization. Routing
is the ability, given that links are already optimized and known (to
the extent possible), to optimally schedule storage and transmis-
sion of data to maximize throughput, i.e., routing chains bundle
transmissions together separated by periods of bundle storage.
Link optimization is the ability to optimize a link by tuning
modulation scheme, transmit power, symbol rate, etc., where
optimality is determined by a weighted sum of metrics including
Bit Error Rate (BER), throughput, and power consumption. The
DREAMS system consists of three primary components: 1) a
ML-based RF link optimizer which optimizes each RF link and
apprises distributed schedulers of what data bandwidth each link
can support; 2) a packet predictor which predicts and apprises
distributed schedulers of the volume of future packets expected
from specific applications from the daily activity schedule and
the expected volume of packets not tied to the schedule; and
3) distributed schedulers, which exchange network status and
schedule information with one another to continuously update
and re-optimize the transmission and storage schedule.

Index Terms—Scheduling, Distributed, Artificial Intelligence,
Delay Tolerant Network, Routing, Optimization

I. INTRODUCTION

NASA’s Space Communication and Navigation (SCaN) pro-
gram seeks to manage, maintain, and expand NASA’s main
networks, the Near Space Network (NSN) and Deep Space
Network (DSN) with one system. Integrating and expanding
these three diverse networks will require building a scalable,
flexible, and efficient software and space communications
infrastructure that manages heterogenous resources, e.g., the
combined network will contain surface assets, Low Earth Orbit
(LEO), Medium Earth Orbit (MEO), and Highly Elliptical
Orbit (HEO), lunar, and Lagrange Orbit satellites, all of which
have varying capabilities and may produce, store, relay, or
consume network traffic. Efficiently utilizing these expensive
resources will require a computationally efficient scheduling
and routing algorithm capable of maximizing throughput over
a network with diverse hardware capabilities.

The network managed by SCaN will include a variety
of nodes ranging from CubeSats to the International Space
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Station (ISS). These heterogenous node types will be char-
acterized by dramatically different computational and net-
work capabilities. Specifically, these nodes may have dif-
fering numbers of antennas with varying Tx/Rx capabili-
ties (e.g., transmit-only, receive-only, half-duplex, full-duplex,
etc.), communicate on different frequency bands, have varying
data rates, different types of antennas (e.g., omni-directional,
phased-array, etc.), etc. For example, CubeSats may have one
comparably low bandwidth antenna and meager computation
capabilities while the ISS has multiple high-bandwidth anten-
nas and plenty of processing power.

Additionally, space communication networks span vast dis-
tances and numerous satellites, which will necessitate multi-
hop communications and routing (communications that are
sent to one or more intermediary nodes). Furthermore, these
networks are typically characterized by several issues in-
cluding intermittent links, high latencies, low bandwidths,
comparatively high bit error rates, ad hoc connections, and
asymmetric data rates [1], which can vary depending on time,
node, etc. These issues can be divided into two categories,
predictable and unpredictable aspects, e.g., line-of-sight based
link disruptions and baseline network traffic are typically
predictable while sporadic space weather such as solar flares,
solar wind, Coronal Mass Ejections, and unscheduled network
traffic are not. An optimal scheduling/routing algorithm should
be able to exploit knowledge of the predictable aspects while
being able to dynamically adapt to the unpredictable aspects.

Software-Defined Radios (SDRs), which will be incorpo-
rated into upcoming missions to the Moon, Mars, and beyond
provide tunable parameters that can be used to manipulate
the transmit frequency, modulation scheme, etc., provide an
opportunity to improve Quality of Service (QoS). Specifically,
an agent can vary these parameters to maximize quantities
like bandwidth while minimizing quantities such as power
usage, Bit Error Rate (BER), etc. In the future, more satellites
will utilize SDRs, which will further necessitate intelligent
parameter tuning.

We present the Delay/disruption tolerant REinforce-
ment learning and Aurora based coMmunication System
(DREAMS), a scheduling algorithm that addresses the issues
inherent to communications between satellites. The DREAMS
distributed scheduling algorithm addresses these inherent is-
sues by 1) being adjustable to differing levels of computational



abilities via tunable hyperparameters; 2) making minimal
assumptions about the underlying network hardware, which
enables DREAMS to accommodate diverse hardware and
adapt to future hardware with minimal changes to the algo-
rithm; 3) exploiting information about network topologies and
scheduled and predicted traffic known ahead of time to more
optimally schedule; 4) efficiently reacting to and scheduling
around unpredicted network changes, e.g., unexpected network
traffic and network disruptions; 5) utilizing a novel congestion-
aware multi-hop routing algorithm; 6) maximizing QoS of
links.

II. RELATED WORK

A. Scheduling and Routing

Prior work has utilized visibility aware variants of Dijkstra’s
algorithm [2] for routing network traffic in Delay Tolerant
Networks (DTN). Prior work [3] utilized multigraphs to
optimally find routes between nodes with edges of varying
costs under certain cost constraints, which are untenable for
congestion aware routing. This work [3] additionally proposed
methods to handle scheduling in DTNs with varying levels
of network knowledge but is not directly applicable to the
hardware constraints managed by SCaN. DREAMS utilizes a
modified version of this routing algorithm in a temporal graph
to accommodate congestion costs.

B. Software Defined Radio Parameter Tuning

Prior work [4] utilized a technique for maximizing a multi-
objective QoS metric for space-based communications be-
tween antennas with SDRs by varying SDR parameters over
a SDR parameter space for space-based network communica-
tions. A modification of this technique [5] has been used to
train an agent on real data collected from a link between Earth
and a GEO satellite under clear sky conditions.

III. METHODS

A. Candidate Route Finding

DREAMS uses a variant of Dijkstra’s algorithm [2] applied
to a temporal visibility graph to find potential low-cost routes
for network traffic given visibility information, which hereon
will be referred to as Viz-Dijkstra. More precisely, each node
(a node typically corresponds to a satellite or ground station),
v, is duplicated T

∆ where T is the duration of the scenario and
0 ≤ ∆T is a tunable time-step parameter, to create vertices
vt1 , vt2 , ...vt T

∆

Viz-Dijkstra then uses the visibility information to add
edges to our graph. Precisely, let e

(
v(i), v(j), ts, te, δ

)
rep-

resent a visibility between nodes v(i) and v(j) that is available
between start time ts and end time te where it takes a duration
of δ to send the data across the visibility. For each of these
visibilities, we create the following set of edges

{e(v(i)tx , v
(j)
ty ) : ∃t ∈ [ts, te − δ) ∩ [tx, tx+1),

(t+ δ) ∈ [ty, ty+1)}

and add them to our graph’s set of edges, E. These
edge’s represent the ability to traverse from v(i) in some
interval [tx, tx+1) to arrive at v(j) in some interval [ty, ty+1).
Additionally, for each vertex vtx where x < ∆

T we add an
edge e

(
vtx , vtx+1

)
to represent the node’s ability to store the

information and transmit it using a later visibility. Note that
this procedure (especially with large ∆s can make multigraphs,
which Dijkstra’s algorithm can still be applied to with minimal
changes. Lastly, Viz-Dijkstra defines a time-dependent edge
cost function C : E × ℜ+ → ℜ+; the cost function defines
the cost of using an edge at a specified time.

Viz-Dijkstra then applies Dijkstra’s algorithm to the spec-
ified graph with the modification that Dijkstra’s algorithm
now stores visit times (these are computed as t

v
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is the visit time at v(i), e is the edge used, and t
(e)
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are the ts and δ for edge e) which Viz-Dijkstra uses to filter the
available edges in the multi-graph for the next hop (an edge
should be considered if and only if max
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s ) < t
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)
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Given that the cost function has the FIFO property for
all edges, this algorithm is guaranteed to find the minimum
cost path. Additionally, when ∆ = T , the algorithm becomes
equivalent to the shortest cost path algorithm presented by
Jain, Fall, Patra [3].

When the FIFO property is no longer met, Viz-Dijkstra can
either 1) fail to find a path when one exists or 2) return a
suboptimal path. We solve this issue by shrinking ∆, which
for sufficiently small ∆ and regularity conditions satisfied by
DREAMS’s cost function, the algorithm returns the minimum
cost path. DREAMS treats ∆ as a hyperparameter and typi-
cally uses values such that T

∆ ≤ 10, i.e., each original node
creates at most 10 nodes in the temporal graph. Additionally,
DREAMS uses the cost function

C(e, t
v
(i)
t
) = α(t

v
(j)
t

− t
v
(i)
t
) + (1− α)ce

where ce ≥ 0 is a fixed cost for using the edge corresponding
to expected edge congestion and α ∈ [0, 1] is a congestion/time
tradeoff hyperparameter. Note that if α = 1 the FIFO property
is met.

DREAMS also uses the above algorithm to compute trees
for its all routing setting. Specifically, the task is to route traffic
originating at a vertex to some subset of vertices. This can
trivially be solved inefficiently by duplicating the traffic and
routing each duplicate independently. To make this routing
more network efficient, one can exploit the fact that the data
that needs to be delivered to each destination is the same,
e.g., to deliver from A to C and D, it’s sufficient to use a
link from A to B (instead of twice) once then links from B
to C and B to D. In a static graph (one not changing with
respect to time), this is equivalent to computing the minimum
Steiner Tree, which is NP-Hard. DREAMS (computationally)
efficiently computes a ‘good’ solution to the non-static case
by using Viz-Dijkstra to find low-cost paths to each node then
adds all paths to a new graph and computes a low-cost rooted
tree on the newly constructed subgraph.



DREAMS uses Viz-Dijkstra to find N ‘fast,’ M ‘low
congestion,’ and B ‘balanced’ routes for a bundle using the
following three procedures [1]. For the ‘fast’ routes, DREAMS
places the entire cost weighting on the time contribution by
setting α = 1 to produce the fastest possible route. The
most congested edge on the route is removed from the graph,
and this process is repeated (N − 1) more times until N
distinct routes are produced. The ‘low congestion’ routes are
produced similarly. Specifically, DREAMS places the entire
cost weighting on the congestion contribution by setting α = 0
to find a low congestion route. The most time-consuming edge
used on the route is removed, and the process is repeated
(M − 1) more times to produce M distinct low congestion
routes. The B ‘balanced’ routes are only produced if no ‘low
congestion’ routes were found. DREAMS finds ‘balanced’
routes by binary-searching to find low values of α that return
feasible routes (routes arriving before the traffic’s deadline)
and like the ’low congestion’ procedure removes the most
time-consuming edge and repeats the process B−1 more times
to produce B ‘balanced’ routes.

B. Bottleneck Scheduling

Fig. 1. Bottleneck Scheduling Flowchart

Bottleneck Scheduling (BNS) [1], [6] is an algorithm that
assigns tasks to resources to maximize throughput. BNS is
an intuitive algorithm formulated from our conversations with
human schedulers for ground-to-satellite scheduling. In the
satellite-to-satellite routing domain, a resource corresponds to
an antenna at a given time interval, e.g., 0 to 1 seconds, and a
task corresponds to the utilization of that resource to send or
receive network traffic. To this end, BNS uses the procedure
detailed in Fig. 1 to assign tasks to resources to maximize
the network throughput; note that this is related to but is still
distinct from maximizing the total number of tasks scheduled.

In more detail, BNS first takes all routes found for the
bundle and breaks them up into tasks corresponding to each
hop on the route. Each task corresponds to two subtasks,
a send and receive resource requirement, which correspond
to the send and receive component of establishing a link.
Each route is then assigned a weight pR, which is more
intuitive to think of as a probability proportional to the route’s
least flexible task’s flexibility, i.e., tasks that are less flexible
are assigned lower probabilities of being assigned. A task’s
flexibility is determined by the total number of available start
times where the send and receive resources are available to
execute the task. Each usable resource to execute the task is
assigned a weighting proportional to the number of task start
points that utilize the resource, which can be thought of as the
probability of using the resource given that the route for this
task is selected; call this weighting pt. Note this probability
can be efficiently computed in one pass by building trapezoidal
like weighting structures. Lastly, we add this joint probability
pRT = pRpT to the resource’s congestion/allocation.

BNS then finds the peak resource (the resource with the
most cumulative probability assigned to it). Next, BNS finds
the task contributing the most to the peak resource, i.e.,
the task, T, with the greatest joint probability, pRT , for the
resource. BNS determines which bundle the task corresponds
to and removes all congestion from all tasks corresponding to
the target. If there doesn’t exist a satisfiable route (a route that
hasn’t been disqualified due to assigning resources on previous
iterations of BNS) BNS continues to the next scheduling
round; otherwise, BNS considers each remaining satisfiable
route and chooses a route such that the new peak plus a
regularization term to discourage long routes is minimized
after ‘good’, task assignments that locally minimize the peaks
that they create, times for each of the individual tasks are
selected. Note, BNS’s task placement is implemented in a way
that enforces that the structure of the route is maintained, e.g.,
if we have a two-hop route A to B, B to C, BNS ensures that
the times are selected such that A to B is executed before B to
C, Additionally this version of BNS supports that the sending
and receiving resource utilizations may occur at different times
due to high latencies in a solar system wide internet.

The new peak is calculated based on groupings on how
many tasks will be disqualified by the assignment, e.g., a task
A to B may disqualify a task A to C while still allowing a task
B to A if both antennas A and B are full duplex. BNS considers
these kinds of relationships when recomputing peaks.

The above procedure is repeated until no tasks remain.
Once no tasks remain, BNS outputs a list of assigned tasks
for every successfully scheduled bundle. These assigned tasks
include information such as 1) when the task should be
executed (and for how long), 2) which antenna pair should
be used to fulfill the task/hop on the route, and 3) the meta
information about the bundle. These outputs provide sufficient
detail to generate an executable contact plan in High-rate
Delay Tolerant Network (HDTN) [7].

BNS keeps a persistent state of the schedule including
resource assignments and existing tasks, which can be aug-



mented as new requests for scheduling come in. Furthermore,
the described algorithm is very efficient, scaling near linearly
(up to logarithmic multiples) with respect to additional re-
sources and scheduling requests.

C. Distributed Scheduling

To fulfill the requirements of a solar system wide network
traffic routing algorithm, DREAMS needs to be deployed and
ran in a distributed manner that can efficiently respond to
unexpected network traffic, outages, and conflicting schedule
assignments. This is accomplished via background tasks to
maintain connectivity, simple re-routing rules, and a conflict
handling tool inside of BNS.

At a centralized scheduler (which can be any node in
the network), DREAMS generates an initial schedule that
contains periodic connectivity tasks that ensure that no node
will irrecoverably be unable to contact other nodes using
multiple calls to the all-routing setting scheduled via BNS.
This schedule is then augmented with predicted/scheduled
network activity, which is also scheduled via BNS at the
centralized scheduler. This initial schedule is then propagated
to the rest of the network using an initial contact plan.

Each distributed node can reschedule the remainder of the
bundles route, i.e., hops in the scheduled route occurring after
the data has been delivered to the node. Note, DREAMS has
additional rules that limit when nodes do this rescheduling to
maintain network connectivity and avoid needlessly reschedul-
ing traffic, which is essential for minimizing miscommunica-
tions in the schedule, e.g., a receiving node not hearing about
the schedule change.

Due to the distributed nature of this kind of scheduling
and the need to respond to unpredicted traffic, conflicts on
resources (events where a resource is over assigned in the
schedule, e.g., A and B tell C that they both want to send data
to it at some time) are unavoidable. DREAMS’s scheduling
algorithm makes efforts to reduce the frequency of these con-
flicts and has necessary procedures to resolve these conflicts
either greedily at the node in conflict when the conflict is too
close to fully resolve or via rescheduling for conflicts that are
a sufficient amount of time in the future to respond to.

The described procedures under certain network conditions
provides provable (in the absence of unexpected outages) guar-
antees for maintaining network connectivity while being able
to simultaneously handle unscheduled requests. Furthermore,
the procedure provides ways to reasonably respond to and
schedule around unexpected outages.

D. Preliminary Results

The full DREAMS system is still in development, but we’ve
collected some preliminary results.

For comparison of the centralized DREAMS scheduler, we
implemented a semi-naı̈ve version of the DREAMS Router.
The semi-naı̈ve version differs from DREAMS in one way—it
considers only the fastest route for each bundle (i.e., the
sequence of links that provide the fastest delivery time as
if routing other bundles were not a concern). Note that

the semi-naı̈ve implementation still uses BNS to pick times
within that route (i.e., to pick when during the visibilities
on the route to actually transmit the bundle). A truly naı̈ve
algorithm would not consider congestion when picking times
(instead using priority and deadline only to route bundles). We
compared DREAMS’s data satisfaction rate with the semi-
naı̈ve algorithm’s data satisfaction rate to demonstrate and
benchmark DREAMS’s capabilities. When compared to a truly
naı̈ve router, DREAMS would perform even better, relatively
(e.g., in a scenario where DREAMS performs 20% better than
the semi-naı̈ve scheduler, it would perform more than 20%
better than a fully naı̈ve router). Note, unlike DREAMS a truly
naı̈ve scheduler without our added procedures would also be
unable to maintain network activity without a human manually
generating a contact plan.

DREAMS’s version of BNS has been tested on a 22 node
scenario consisting of three DSN ground station; two SN
ground stations; three TDRS satellites; the Internation Space
Station; a MEO Earth satellite; the Lunar Gateway; five lunar
satellites; two lunar ground stations; and four lunar rovers with
a total of 360 visibilities [1]. This base scenario was scaled and
modified by removing visibilites, removing nodes, and adding
additional traffic. DREAMS consistently performed better than
the semi-naive method achieving a 17-28% (depending on
the scenario) higher data satisfaction rate than the semi-naı̈ve
baseline [1]

Since these experiments, we have incorporated a myriad
of improvements to DREAMS to improve schedule quality
and are in the process of collecting results of the updated
DREAMS applied to distributed settings.

E. Traffic Predicition

DREAMS will augment the scheduled network traffic using
two deep neural networks: one for predicting network traffic
due to scheduled events and one for predicting unscheduled
network traffic. By predicting this additional traffic and allo-
cating resource utilization in the schedule, a significant portion
of the scheduling can be centralized, which should result in
higher quality schedules and space for future, high priority
transmission can be reserved. Note that DREAMS’s distributed
scheduling algorithm is entirely capable of dynamically ad-
justing the schedule for traffic that is both unscheduled and
unpredicted; the predicted traffic is solely used so DREAMS
can exploit predictable information to make more holistic
decisions.

The unscheduled network traffic predictor will use mined
features such as the source node, target node, time of day, day
of week, holiday, etc. to predict a label describing the traffic
over a given time interval, i.e., the network will predict the
amount of data that will be created over the time window, the
expected lifetime (difference between creation time and dead-
line) of the data, and the priority of the data. The deep neural
network will be trained to minimize the weighted sum of a
joint objective function with a Mean Squared Error (MSE) loss
applied to the continuous label components (amount of data
and expected lifetime) and a Categorical Cross Entropy (CCE)



Loss applied to the categorical components (priority). The
predicted unscheduled traffic will be scheduled by DREAMS’s
scheduler to allocate room for the expected traffic.

Similarly, the scheduled event network traffic predictor will
be implemented as a deep neural network. The scheduled
event traffic predictor will use nearly identical features to
the unscheduled predictor with the addition of meta infor-
mation regarding the event, e.g., event type. In addition to
the information predicted by the unscheduled traffic predictor,
the scheduled traffic predictor will also predict the difference
between the scheduled event’s scheduled start time and the
event’s scheduled end time (which will be incorporated into
the joint objective function via MSE losses). This information
will also be fed into DREAMS’s scheduler.

F. Link Optimization

DREAMS will use a Reinforcement Learning (RL) based
agent to maximize Quality of Service (QoS) over links in the
network. DREAMS will use Distributed Distributional Deep
Deterministic Policy Gradients (D4PG) [8] an improvement
to Deep Deterministic Policy Gradients [9] to train an agent
that uses features such as distance, relative velocity, prior SDR
parameters, previous bit error rate, etc. and can fine-tune SDR
parameters such as modulation scheme, bandwidth, power,
etc. to minimize a customizable reward function. DREAMS’s
current reward function is implemented as a multi-objective,
linear combination of Eb/N0, BER multiplied by bandwidth,
and Lock Losses. This RL agent is currently being trained
using a high-fidelity simulator.

IV. CONCLUSION

Stottler Henke works on some of the world’s most complex
scheduling domains ranging from scheduling submarine con-
struction to scheduling satellite-to-satellite communications
with various organization. Scheduling algorithms tend to pro-
vide disproportionately large value, e.g., increasing utilization
of a billion dollar’s worth of managed resources by a con-
servative 5% would effectively deliver fifty million dollars
of value. Stottler Henke has already successfully applied
the proven Bottleneck Scheduling Algorithm to scheduling
ground station to satellite communications and is currently
applying the Bottleneck Scheduling Algorithm to satellite-to-
satellite multi-hop communications and ship-to-ship multi-hop
communications.

NASA’s ambitions towards an Earth-Moon internet and
eventually a solar system wide internet require maximiz-
ing network throughput in networks characterized by SWaP
constrained satellites, intermittent links, high latencies, low
bandwidths, and ad hoc connections, which traditional network
procedures either struggle to or are unable to handle. To
accommodate these issues, we presented DREAMS, an au-
tomated system, to greatly increase network throughput based
on proven technology and Stottler Henke’s prior experience
with scheduling in diverse domains.

The prototype’s results demonstrate the throughput improve-
ments expected by using DREAMS and the technical feasi-

bility of DREAMS as a centralized scheduler, and DREAMS
has been expanded to handle distributed scheduling in realistic
High-rate Delay Tolerant Network simulation environments
and is currently being tested and evaluated. Finally, we are ac-
tively improving DREAMS and will be integrating DREAMS
with existing test beds to prepare for the eventual integration
with existing networks.
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