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ABSTRACT 
 
An important component of Space Situational Awareness (SSA) / Space Domain Awareness (SDA) is knowledge of 
the true status of friendly assets and whether any assets are under attack.  Therefore, it is important to be able to 
detect faults and other anomalies, and determine the components involved and the root cause as well as whether that 
root cause is likely an external attack.  During space conflict, communications to satellites may be disrupted, 
requiring them to intelligently and autonomously “take care of themselves,” i.e., effectively detect faults, diagnose 
their root causes, and develop and execute recovery plans, autonomously, without necessarily being able to 
communicate with ground controllers.  This lack of communication is analogous to lunar rovers and power systems 
where communication can be disrupted by terrain and other factors. 

Astrobotic, for NASA, is developing a rover that traverses over the lunar surface to an advantageous position, then 
unfurls a 60’ high photovoltaic mast to provide power for other lunar systems.  Astrobotic’s Vertical Solar Array 
Technology (VSAT) will egress from its lander, transit to the desired location (near the lunar South Pole), “wiggle” 
into the lunar soil, and then deploy a 60’ high solar array to generate and then distribute power to other lunar 
systems.  The VSAT will include several subsystems, such as mobility, internal and external (to provide power to 
external systems) electrical power systems, thermal management, and array deployment, each of which must work 
smoothly in order for the operation to succeed.  As the VSAT moves around the surface of the Moon, sensors are 
constantly providing information on how much traction is available and how quickly the rover is moving.  As the 
solar array is unfurled, a gimbal system and inertial measurement units (IMUs) continuously monitor the array’s 
movement, including any lean.  If the array leans too much, the solar array can buckle—worse, the entire rover may 
be at risk of tipping over, failing the mission.  Since the array is so tall compared to VSAT’s wheelbase, even just a 
few degrees of lean would be disastrous. This situation may be very dynamic, denying ground controllers enough 
time to correct any problem, given the round trip communication delays.   

It is therefore important that the VSAT be equipped with the means to quickly detect problems, perform diagnosis 
and root cause determination, and quickly safe the system.  Traditionally, Fault Detection, Isolation, and Recovery 
(FDIR) systems have utilized Model Based Reasoning (MBR), which requires knowledge of the subsystem design 
and the behavior of components down to the desired level of diagnosis.  To the degree this information is readily 
available, it is important to make good use of it.  However, the field of machine learning (ML) has shown that 
systems can also learn, offline, the normal behavior of complex systems in many different environments and states, 
and then detect abnormal behavior in real time.  These systems can also be trained with known abnormal states, and 
recognize these more specifically when they occur. 

This paper will describe progress on this work since our last paper, presented at AMOS 2022.  This includes further 
development and generalization of the hybrid approach to fault detection, diagnosis, and recovery as well as how we 
are applying that approach to the most critical aspects of VSAT. 

With the new types of subsystems (such as mechanical components and related sensors) came new challenges to be 
overcome.  Some concerns included quick reaction times needed to avoid tipping or buckling during mast 
deployment and, at the opposite end of the spectrum, detecting very gradual changes, hard to discern in sensor noise 
(the mast moves very, very slowly while tracking the Sun).  In some cases, data is severely limited, reducing the 
applicability of a pure ML approach. 

These challenges led to the development of a third, independent method for detecting anomalies, based on an 
analogy to thermodynamic variables: the Thermodynamic Reasoning for Intelligent Anomaly Detection (TRIAD) 
system, which performs automatic Characterization and Diagnosis of subsystem anomalies.  Similarly to how actual 
thermodynamic values such as pressure and temperature help to summarize in macro form the condition of a large 
number of micro aspects (e.g., the speeds of individual molecules), TRIAD loosely uses this same concept to 



summarize groups of sensor values.  Examples include mean or variance over the last N received datapoints for a 
sensor.  Others are min, max, and max jump between two samples.  Additional functions utilize Fourier Transforms 
(FTs) of the incoming data stream, generating added variables such as average frequency, min frequency, max 
frequency, peak frequency, and amplitude of peak frequency.  Note that every generating function is defined over 
the last N samples so that one function may be “mean over the last 100 samples” and another may be “mean over the 
last 500 samples.”  Because looking at multiple time scales can be helpful, TRIAD maintains multiple “versions” of 
each type of function where each version corresponds to a different N.  

The hybridization emphasizes the benefits of each approach and mitigates the disadvantages.  The benefits of the 
hybrid system include the ability to detect and diagnose anomalies never before encountered; working well on “Day 
One” of operations; effectively utilizing existing design knowledge; succeeding without large amounts of data; 
explaining the reasoning and being human understandable; being rigorously certifiable; behaving predictably; 
diagnosing down to the lowest modelled component level; handling rare but modeled operating conditions; 
executing very quickly; discovering unknown and subtle relationships (even across subsystems); and finally, 
providing extra certainty of the diagnosis when all three approaches agree. 

1. MOTIVATION 

As the U.S. Government and private companies continue to develop and launch spacecraft, there is a growing need 
to increase the level of autonomy of each system, especially in an adversarial world.  One of the key capabilities for 
an autonomous system is the ability to manage faults and off-nominal behavior.  If a mechanical failure occurs in 
space, it is usually impossible for a human to be able to fix the issue; systems that can manage faults autonomously 
free up time and effort from ground controllers, enabling human beings to focus on potentially more pressing issues. 
Systems may also be outside of line of sight (LOS) at the time of the fault, due to being in eclipse relative to human 
operators or terrain preventing direct communication. 

A general fault management (FM) architecture is needed to combat faults across a range of spacecraft subsystems. 
Management in a fault scenario for a given subsystem would entail first detecting that a problem has occurred, then 
safing the spacecraft to minimize any damage, diagnosing the problem, and determining the root cause; it next calls 
for determining what courses of action (COAs) might be feasible given the current situation (failed sensors, 
mechanical failures, etc.) and selecting the best one, then generating a schedule or sequence of actions to implement 
the COA, and finally, executing those actions.  However, FM is a vigilant process and must be proactive in 
monitoring system health.   

Rovers on the Moon are examples of semi-autonomous systems that will need to be 
equipped with sophisticated and robust FM systems. One such rover is Astrobotic’s 
Vertical Solar Array Technology (VSAT), which will egress from its lander, transit 
to the desired location (near the lunar South Pole), “wiggle” into the lunar soil, and 
then deploy a 60’ high solar array to generate and then distribute power to other 
lunar systems. A graphic of the VSAT is shown on the right.  The VSAT will 
include several internal subsystems, such as propulsion, internal electrical system, 
thermal management, and array deployment, each of which must work smoothly in 
order for the operation to succeed.  As the solar array is unfurled, a gimbal system, 
inertial measurement units (IMUs), wheel load sensors, inclinometers, and up-
facing camera continuously monitor the array’s movement, including any lean.  If 
the array leans too much, the array could buckle—worse, the entire rover may be at 
risk of tipping over and failing the mission. Since the array is so tall compared to 
VSAT’s wheelbase, even just a few degrees of lean would be disastrous. 

2. BACKGROUND 

As previously reported, we have applied these techniques to a number of spacecraft subsystems, including the EPS 
of the Power Propulsion Element (PPE) and Habitation and Logistics Outpost (HALO) modules of the Lunar 
Gateway (in simulation), a fault-tolerant processing and EPS monitoring experiment onboard the ISS, the CO2 
Removal Loop and Thermal Management System on the External Portable Life Support System (xPLSS) (in 
simulation), Johnson Space Center’s (JSC’s) simulation of the Mars Transit Vehicle (MTV) [8], Montana State 
University’s (MSU’s) LabSat hardware (a more complex version of their in-space CubeSat IT-SPINS), the ISS’s 
Urine Processing Assembly (UPA), and the NASA Ames Graywater Recycling System (GRS) [7]; and integrated 
them with NASA’s core Flight System (cFS). 



We are working with Astrobotic, the developer for VSAT, to develop, for ultimate fielding on the Moon, a system 
we call Modular AI for Faults: Local Online Watch and Efficient Response (MAIFLOWER).  VSAT is envisioned 
to be deployed on a lunar crater near the southern pole, where line of sight communications may be severely limited 
(making VSAT a perfect target for MAIFLOWER fault detection).  

MAIFLOWER additionally employs a model-free anomaly detection and diagnosis module, TRIAD, as an extension 
of previous efforts.  TRIAD is a modular system that serves as a potent anomaly detector on its own but can 
additionally incorporate other time-series anomaly detection frameworks.  TRIAD focuses on the intelligent 
aggregation of time-series anomaly detection methods and can detect and diagnose faults that no individual method 
can analyze on its own; as such, as the field advances, TRIAD’s modular design enables the efficient incorporation 
of new state-of-the-art methods to maximum effect.  While we have previous used machine learning methods for 
fault detection, MAIFLOWER (via improvements to TRIAD) is the first to explore time series anomaly detection 
using transformers.  The present state-of-the-art methods for time-series anomaly detection utilize deep-learning 
architectures such as transformers and Convolutional Neural Networks (CNNs) in order to transform time-series 
data into easily actionable diagnoses. 

3. SYSTEM OVERVIEW 

Here we describe MAIFLOWER at a high level, followed by a more detailed description in Part 4.  During normal 
operations, MAIFLOWER monitors onboard sensor values to automatically characterize subsystem components and 
to be prepared to detect failures.  During a failure scenario, MAIFLOWER would first detect the problem; 
immediately safe the spacecraft to minimize damage; then diagnose the problem and determine the root cause. 

Any intelligent, adaptive system must inherently be a closed loop system (i.e., in basic terms: the system must sense 
what is occurring and make appropriate decisions to take suitable actions, and sense the effects of those actions). 
The first part of this sense-decide-act loop involves perception, understanding the situation from the raw sensor 
values.  Over long-time scales, this involves characterization. The other perceptual function is detecting faults and 
diagnosing their causes. 

Model-based reasoning (MBR) systems are often used as in these types of applications; these systems encode the 
schematic information of subsystems, which includes the components (including sensors), their normal behavior and 
known abnormal modes of behavior, and the connections between components.  During normal operations, the 
model is used to simulate the current behavior and compare the simulated sensor output values to the actual sensor 
outputs.  Significant deviations are used to detect some kind of fault.  Then the model is used to reason which 
component faults are most likely to lead to the currently deviating sensor values.  The set of possible faults (possibly 
including sensor faults) which explain the sensor values is the MBR diagnosis engine’s output.  The process of using 
the model to diagnose failures is considered somewhat analogous to the reasoning an engineer would employ when 
using a schematic to try to diagnose the fault.  The process can be made more efficient by various heuristics used by 
spacecraft engineers to quickly diagnose problems and include knowledge of which components are most likely to 
fail (and how) and/or are the most likely explanation for certain types of sensor values.  MAIFLOWER takes 
advantage of these heuristics. 

In addition to MBR, MAIFLOWER leverages an expansion of the TRIAD system to synthesize an extensive model-
free module to detect and diagnose faults.  TRIAD has shown excellent performance in fault detection and 
classification across fault types with regard to several spacecraft subsystems.  Beyond this, the TRIAD system 
constitutes an overarching framework that can intelligently incorporate and synthesize any set of additional feature-
based anomaly detection systems.  Feature-based anomaly detection systems utilize deterministic functions to 
extract time series of low dimensional features from incoming streams of sensor data and perform simple threshold-
based anomaly detection on the extracted series.  Nearly every prominent anomaly detection algorithm can be 
classified as feature-based anomaly detection, from state-of-the-art deep learning algorithms using transformer and 
Convolutional Architectures [1][2][5][10] to more traditional algorithms making use of Hidden Markov Models or 
Self-Organizing Maps [3][4].  TRIAD is designed to intelligently synthesize these algorithms instead of running 
them in parallel. 

The advantages of TRIAD’s synthesis are twofold.  First, TRIAD’s synthesis is significantly more accurate than any 
parallel implementation, for purposes of both detection and characterization.  Second, TRIAD enables more 
wholistic modelling of the utility of each method’s individual contribution to the accuracy of the system.  For 
example, a computationally slow/expensive anomaly detection method may outcompete cheaper methods, run 
individually or in parallel, but find itself redundant when incorporated into TRIAD’s system.  By contrast, a cheaper 



method may fail to provide any novel detection when compared against already-implemented methods but 
significantly enhance expressivity when incorporated in intelligent concert with these methods within TRIAD.  

MAIFLOWER extends TRIAD with feature functions from cutting-edge time-series anomaly detection algorithms, 
including the state-of-the-art methods that utilize transformer and CNN architectures.  Transformer and CNN 
architectures have broadly dominated the state-of-the-art for anomaly detection in recent years.  Deep learning 
encoders are trained on a variety of downstream tasks, including detection of synthetic faults [5], the prediction of 
future data [2], and reconstruction accuracy [1].  The feature encodings are then subject to threshold-based detection. 
We are investigating a “mix-and-match” method of encoding architectures (transformers, CNNs) and downstream 
tasks, incorporating each into TRIAD in order to comprehensively assess and implement the most robust and 
efficient combinations of state-of-the-art techniques. 

4. MAIFLOWER SYSTEM DESCRIPTION 

Shown in the figure to the right is the high-level architecture for MAIFLOWER. In general, MAIFLOWER can 
support fully autonomous, closed loop 
execution.  The loop is constantly monitoring 
sensor values across subsystems to ensure all 
systems are running nominally.  However, when 
sensor values appear to significantly deviate 
from typical conditions, MAIFLOWER first uses 
information from its various sensors to 
determine the likelihood of a fault occurring (as 
opposed to a false positive).  MAIFLOWER 
exploits various techniques (model based 
reasoning, ML, and thermodynamic analysis, 
among others) to evaluate the probability of a 
fault and attempt to diagnose the situation.  Once 
a fault has been pinpointed, MAIFLOWER 
quickly safes the system. In later versions, it will 
also move on to replanning goals, such as the 
need to reconfigure or take other actions to 
restore mechanical systems or power after a fault 
and execute those operations.  However, our 
initial version of MAIFLOWER is specifically 
focusing on Characterization, Anomaly 
Detection, Diagnosis, and Safing. 

5. MODEL-BASED REASONING (MBR) DIAGNOSIS ENGINES 

Model-based diagnosis systems encode detailed and explicit descriptions of the interrelated factors that affect 
phenomena. These models typically represent the world as a collection of components, where each component is 
characterized by attribute values and one or more modes. Constraints specify required relationships among attribute 
values and modes, and constraint violations are used to identify components in faulty modes. For example, forces, 
torques, and translational and angular accelerations, velocities, and positions, and different sensor values of these 
quantities, are constrained by algebraic relationships and equations of motion. If the sensed values do not obey these 
relationships, either one of the sensors or the physical component must be at fault. 

MBR systems have traditionally been used to diagnose faults in engineered systems. System components are 
characterized by nominal and known faulty modes, and constraints on interconnected components are based on 
physical laws. Because models encode the effects of contextual factors, they can be applied reliably across contexts, 
such as the current environment, configuration, and sent commands. Model-based reasoning requires knowledge 
engineering efforts to encode these interacting effects. MBR engines can be extremely fast and do not require a large 
amount of memory or compute power, even for complex models. 

During normal operations, the model is used to simulate the current behavior and compare the simulated sensor 
output values to the actual sensor outputs. Significant deviations are used to detect some kind of fault. The model is 
then used to reason which component faults are most likely to lead to the deviating sensor values. The set of possible 
faults (including sensor faults) which explain the sensor values comprise the MBR diagnosis engine’s output. As 

Figure 1: MAIFLOWER High-Level Architecture. 



touched on earlier, the process of using the model to diagnose failures is considered somewhat analogous to the 
reasoning an engineer uses when seeking to diagnose a fault by use of a schematic. The process can be made more 
efficient by various heuristics which spacecraft engineers use to quickly diagnose problems and include knowledge 
of which components are most likely to fail and how, and/or are the most likely explanation for certain types of 
sensor values. MBR engines identify one specific fault and/or a set of possible faults. Note that the MBR engine 
does this every time new data arrives. However, as mentioned later, it may wait to issue a detection until other points 
in time or other modules have been consulted. Being hosted onboard the VSAT allows several sets of telemetry data 
to be received each second and processed, which can be used to minimize false alarms due to sensor noise, even 
within the 1-second reaction requirement. 

6. THERMODYNAMIC REASONING FOR INTELLIGENT ANOMALY DETECTION (TRIAD) 

The central idea behind TRIAD is that of a Thermodynamic Variable (TD). Note that in this context, a TD is a name 
for a mathematical object and does not necessarily refer to quantities such as temperature and pressure that are 
associated with thermodynamics specifically.  This concept is inspired by thermodynamics but not limited to it. A 
TD is a function of the most recent n datapoints, with n varying for each TD. A simple example of a TD is the 
variance across the last 100 received datapoints.  TRIAD recursively applies sets of generating functions to input 
data in order to generate maximally expressive sets of TDs.  Different sequences of functions can be handcrafted 
applications or developed via optimized sampling.  Examples of functions used in the previously include mean, min, 
max, variance, and max jump between two samples.  Additional functions utilized Fourier Transforms (FTs) of the 
incoming data stream, generating additional TDs such as average frequency, min frequency, max frequency, peak 
frequency, and amplitude of peak frequency.  Note that every generating function is defined over the last n samples. 
Therefore, one function may be “mean over the last 100 samples” and another may be “mean over the last 500 
samples.”  Because looking at multiple time scales can be helpful, TRIAD maintains multiple “versions” of each 
type of function where each version corresponds to a different n.  

TRIAD leverages fault-free training data to construct quantile-based empiric distributions over each of the generated 
TDs.  When the system is online, out-of-distribution instances of features are detected as anomalies.  The thresholds 
for what constitutes an out-of-distribution value for variables can be tweaked depending on the desired sensitivity, 
moving along a tradeoff frontier between false positive and false negative rates.  One can further extend this 
tweaking to adjust the sensitivity to specific types of faults so as to remain hypervigilant for catastrophic faults while 
reducing the false alarm rate for less dramatic events. 

To characterize anomalies, TRIAD leverages training data of past or simulated anomalies to develop vectorized 
recordings of feature deviations for each anomaly event in the training data.  TRIAD can then fit probability 
distributions in this space for each fault type by maximizing the log-probability of parameterized gaussian mixture 
distributions.  Gaussian mixtures are highly expressive distributions, especially in contexts where target distributions 
can be high-dimensional and multi-modal.  This allows for incomplete sets of “cues” for a specific type of fault to 
remain actionable, which can be helpful in the case of broken sensors.  Using these optimized distributions, TRIAD 
can assign a probability to each class of known anomaly in the event of a real fault, in addition to a probability that 
the fault is of an unknown type.  Both the unsupervised anomaly-detection component and the supervised anomaly-
characterization component can be retrained with new data in the face of new operational circumstances with no 
development overhead, allowing TRIAD continually learn and keep pace with new contexts, incorporating new 
knowledge of specific fault types over time.  

To incorporate additional anomaly detection methods into TRIAD, one just inputs the associated feature-generating 
function into the pool of TRIAD’s generating functions.  TRIAD starts at baseline with an implementation identical 
to parallel usage of each of its incorporated anomaly detection methods; TRIAD monitors the outputted time-series 
generated by each incorporated feature-generating function as if they were TDs, essentially replicating the model. 
However, TRIAD can then improve upon this method with the sequential application of feature-generating 
functions.  For example, an incorporated CNN network that does not shed light on the raw input data may 
consistently detect otherwise-overlooked anomalies when run on the time-series of Fourier features extracted by 
TRIAD.  Alternatively, the Fourier features of the time series data extracted by a transformer architecture may alert 
the system to anomalies that the transformer would otherwise overlook.  These are examples of sequences of two 
generating functions: TRIAD supports manually designed sequences and can be extended to optimize and curate 
function sequences of arbitrary length to minimize the redundancy of monitored values up to the computation 
budget allotted.  As such, for any given computation budget, TRIAD has the capability to provide a far more 
comprehensive monitoring system than a baseline parallel implementation. 



7. MACHINE LEARNING FOR ANOMALY DETECTION 

Deep learning architectures such as transformers and CNN have broadly dominated the state-of-the-art for anomaly 
detection in recent years. Transformer architectures have revolutionized Natural Language Processing (NLP) tasks 
in the last several years but have yielded improved performance over other networks on nearly every task involving 
time-series data, such as financial price-history datasets or video footage.  CNNs have been the standard architecture 
for Computer Vision for many years and continue to broadly dominate the state-of-the-art in that field. CNNs have 
also been adapted to one-dimensional data such as time-series to great effect—while individual CNN layers are less 
expressive than the attention layers used in transformers, they are computationally faster, and as such, CNNs can be 
significantly deeper at the same computational cost. 

The use of trained networks of time-series anomaly detection is a matter of standard classification when sufficient 
labelled data of anomalies exists in abundance.  When anomalous data is scarce, the networks must be instead 
trained on alternate downstream tasks adjacent to the task of anomaly detection, such that the time-series of 
encodings generated for that task are conducive to simpler anomaly detection methods.  Many downstream tasks 
have been proposed, and the selection of downstream tasks constitutes the central innovation of most state-of-the-art 
literature on this topic.  Prominent downstream tasks in the current frontier of performance are the detection of 
future datapoints in the stream [2] and autoencoding [1].  Models trained for autoencoding (called autoencoders) are 
trained to generate a lower-dimensional representation of input features, while a decoder is simultaneously trained to 
recreate the input features from the lower-dimensional representation.  Both networks are trained to maximize the 
accuracy of the decoder. Finally, many algorithms generate synthetic fault data and train standard classification 
algorithms.  While deep learning architectures have outcompeted the prior state-of-the-art for anomaly detection by 
a wide margin, no clear downstream task has emerged as the general standard for training, and new downstream 
tasks are introduced frequently. 

8. HYBRIDIZING MBR AND TRIAD 

A hybrid fault detection system uses both TRIAD and MBR to monitor sensor values in an effort to identify 
anomalous behavior.  Hybridizing MBR and TRIAD emphasizes the benefits of each while minimizing their 
disadvantages. Generally, the benefits of MBR coincide with the disadvantages of TRIAD, and vice versa, so the 
two complement each other well [3].  When an anomaly is detected, a few possibilities present themselves: both 
systems detect the anomaly, only TRIAD detects it, or it is only detected by the MBR system.  TRIAD detects all 
data streams that are “different” from the data on which it was trained, and as such it generates reports when 
encountering novel outside contexts, even when all systems are functioning effectively.  MBR is a good check on 
these false alarms, especially if a method exists to determine if TRIAD training data does not include data from the 
current operating state.  However, TRIAD’s model-free anomaly detection can also detect faults that escape the 
analytic limits of MBR.  Because MBR and TRIAD are very different technologies (especially in that one is model-
based while the other is model-free), when they agree, this consensus instills extra confidence in the result 
(compared to using MBR or TRIAD alone). 

9. ASTROBOTIC’S VSAT SYSTEM 

By way of example—as NASA intends to dramatically increase the number of manmade objects and systems on the 
Moon, it is essential to develop a grid to generate and distribute electrical power.  This grid will consist of several 
elements, from the generators to the intermediate distributors to the final recipients, and a multitude of faults could 
occur at any stage in this process.  Astrobotic’s Vertical Solar Array Technology (VSAT) is an example of a 
generator platform.  At a high level, it resembles a rover with a large vertical solar array that can unfurl once the 
rover has reached a suitable area for solar power generation and that rotates to track the motion of the Sun.  The 
VSAT is likely to be deployed near the lunar south pole, which is why it is oriented vertically.  A graphic of the 
array is shown lower right, while the figure below provides a close-up view of the rover. 



 The VSAT platform will face several challenges.  First, the 
solar array is significantly larger than the base of the rover; as the 
array unfurls, the center of gravity eventually sits far above the 
rover’s base.  This means that if the array is not perpendicular 
(relative to the plum vector on the Moon), it may buckle, and 
worst of all, the entire system is susceptible to tipping over.  The 
operational window for the deployment of the array is thus very 
precise and any amount of leaning must be carefully tracked and 
adjusted for (or the deployment process must be cancelled and 
tried again).  A requirement for the unfurling to even begin is the 
settling of the wheels of the main rover body into the lunar 
regolith.  The VSAT platform will do this by wiggling its wheels 
(small motions in opposition to each 
other and opposite to that of the 
opposing wheel) to dig into the lunar 
regolith and make the platform more 

stable for the solar array deployment. 

10. FAULT SCENARIOS 

There are two main types of faults and several ways that they may arise.  The most 
catastrophic is, of course, tipping.  But a more likely fault is buckling.  Both relate to the 
location of the center of mass of the solar array.  In order to be rolled up when stowed, 
the booms on either side are made up of short, hollow segments with a center elastic 
running the entire length under constant tension.  As these booms, and the solar array, 
are unrolled, these segments snap into place, fully mated.  During stowing operations, 
the opposite effect occurs, where a torque is applied at the joint between two segments 
of the next section that is being rolled up at the bottom of the stowing array in order to 
unsnap it.  Given the amount of tension of the center elastic and the dimensions of each 
segment, the amount of this torque needed can be easily calculated.  This same value is 
what would cause the array to buckle, most likely at the joint closest to the base, and 
collapse to the lunar surface, if the array were too far from perfectly vertical.  Even more 
extreme out-of-vertical angles could cause the whole VSAT rover to tip over.  A static 
value has been calculated to prevent these occurrences, and the recommended tolerance 
is to stay with 3 degrees of vertical.  Most of the weight (because that is where the solar 
cells actually are) is in the upper half of the 60’ mast.  Combined with the fact that the 
boom segments act like a spring, it causes the mast to sag further in the direction out of 
vertical.  There is also a potential for an inverted pendulum effect.  This could be quite 
complex because the mast is less stiff in the direction normal to the surface of the mast 
and more stiff in the direction along the surface of the mast, from one beam toward the 
other.  The inverted pendulum can therefore have an elliptical motion.  The inverted 
pendulum effect, if it occurs, decreases the effective safety tolerance to less than the 
static value of 3 degrees.  

These failure scenarios can be a result of several causes.  The sensors used to determine “verticalness” may have too 
much error.  Energy could be added to the system, causing the inverted pendulum, possibly from rough gears or 
motors or other damage due to launch vibrations.  If the soil gives way during deployment, it would introduce both 
an off-angle and energy for the inverted pendulum.  The soil could give way as a result of vibrations during mast 
deployment, the very slow Sun-tracking process, or during unwinding every 28 days (because the solar array cannot 
continue tracking in one direction more than one full revolution). 

 

 

 

 

 



11. VSAT MODEL 

Several kinds of sensors are onboard the VSAT to 
help detect anomalies before they become 
catastrophic.  Unfortunately given the round-trip 
communications delays, it would not always be 
possible for humans on the ground to take 
effective action in time, such that the VSAT needs 
an onboard, autonomous, sense and react 
capability.  The types of sensors include load 
sensors at each of the wheels, inclinometers, 
gimbal joint angle sensors, mast deployment 
motor sensors, and up-facing camera.  The data 
these sensors collect are processed with both the 
MBR system and TRIAD, which also includes the 
ML techniques discussed earlier.  A high-level 
architecture of MAIFLOWER applied to VSAT is 
shown to the right, followed by the model of the 
mechanical system components.  

Figure 2: High-Level Architecture of 
MAIFLOWER Applied to VSAT 

Relationships are used to both sanity-check sensor values (i.e., identify faulty sensors) and to diagnose causes of 
anomalies.  An example of a relationship is that using the angle of the body from vertical, the angle of the platform 
and solar array base, and the state of the solar array (how far deployed, deployment motion, inverted pendulum 
motion, etc.), the wheel loads can be calculated and cross-checked against the wheel load sensors.  Another example 
is how the vertical motion of the IMU at the top of the mast can be checked against both the up-facing camera and 
motor sensors which can be used to also calculate the degree of deployment.  
Cross-vertical motions of the top IMU (i.e., inverted pendulum motions) can 

be cross- checked 
against the up-
facing cameras.  By 
detecting and 
diagnosing 
problems early, 
before they become 
so severe that 
disaster strikes, 
MAIFLOWER can 
greatly decrease mission risk.  The primary safing 
mechanism is to stop the current operation and retract the 
mast (to improve its center of gravity).  For example, if 
during deployment, inverted pendulum motion is detected, 
stopping all motion would tend to decrease the problem.  If 
there is a danger of tipping, retracting the mast will 
improve the problem.  If the soil starts collapsing or sliding 
during deployment, solar tracking, or unwinding, halting 
the motion will stop the vibration. 

12. CURRENT/FUTURE WORK 

Currently we are prototyping MAIFLOWER for VSAT and applying its MBR, TRIAD, and ML techniques to 
simulated data to detect and diagnose anomalies.  A ground unit of VSAT will be tested in simulated lunar regolith 
in a large vacuum chamber this coming summer and we will then be applying MAIFLOWER to the actual data from 
the actual vacuum chamber tests with the real ground article.  At that time, we will also begin investigating 
autonomous safing actions. 

Figure 3: Model of Mechanical System 
Components 

 



We hope to further test and mature the system for deployment, with VSAT, to the Moon’s surface.  Additionally, 
there is a similar mission planned with another very tall, deployable solar array that will be deployed directly from a 
lander.  Many of the components and possible problems are identical or nearly so to the ones described here for 
VSAT, so there is potential for us to be involved in that mission as well. 

13. CONCLUSIONS 

Although, as described earlier, these technologies have been applied to a wide array of spacecraft subsystems, this is 
the first involving a primarily mechanical system.  So far, the process has been similar to our other previous work.  
This combination of technologies and our current effort present the following benefits: 

• A generalized and modular fault management architecture that can be quickly spun up for any number of 
different subsystems. 

• Autonomous, high-speed anomaly detection along with “root cause” analysis by correlating time-series 
data across subsystems, thereby capturing cascading impacts of single faults on a spacecraft as a whole. 

• Introduction of transformer-based anomaly detection to fault detection in the space domain. 
• Astrobotic’s VSAT, which provides a real platform, first in vacuum chamber ground testing, then on the 

lunar surface, to prove MAIFLOWER’s feasibility for adaptation for other spacecraft. 
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