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ABSTRACT 

Reliable, objective, and timely estimation of cognitive workload has potential applications in training (e.g., facilitating 
curriculum development), human performance assessment (e.g., treating workload itself as a performance metric), the 
design and development of human-automation teaming systems (e.g., evaluating the impact of design choices on 
operators’ cognitive workload), and adaptive automation (i.e., adapting automation behavior based on the cognitive 
workload of human operators).  A wide variety of physiological indicators of cognitive workload have been 
investigated over the past five decades, including heart rate/variability, respiratory measures, pupil size and other 
pupillometrics, electrodermal activity (EDA), and indicators extracted from complex sources such as functional near-
infrared spectroscopy and electroencephalography.  However, individual physiological indicators are non-specific to 
workload and must be combined with others to derive a useful estimate.  The sensitivity and specificity of joint 
estimates depend on the sensitivities of the individual indicators to variations in cognitive workload and the unique 
information contributed by each. 
 
This paper explores the utility of face and neck surface electromyography (fnsEMG)—non-invasive, skin surface 
measurement of the motor action potentials that drive muscle activity—as a sensing modality for cognitive workload 
and its associated emotional responses.  The sensitivity of fnsEMG to cognitive workload variations at nine face and 
neck sensing locations was established in a Defense Advanced Research Projects Agency funded human study in 
which participants performed multiple concurrent cognitive tasks in a modified version of the NASA Multi-Attribute 
Task Battery.  Task performance and frequent self-reports of task difficulty were compared with multiple 
physiological signals, including fnsEMG, electrocardiography, EDA, respiration, eye gaze, and pupil size.  Non-
parametric methods were used to predict task errors and self-reported task difficulty based on these physiological 
signals.  Calibrated predictions on a held-out test set demonstrated the combined sensitivity of these measures, and of 
fnsEMG in particular, to cognitive workload and overload. 
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INTRODUCTION 

The applications for a robust, objective, and timely measure of cognitive workload—understood roughly as the portion 
of a person’s limited cognitive resources consumed during the performance of a task in a particular environment—
include training, human performance assessment, the design and development of human-automation teaming systems, 
and adaptive automation (i.e., automation that adapts its behavior to the changing needs of human operators).  In 
training, for example, a measure of cognitive workload could indicate task mastery independent of performance 
measures, as trainees can achieve a fixed level of performance with decreasing cognitive effort as mastery is acquired.  
It could also facilitate curriculum development by giving insight into trainees’ cognitive workloads as they experience 
various curriculum designs. 
 
Although the research community continues to debate nuances of the construct, there is general agreement that 
cognitive workload: a) is multi-dimensional (Matthews et al., 2015), b) relates task demands (i.e., taskload) and 
cognitive task performance (Cain, 2007), and c) is associated with taskload by a function of the cognitive resources 
available to the individual for performance of the tasks at hand—resources in turn determined by many factors, 
including the individual’s acquired skill and natural aptitude for the tasks.  The effect of cognitive workload on task 
performance is complex and non-linear, making performance metrics poor indicators of cognitive workload in general.  
Researchers have demonstrated some success using secondary task performance measures as indicators of cognitive 
workload induced by a primary taskload (Kaber and Riley, 1999).  However, this approach has the significant 
drawback that adding secondary tasks can interfere with the performance of primary tasks.  Aside from its influence 
on task performance, cognitive workload has observable effects on subjective instruments, such as the NASA Task 
Load Index (NASA-TLX) (Hart, 2006; Hart and Staveland, 1988), and various physiological variables. 
 
Prior research has identified several somatic and autonomic nervous system outputs (human behaviors) that change 
predictably when individuals are placed under different taskloads (Cain, 2007; Rosenberg and Ekman, 2020; Quatieri 
et al., 2017).  Taskload-dependent autonomic responses include an electrodermal response (sweat gland secretion), 
skin temperature fluctuation (vasculature smooth muscle tone), blood pressure and pupillary aperture (vascular and 
pupillary smooth muscle tone), and heart rate (cardiac muscle rhythm).  Taskload-dependent variation in multiple 
volitional or reflexive skeletal-muscle behaviors, including changes in facial expression, jaw tension, body posture, 
voice and speech patterns, and manual task execution (e.g., movement rate, accuracy, coordination, etc.), has also 
been demonstrated.  Aside from our prior retrospective assessment of neck intermuscular beta coherence (Novstrup, 
Goan, and Heaton, 2019), we are unaware of previous attempts to explicitly connect face and neck surface 
electromyography (fnsEMG) to cognitive workload or volitional responses to the same.   
 
The human study presented in this paper demonstrates both an explicit connection between cognitive workload and 
fnsEMG and the ability to predict cognitive workload from a complement of physiological measures derived from 
multiple sensing modalities (including fnsEMG).  The physiological measures considered in this study—heart rate 
(HR) and heart rate variability (HRV) from electrocardiography (ECG), respiration rate, electrodermal activity (EDA) 
measures, pupillometrics, and fnsEMG—could, in principle, be collected from relatively unobtrusive wearable 
sensors, appropriate for practical application in many real-world work/task environments.  The sensitivity of fnsEMG 
to taskload variations is demonstrated, along with the ability to predict both a task performance measure and a 
subjective self-assessment of task difficulty.  The next section presents the methods employed, followed by a section 
describing the results, and then the paper concludes with discussion of the study’s implications and directions for 
future work. 
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METHODS 

Study Design and Enrollment Overview 

All data collection for this study occurred at Massachusetts General Hospital (MGH).  Eleven healthy adults of both 
sexes (5 males and 6 females), ages 21 – 28, were recruited to visit the MGH Center for Laryngeal Surgery and Voice 
Restoration (“MGH Voice Center”) for one study visit per participant, each lasting approximately 5 – 6 hours.  All 
participants provided written informed consent.  The study protocol was reviewed and approved by the MGH 
Institutional Review Board.  Study participants were recruited from recipients of MGH broadcast emails describing 
research subject opportunities and were screened according to the selection criteria described below. 
 
A primary focus of the study was performance on the computer-based Multi-Attribute Task Battery (MATB; see 
Enhancements section below).  Participants were required to be literate and fluent in English since MATB is only 
available in English.  Participants were also required to have adequate vision, hearing, and hand motor control for 
performing the MATB and to reach a minimal baseline performance on the MATB (see Study Procedures section) for 
full participation.  All pre-screened individuals who visited the Voice Center qualified for full participation. 
 
We developed a modified version of the MATB that delivers noxious shocks to the forearm as punishment for some 
task errors (see Study Procedures). Individuals with a cardiac pacemaker or other electrically sensitive implants were 
excluded from participation due to possible interaction with skin-surface electrical stimulation.  In addition, 
individuals particularly fearful of electrical stimulation or with low pain threshold for cutaneous sensation were 
excluded, along with those reporting skin sensitivity to medical-grade adhesives like those used in stimulation and 
recording electrode application.  Finally, individuals were advised not to enroll if pregnant, and tests were provided if 
pregnancy status was unknown. 
 
Multi-Attribute Task Battery (MATB) Enhancements 

The present research protocol aimed to identify cognitive workload during complex tasks through unobtrusive 
physiological measures reflecting mental/emotional state.  A modified version of the MATB was used to evaluate 
research participants’ performance and degree of cognitive workload through several simultaneous computer-based 
tasks.  The MATB provides a set of tasks analogous to what aircraft crewmembers perform in flight, yet it does not 
require piloting experience.  The MATB involves the simultaneous performance of manual aircraft flight (joystick 
control), aircraft system monitoring, dynamic resource management, and communication tasks, and it has been used 
in numerous experiments of cognitive demand and performance since initially developed in the early 1990s (Comstock 
& Arnegard, 1992; Santiago-Espada et al., 2011).  The custom software implementation used in this study, derived 
from the Air Force MATB software (AF-MATB v4.9), had three principal modifications: 1) The addition of real-time 
performance feedback and shock punishment, 2) utilization of an automated joystick providing assistive and disruptive 
steering, and 3) incorporation of a computerized implementation of the Instantaneous Self-Assessment of Workload 
(ISA) (Tattersall and Foord, 1996; Jordan and Brennen, 1992). 
 
The cognitive tasks provided by the AF-MATB reflect many of the cognitive challenges faced by pilots.  However, 
this testbed does not represent a high-fidelity flight simulation or provide consequences or feedback for task errors, 
aside from performance scores at the end of testing.  Therefore, to increase participant engagement, self-awareness, 
and motivation, we modified the MATB software to provide real-time performance feedback through auditory cues 
for correct/incorrect responses.  For example, a rewarding “ding” sound played after each correct response to the 
System Monitoring gauges and lights, and a harsh buzzing sound occurred when the user was out of range in the 
Tracking task (see Study Procedures section below).   In addition, our modified MATB platform brought error 
consequences under experimental control using methods like those detailed in Lindstrom et al. (2013).  Briefly, 
aversive consequences in the form of individually calibrated unpleasant (but not painful) electrical shocks were 
administered after some task errors (i.e., limited to one shock per 20 seconds of task engagement).  Feedback of 
correct/incorrect responses and error punishment were expected to reduce the attenuation of physiological responses 
to cognitive workload observed in simulated work environments (e.g., Angelborg-Thanderz, 1990). 
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Brief (100 ms) electrical shocks were administered to the forearm skin at a voltage that participants reported as being 
uncomfortable but not painful, as determined in a shock level calibration procedure conducted prior to the first 
recorded test trial (approximately 30-70V for 100 ms monopolar pulses; see Lindström et al., 2013).  Shocks were 
delivered using two Ag/AgCl disposable 20mm diameter circular electrodes (Natus Medical) placed on the left 
dorsolateral forearm skin approximately 5 cm apart.  Shock voltage was controlled by a constant-voltage stimulation 
module (BIOPAC STM200) and delivered current was monitored by a BIOPAC MP160 data acquisition system.  
Shock discomfort level was assessed using an 11-point (zero-to-ten) pictographic faces pain scale (Figure 1; Hicks et 
al., 2001) at the time of shock calibration and after each of the 15 trials, with the expectation that participants would 
report discomfort greater than zero but no greater than 7 (see the dotted vertical line on Figure 1), since levels 8 – 10 
would be considered painful and therefore exceed the intended shock discomfort for this study.  Participants could 
adjust the shock voltage up or down between trials if the shocks became ineffective or too uncomfortable, respectively.  
The average shock level at the start of Trial 1 was 51.9V (SD 11.8V).  Throughout data collection, two participants 
requested a reduction in shock level (average -8%), and five participants asked for one or more increases in shock 
level (average +11%).  Reported shock discomfort levels ranged from two to seven after the initial calibration and 
averaged 4.6 (SD 1) at the beginning of Trial 1.  
Throughout the 15 trials, 9 of 11 participants reported 
changes in discomfort.  In most cases, changes were 
decreases, prompting the participants to request an 
increase in shock voltage, which then increased reported 
discomfort in subsequent trials.  
 
Physiological Measures 

In addition to task performance quantified by the computer software, we hypothesized that physiologic measures of 
somatic and autonomic nervous system function would reflect the cognitive demands and emotional state of research 
participants as they performed the MATB.  Signal acquisition in this study included sEMG, ECG, EDA (also called 
galvanic skin response or GSR), respiration, pupillometry/eye gaze, and microphone (audio) recording.  Physiological 
signals were digitized using a BIOPAC MP160 system (ECG, EDA, respiration, microphone, shock current; 20ks/s) 
synchronized with a Delsys Trigno system (11 channel EMG; 2ks/s) and additional high-fidelity audio (Tascam DR40; 
48ks/s) via a headset microphone (Sony ECM-66B) positioned 5cm from the mouth.  Eleven reusable Delsys Trigno 
EMG sensors were applied to the skin surface above targeted muscle groups using double-sided adhesive, and signals 
were transmitted wirelessly to a Trigno base station.  The skin at EMG sensor locations was prepared by alcohol wipe 
cleaning and ‘peeling’ exfoliation using common, clear desk tape (Stepp, 2012).  Target locations are shown in Figure 
2.  Eight locations (1 – 8 in Figure 2) used “Mini” Trigno sensors designed for face and neck surface recording, while 
three locations (9 – 11 in Figure 2) used standard Delsys Trigno EMG sensors.  ECG and respiration signals were 
digitized and transmitted wirelessly to the MP160 using a BioNomadix transmitter. 
 
Three disposable ECG sensors were positioned on the right and left clavicular surfaces and below the left floating ribs 
on the ventrolateral abdomen (cathode, ground, and anode, respectively) to form Einthoven’s triangle (Dupre et al., 
2005).  Respiration-related thoracic movements were obtained with a transducer band (BIOPAC BN-RESP-XDCR) 
positioned horizontally across the pectoral region (chest).  Two disposable EDA sensors were applied to the distal 
phalanges of the middle and index fingers of the left hand 
and digitized using a BIOPAC MP36R module attached 
to the MP160 (see Braithwaite et al., 2013).  These 
signals enabled skin conductance level and conductance 
response measurements, capturing both tonic and phasic 
components of sympathetic neuronal activity, 
respectively.  A Gazepoint GP3 high definition (HD) eye 
tracker was mounted to the monitor displaying the 
MATB cognitive task software graphical user interface 
(GUI).  The eye tracker uses infrared (IR) light to 
illuminate the eyes of the participant and a machine-
vision IR camera to resolve the location of the head/eyes, 
pupil diameter, and eye gaze/fixation coordinates.  The 
eye tracker was individually calibrated early in the data 
acquisition session. 

 
Figure 2. Surface Electromyography (sEMG) 

Sensor Locations 
 

 
Figure 1. Faces Pain Scale (Hicks et al., 2001) 
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Study Procedures 

After participants provided written consent, sensors and electrodes were attached in preparation for data collection.  
The disposable electrode pairs for shock delivery were placed first to provide time for equilibration between the 
forearm skin and conductive adhesive.  Next, the sEMG, ECG, and EDA sensors were placed, along with the 
respiration band and headset microphone.  Sensor application took approximately 45 minutes, after which the shock 
stimulation was calibrated using an adaptive staircase procedure (Treutwein, 1995).  Starting from a minimal voltage, 
an experimenter iteratively administered a 100 ms pulse and asked the subject to rate the sensation using the pain scale 
(Figure 1) described previously. The calibration process terminated at an estimate of the highest voltage the subject 
experienced as unpleasant but not painful. 
 
An early step in the data collection protocol was to elicit muscle contractions relating to each sEMG sensor location 
to confirm each sensor’s location and signal fidelity and provide a representative, vigorous contraction for muscles 
targeted by each sensor.  For example, activity was elicited from the sensor on the right forehead (targeting the frontalis 
muscle) by asking the participant to raise their eyebrows to demonstrate surprise.  Although the instructions for 
eliciting facial expressions and other muscle contractions were intuitive and practical, the authors concluded that 
having participants mimic modeled facial expressions would increase consistency in elicited contractions and provide 
a better reference contraction with which to compare spontaneous expressions recorded during MATB Trials.  For 
this purpose, one male and one female model were selected from the Warsaw Set of Emotional Facial Expression 
Pictures (Olszanowski et al., 2015).  This resource provided high-quality photographs of facial expressions receiving 
the highest recognition accuracy among their study participants, with the greatest intensity and purity of the target 
emotions expressed.  Four participants of the present study were presented with PowerPoint slides of joy, disgust, 
surprise, anger, and sadness, with each emotional expression separated by a neutral expression.  They were asked to 
mimic these neutral and emotional expressions for approximately 1 – 2 seconds as each slide was presented, thereby 
generating five emotional expressions separated by neutral expressions.  These expressions did not add appreciable 
time to the recording sessions, and they elicited similar fnsEMG signals across participants.  An example of the 
fnsEMG signals from one study participant (#8) for one 
set of the five mimicked emotional expressions is 
provided in Figure 3. 
 
Participants were trained on the MATB platform using 
written instructions and four training scripts (routines) 
designed to introduce each task.  All other tasks were 
suspended when practicing each task independently.  
They first practiced the Tracking task, learning to steer 
a target circle toward the center of a reticle (cross-hairs) 
with the joystick.  They experienced the harsh buzzer 
sound emitted when the circle drifted beyond the outer 
boundary of the reticle region and felt how the joystick 
could assist in the steering process via the integrated 
motors.  They were not shown how the joystick could 
intermittently steer them off course to maintain 
automation failure surprise.  Participants next practiced 
the System Monitoring task, with instructions regarding 
the normal versus error states for the gauges and lights.  
They practiced correcting the error states and experienced 
hearing the rewarding ding sound when providing correct 
responses and the error sounds associated with missed 
error states (a buzz followed by the announcement of 
“lights” or “gauges”) or false keystrokes for gauge or 
light correction (phone off-the-hook sound).  Tracking 
was suspended while practicing the system monitoring 
task.  Participants then practiced the Communication 
task, learning how to change the radio channel and 
frequency when hearing them announced by the control 

 
Figure 3. sEMG from 7 face and neck locations 
while mimicking the 5 emotional facial expression 
photographs (separated by neutral expressions — 
not shown).  Sensor locations are 1 – 6 and 9 shown 
in Fig. 2.  Photos are from Olszanowski et al., 2015. 



 
 
 

2023 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

I/ITSEC 2023 Paper No. 23235 Page 6 of 12 

tower operator.  They learned that correct radio changes resulted in a ding sound, whereas missed radio requests or 
incorrect inputs resulted in “communication” or “radio error” sounds, respectively.  Auditory feedback was identical 
in training and testing trials.  The final training script showed participants how the MATB tasks would pause every 
35 seconds for a 15-second period, during which time they were prompted to provide an instantaneous self-
assessment (ISA) of task difficulty.  They would hear a recording of “Please report task difficulty” and would respond 
by saying, “This is NGT504, task difficulty is _______”, choosing among five discrete difficulty levels (Very Low, 
Low, Fair, High, Very High).  They learned to press a button on an ISA Unit (see Figure 4), which sent a signal to the 
MP160 unit indicating the selected difficulty level.  They practiced saying the ISA phrase clearly with moderate 
amplitude without rushing or yelling, and having it fall within the 15-second pause in tasks.  Training script completion 
took approximately 28 minutes. 
 

 
Figure 4. Recording Setup Showing a MATB Trial with Photo Insert of the ISA Reporting Unit 

 
After completing the four training scripts, participants completed one practice trial where all tasks were presented 
simultaneously in the usual manner.  Acoustic feedback of correct responses and task errors was also provided, but 
without shock punishment for errors (described below).  Participants were expected to perform at or above a minimal 
performance baseline on the practice trial to qualify for full study participation, which all enrolled individuals 
achieved.  This minimum was scoring 92 or above on a 100-point task performance scale in at least one of seven 35-
second segments in the practice trial.  This threshold was the performance level needed for automatic advancement in 
segment difficulty across consecutive segments in each trial (as described below). It was therefore an important 
performance level for experiencing the dynamic, incremental increase of task difficulty intended to manipulate 
cognitive workload.  Practice trial completion took approximately six minutes. 
 
After the practice trial, participants completed three testing blocks, each consisting of five 350-second trials (see 
Figure 5).  Participants were given short breaks (2 – 4 minutes) between trials (while the data acquisition 
hardware/software and the MATB software were reset) and longer breaks (10 – 22 minutes) between blocks to stretch, 
use the restroom, etc.  Trials were further subdivided into seven segments, each consisting of a 35-second task segment 
and a 15-second ISA pause.  Completion of the three blocks with breaks took approximately 2.5 hours. 
 
Task difficulty was manipulated across segments with the MATB Tracking task difficulty parameters, which 
determine the rate of the target’s (apparently) random drift and the frequency with which the drift direction changes.  
These parameters were held constant throughout each segment. They were incremented from one segment to the next 
within a trial provided the participant had achieved at least 92 points on a 100-point task performance scale in the 
preceding segment, to provide a progressively challenging set of tasks.  (The performance score was based on the 
percentage of time in which the Tracking target was within a pre-determined “in-range” threshold of the targeting 
reticle and was adjusted downward for discrete errors on the other tasks, such as failing to respond to a gauge event 
within a pre-determined time limit or entering an incorrect frequency in response to a communications prompt.)  These 
difficulty parameters were “partially reset” between trials, to the highest difficulty level at which the participant had 
achieved a task performance score of at least 96 in any previous segment in the block, to ensure that the participant 
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started each trial at a manageable level of difficulty without underloading the participant.  The trial difficulty was reset 
to the easiest condition at the beginning of each of the three testing blocks (see “Full difficulty reset” in Figure 5). 
 

 
Figure 5. Recording Session Design 

 
Participants simultaneously performed the three MATB tasks described above within each task segment.  The fourth 
MATB task, Resource Management, was disabled and hidden.  A modified version of the Tracking task used a 
Microsoft Sidewinder Force Feedback 2 joystick to deliver mildly assistive haptic feedback—automatically pushing 
the joystick to steer toward the center of the targeting window when the target drifted beyond a pre-determined 
threshold.  During the testing blocks (i.e., non-training/practice trials), force feedback was also used to simulate 
disruptive automation failures in which the joystick was forced in the general direction of the random Tracking drift 
while shaking violently.  One Communication event, two System Monitoring gauge fault events, one System 
Monitoring light fault event, and two 2-second disruptive autopilot events were scripted to occur in each segment.  
MATB event scripts were generated randomly and differed for all trials and segments but were identical across 
subjects.  These shock windows were independent from trial segments and ISA pause periods and are not represented 
in Figure 5. 
 
During testing blocks, participants were provided with real-time feedback on their task performance through auditory 
feedback and noxious electrical stimuli (i.e., shocks).  Aversive electrical stimuli were delivered 200 ms after harsh 
buzzer (error) sounds.  In order to limit the number and frequency of shocks, each 350-second trial was subdivided 
into 17.5 20-second periods and shocks were limited to occur at most once in each such period. 
 
Data Analysis 

Feature Extraction 
Two broad categories of potential fnsEMG indicators of cognitive workload were considered: baseline muscle tension 
and coordinated motor activity.  Baseline muscle tension was investigated based on the observation that, even at rest, 
individuals typically maintain a minimum level of tension in many muscles to maintain posture.  For example, 
minimum tension is required on the jaw muscle and lip elevators to prevent the mouth and lips from falling open.  
Previous research and the authors’ qualitative observations in exploratory research with the AF-MATB noted that 
some participants appeared to visibly clench their jaws or purse their lips under increased task pressure, suggesting 
that slight variations in this baseline muscle tension are associated with cognitive workload (and perhaps especially 
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with cognitive overload induced by automation surprise/frustration).  This hypothesis was tested by operationalizing 
the notion of baseline muscle tension as short-run minimum EMG amplitude (i.e., the minimum value of the EMG 
envelope over two-second intervals).  Spearman’s rank correlations were computed between this feature (measured 
on each fnsEMG channel) and taskload, task performance, and ISA.  Statistically significant correlations for all 
subjects suggested that short-run minimum EMG amplitude is sensitive to variations in cognitive workload but with 
substantial variations across subjects in terms of which muscles manifested the hypothesized effect.  Put plainly, some 
individuals under increased task pressure tended to clench their jaws, while others furrowed their brows, pursed their 
lips, or increased the muscle tension measured under their chins (possibly pressing their tongues against their teeth). 
 
Facial expressions, such as those associated with emotional responses (including, potentially, emotional responses to 
cognitive workload and automation surprise/frustration), are characterized by idiosyncratic patterns of coordinated 
motor activity across multiple facial and neck muscles.  Other activities, such as chewing and speech, exhibit their 
own idiosyncratic patterns of activity.  Simple, static patterns associated with common emotional facial expressions 
are evident in the fnsEMG envelopes across multiple sensing locations (see Figure 3).  Short-run summary statistics 
(e.g., minimum, maximum, mean, standard deviation, median) were extracted from the fnsEMG amplitude signals 
(i.e., the envelopes of the “raw” fnsEMG signals) to facilitate recognition of such coordinated activity.   
 
Apart from fnsEMG, the following ten variables were derived from the physiological signals: respiration rate, the 
Index of Cognitive Activity (measured in each eye), heart rate (as measured by the mean inter-beat interval), heart 
rate variability (as measured by inter-beat interval standard deviation), EDA mean, EDA standard deviation, and the 
mean, standard deviation, and 85th percentile of the first derivative of EDA.  The Index of Cognitive Activity is a 
pupillometric indicator based on using wavelet analysis to tease apart light reflex (regular oscillations in pupil size 
caused by minute variations in the amount of light entering the pupil) and dilation reflex (large, rapid dilations 
associated with cognitive activity, usually followed by more gradual contractions) (Marshall, 2002).  These ten 
physiological variables and the short-run fnsEMG statistics described above were then used to train a data-driven 
cognitive workload model, as described in the following subsection. 
 
Predictive Cognitive Workload Modeling 
Machine learning was used to fit a non-parametric model to data collected from each subject in Trials 1 – 10, and then 
each of the resulting models was evaluated on the remaining held-out portion of each subject’s dataset (Trials 11 – 
15).  The machine learning problem was cast as one of supervised learning.  Labeled exemplars consisted of feature 
vectors extracted from the physiological signals, labeled as either “in-range” or “out-of-range,” depending on the 
status of the participant’s Tracking task targeting reticle at the corresponding time point.  These class labels were 
chosen because Tracking task performance provided a suitable high-resolution proxy for cognitive workload in our 
experimental setup.  Exemplars covered task segments at an 8 Hz temporal resolution.  The features were the 
physiological variables described in the previous section.  Models were trained separately for each participant to 
account for individual variation, particularly idiosyncratic emotional responses manifested in fnsEMG.  Models were 
also trained without the fnsEMG variables to assess the benefits of adding fnsEMG. 
 
The eXtreme Gradient Boosting (XGBoost) algorithm (Chen et al., 2015), a derivative of gradient-boosted decision 
trees (Friedman, 2002), was chosen as the machine learning algorithm for this experiment.  This algorithm builds an 
ensemble of shallow decision trees over a series of iterations.  The ensemble’s trees are an intuitive choice for 
representing coordinated motor activity, corresponding to the simple decision rules that humans might postulate based 
on a handful of amplitude thresholds (see the example in Figure 6).  They also have the advantage of being easy to 
interpret and naturally estimating the posterior class probability 
distribution. 
 
XGBoost adds a new decision tree to the ensemble at each 
iteration, fitting it to the (pseudo-) residuals of the ensemble 
constructed throughout previous iterations.  The pseudo-residuals 
are based on the gradients of a “loss function”, chosen so that each 
iteration (greedily) moves the ensemble closer to a local optimum 
in the space of models.  In this case, the model’s “in-range” and 
“out-of-range” class probabilities were interpreted as estimates of 
conditional task error probabilities; therefore, log loss (also known 

 
Figure 6. Example Decision Tree (simplified) 
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as binary cross-entropy; see Equation 1) was chosen as the loss function. 
 

−
1
𝑁$𝑦! log 𝑝! + (1 − 𝑦!) log(1 − 𝑝!)

"

!#$

 (1) 

 
Since task difficulty only increased when participants met a 92% performance threshold, exemplars of the “out-of-
range” class were relatively scarce.  This class imbalance was addressed using the Synthetic Minority Oversampling 
Technique (SMOTE) to avoid model bias.  That is, exemplars of the minority “out-of-range” class were synthesized 
by interpolating between randomly selected minority exemplars and their nearest (minority class) neighbors (Chawla 
et al., 2002).  Augmenting (or over-sampling) the training dataset in this way results in a balanced dataset and 
counteracts the tendency for the fitted model to exhibit a preference for the majority class that would otherwise occur 
with imbalanced training data.  Over-sampling was only performed during model fitting—the model was evaluated 
against all observations in the test dataset (i.e., Trials 11 – 15), with their natural, unbalanced distribution of class 
labels. 
 
Two primary techniques were used to avoid excessive model variance (or “over-fitting”), in which a fitted model 
effectively “memorizes” the training data and fails to generalize well to new data.  First, the XGBoost “shrinkage” 
parameter (also called the “learning rate”) was set to a low value; this parameter scales the weights in the decision tree 
added in each boosting iteration, thereby making learning more conservative with lower values of the shrinkage 
parameter.  Second, sub-sampling (also known as “bagging” or stochastic gradient boosting) was employed—each 
training iteration was given only a small random sample of the (resampled, balanced) training set.  The parameters 
associated with these techniques (i.e., shrinkage and sub-sample ratio) and the number of training iterations were tuned 
with grouped k-fold cross-validation.  The first 10 Trials were first split into a “training dataset” (Trials 1 – 5 and 7 – 
9) and a “calibration dataset” (Trials 6 & 10).  The training dataset was sub-divided into two roughly equal “folds” so 
that samples from a given trial never appeared in both folds. Then an XGBoost model was fitted on each of the folds 
and evaluated on the other, left-out fold.  The parameters that led to the best average performance on the left-out folds 
were then used to train a model on the subject’s full training dataset.  Finally, the class probability estimates for each 
subject were calibrated based on the calibration dataset with Kull et al.’s beta calibration method (2017), resulting in 
a calibrated predictive model for each subject. 
 
After model training, each subject's fitted, calibrated predictive model was evaluated on the five held-out trials of the 
subject’s data (Trials 11 – 15).  Since the purpose of the predictive model is to produce an estimate of cognitive 
workload and not actually to predict task errors, the model was not evaluated based on accuracy or related metrics 
such as balanced accuracy, sensitivity, or specificity on the “in-range” / “out-of-range” classification task.  Instead, 
the model was evaluated based on two criteria: 1) the correlations between the model’s segment-level mean estimated 
class probabilities (i.e., the average of the model’s probabilistic outputs for all feature vectors in the 8 Hz time series 
for each segment) and task difficulty (the independent variable), self-reported task difficulty (ISA), and overall task 
performance; and 2) the quality of the model calibration.  The model was also compared to one without fnsEMG 
features. 
 
Model calibration measures how well a probabilistic model’s estimates accord with the observed frequency of events 
at each estimated probability level—in this case, the model’s “out-of-range” probability estimates accorded with the 
observed frequency of “out-of-range” events at each estimated probability level.  When estimated event probabilities 
are plotted against the observed frequencies of events, as in the calibration plots below (Figure 7), a perfectly calibrated 
estimate would appear as a line along the y=x diagonal.  A well-calibrated probabilistic estimate of performance errors 
in the Tracking task can be interpreted as an estimate of cognitive workload since increases in cognitive workload 
ultimately drive the physiological indications that errors are more likely to occur.  These physiological indications are 
present under heightened cognitive workload, even when errors do not occur. 
 
 
RESULTS 

Segment-level mean model estimates were weakly rank-correlated (Spearman’s r) with self-reported task difficulty 
and were weakly negatively rank-correlated with performance; these correlations were statistically significant 
(a=0.05) (see Table 1).  Model estimates also exhibited a weak positive correlation (Pearson’s r) with the Tracking 
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task difficulty parameter, a moderate positive correlation with self-reported task difficulty, and a weak negative 
correlation with performance; all correlations were statistically significant (a=0.05) (see Table 2).  Notably, the 
correlations were stronger between mean model estimates and self-reported task difficulty than with task performance 
scores.  This relationship is consistent with the model functioning as an estimator of cognitive workload rather than a 
predictor of task performance despite being fitted to data labeled based on performance.  However, it is not surprising 
and is indeed by design, as the model’s physiological input features have a much more direct causal relationship with 
cognitive state than with task performance.  The segment-level mean model estimates of identically trained models 
without access to the fnsEMG features exhibited weaker correlations (e.g., r=0.114 and r=0.124 for self-reported task 
difficulty), suggesting that fnsEMG features improved the model estimates. 
 
Table 1. Spearman’s Rank Correlations (r) between Predictive Model Estimates and Other Variables 
 

Variable r p value (one-tailed) 

Tracking task difficulty 0.0710 0.095 
self-reported task difficulty 0.269 2.0 x 10-7 
performance score -0.210 4.5 x 10-5 

 
Table 2.  Pearson’s Correlations (r) Between Predictive Model Estimates and Other Variables 
 

Variable r p value (one-tailed) 

Tracking task difficulty 0.105 0.026 
self-reported task difficulty 0.303 5.2 x 10-9 
performance score -0.116 1.4 x 10-3 

 
The calibration plots in Figure 7 show non-parametric estimates of model calibration on the calibration data (Trials 6 
& 10; left) and the testing data (Trials 11 – 15; right).  Since the models’ estimates were calibrated to the calibration 
data, the quality of model calibration on the calibration data is nearly perfect, as expected.  The test set calibration plot 
shows that the fitted models were also well-calibrated on the held-out test data—the observed frequencies of Tracking 
“out-of-range” events for each range of model estimates were entirely consistent with the probabilistic estimates 
themselves, resulting in a plot near the ideal y=x diagonal.  The models were somewhat over-confident in probability 
estimates below approximately 8% (i.e., “out-of-range” errors occurred slightly more frequently than predicted by the 
model estimates in that range), represented visually by the points plotted above the ideal line, and were somewhat 
under-confident in estimates over 8% before diverging more significantly for the relatively small number of model 
estimates over 15%, represented visually by the deviation away from the ideal line for those estimates.  Histogram 
bars superimposed on the calibration plot show the binned count of predicted probabilities. 

 
Figure 7. Predictive Model Calibration Plots 
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DISCUSSION 

Taken as a whole, the results of this study support the technical merits of an approach to cognitive workload estimation 
based on a complement of physiological measures that can, at least in principle, be collected from unobtrusive 
wearable sensors in a variety of practical applications.  The study confirmed the sensitivity of fnsEMG to taskload 
variations in a complex set of laboratory tasks modeled after real-world piloting tasks.  It also established the technical 
feasibility of predicting cognitive workload from a combination of the physiological measures studied as taskload 
varied within the same set of laboratory tasks.  Since all measures studied can be computed from physiological signals 
in real time, this approach to cognitive workload estimation has the potential to be used in real-time applications, such 
as adaptive automation (e.g., intelligent tutoring systems that adapt their training based on trainees’ estimated 
cognitive workloads). 
 
The present study has several limitations that must be acknowledged and addressed before fnsEMG can support 
cognitive workload estimation in real-world settings; these limitations point the way to potentially fruitful directions 
for future inquiry.  First, the study focused on a particular set of artificial (though realistic) tasks.  To ensure its 
generality, the cognitive workload estimation approach must be validated in a broader range of tasks, including real-
world tasks and work environments.  Likewise, although the shock consequence for task errors likely raised 
participants’ engagement and concern for performance, as we have seen in our prior experiments with the enhanced 
MATB, the impact of performance feedback and error punishment must be systematically studied to appreciate its 
impact on physiological responses to cognitive workload.  Second, the laboratory study employed a set of relatively 
encumbering, high-fidelity physiological sensors that required approximately 45 minutes for their application.  Further 
data analysis could indicate options for reducing sensor count without loss of predictive model strength, and new 
flexible sensor technologies (for sEMG, EDA, ECG, etc.) could hasten the application process and reduce sensor 
encumbrance without sacrificing fidelity (Gao, Parida, and Lee, 2020).  Even less obtrusive sensors may be necessary 
for many practical applications, and future research is needed to explore whether robust estimates of cognitive 
workload can be derived from commercially available wearable sensors (e.g., wearable pulsometers for sensing 
HR/HRV) despite lower signal information content and/or fidelity.  Alternative measures that capture similar 
information should also be considered; for instance, in many settings, it may be more practical to infer emotional 
responses from imagery than it is to measure these somatic responses directly with fnsEMG—facial (micro-) 
expressions, pupillometry, skin temperature changes, and even heart/respiration rates can be captured from visible and 
infrared imagery (including high-speed motion imagery).  Future research should also investigate whether this 
limitation can be offset by exploiting additional objective predictors, including measures of behaviors and/or work 
context that may predict cognitive state regardless of the nature or direction of any specific causal relationship. 
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