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Abstract—Integrated System Health Management (ISHM) 
technologies are mission-critical for deep space exploration. 
Space habitats are complex systems, made up of several 
subsystems such as Life Support, Communications, Data 
Acquisition, Thermal Control, Environmental Monitoring, and 
Electrical Power Systems. Deep space missions will face 
increased latency in communications with Earth. As such, it is 
critical that deep space aircrafts and habitats be capable of 
detecting anomalies early enough to mitigate the effects of 
communication delays. It would also be beneficial if the space 
crew had the tools to not just detect anomalies but also to help 
them resolve them without waiting for assistance from ground 
control. Traditionally, model-based reasoning techniques have 
been effective in monitoring the health of such operations, but 
the rising demand for rapid fault detection and response in 
deep-space habitats calls for autonomous monitoring software 
that is agile, scalable, and can respond to previously unseen 
events. Data-driven approaches using machine learning 
techniques can provide the ability to detect novel anomalies and 
to evolve over time. However, they are not as effective at 
generating explanations or tracing root causes as rule-based 
modeling systems. 

In this paper, we describe a case-based reasoning (CBR) 
approach to developing ISHM tool that combines the data-
driven approach with a method for diagnosing and explaining 
them. CBR is an artificial intelligence (AI) technique that aims 
to solve problems by analogy. The system, Anomaly Detection 
via Topological feature Maps (ADTM), uses self-organizing 
maps (SOMs) as an unsupervised learning approach for 
modeling each individual case. ADTM’s case-base models 
represent knowledge about different operational modes, 
including faults, as individual cases. The design of appropriate 
indexing mechanisms is crucial to the effectiveness of a case-
based model. We describe two different approaches to case-base 
indexing and retrieval and compare their performance on a data 
set from a simulation of a CubeSat.  
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1. INTRODUCTION 
Manned deep space travel is becoming increasingly 
imminent, with multiple organizations working to accelerate 
the timeline towards this future. NASA is planning a crewed 
landing on Mars within the next ten years. The Artemis 
mission, a step along the path to manned missions to Mars, is 
already underway and has the goal of humans landing on the 
Moon by 2024 [1]. SpaceX also has outlined an ambitious 
plan for crewed landing on Mars [2].  

Whether the destination is Mars or the Moon, these planned 
missions provide significant challenges that are currently 
being addressed. Integrated System Health Management is 
one such area. Space travel places tremendous risks on 
human life and solutions are being developed to help manage 
and mitigate them. Space habitats are made up of a complex 
web of systems—including but not limited to Life Support, 
Communications, Data Acquisition, Thermal Control, 
Environmental Monitoring, and Electrical Power Systems. 
Astronauts’ lives depend on the health of these subsystems. 
There is a critical need to develop tools to help future 
astronauts monitor and maintain the health of their habitats, 
and to handle known and unknown anomalies with limited 
and access to ground staff. 

Model-based reasoning (MBR) is often used to detect faults 
and diagnose their causes by encoding the schematic 
information into a model of the subsystem being monitored, 
which includes the components (including sensors), their 
normal behavior and known abnormal modes of behavior, 
and the connections between components.  During normal 
operations, the model is used to simulate the current 
subsystem behavior and compare the simulated sensor output 
values to the actual sensor outputs.  Significant deviations are 
used to detect faults.  Then the model is used to reason about 
the components that are faulty and most likely to lead to the 
currently deviating sensor values.  The set of possible faults 
(possibly including sensor faults) which explain the sensor 
values is the MBR diagnosis engine’s output.  The process of 
using the model to diagnose failures is considered somewhat 
analogous to the reasoning an engineer uses when using a 
schematic to try to diagnose the fault.  The process can be 
made more efficient by various heuristics used by spacecraft 
engineers to quickly diagnose problems and include 
knowledge of which components are most likely to fail (and 
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how, e.g., mechanical relays tend to fail open while solid state 
relays tend to fail closed) and/or be the most likely 
explanation for certain types of sensor values.  Because 
models encode the effects of contextual factors, they can be 
applied reliably across contexts. MBR thus requires 
knowledge engineering efforts to encode these interacting 
effects. Furthermore, reasoning with complex models can be 
computationally expensive and this can render them 
unsuitable for use in ongoing, real-time monitoring of system 
health. 

Data-driven approaches using machine learning techniques 
overcome the problem of laborious, manual model 
development and computational inefficiency. Unsupervised 
approaches like clustering can automatically models patterns 
of nominal behavior from unlabeled data and monitor real-
time telemetry for deviations from these behaviors [3]. 
Unsupervised learning has been shown to be very effective at 
detecting anomalies that have never been seen before. 
However, these approaches cannot effectively trace the root 
causes for an anomaly for a variety of reasons: 1. Not having 
the information (i.e. labels) needed to discriminate between 
faulty and nominal behavior, and 2. Not having any insights 
into un-instrumented system components. The latter is an 
important point; not every component of a system will be 
instrumented to provide telemetry and thus the models will 
not have visibility into significant portions of the system. 

We describe and demonstrate an approach that combines a 
data-driven behavior modeling with case-based reasoning 
(CBR) to address these concerns. CBR is a branch of 
Artificial Intelligence that is concerned with reasoning by 
analogy with past experiences. It provides a way to leverage 
data-driven approaches and augment them with additional 
information to guide troubleshooting and repair/mitigation.  

 
2. RELATED WORK 

The focus of this work was on unsupervised anomaly 
detection for discrete sequences of subsystem data using 
SOM-based models trained on nominal subsystem behavior. 
Similar approaches to anomaly detection have been applied 
in existing research. Principal Component Analysis has been 
a widely used algorithm for anomaly detection across a wide 
breadth of applications, including diagnosing offshore wind 
turbines [4], cyber networks [5], and space telemetry and 
telecommunications [6, 7]. Furthermore, Gaddam et. al. [8] 
used a supervised approach to anomaly detection by 
combining k-means clustering with ID3 decision tree 
classification. The classification decisions across the clusters 
and decision trees were combined for a final decision on class 
membership. Naik et. al. [9] use supervised a machine 
learning approach to not just detect but also predict anomalies 
in spacecraft behavior using telemetry data. The main 
challenge for such an approach is access to labeled fault data, 
which can be limited in the space domain. 

Iverson et al. [10] use k-means and density-based clustering 

techniques for system monitoring in its IMS and ODVEC 
software systems. Similarly, Gao, Yang, and Xing used a K-
Nearest-Neighbor (kNN) approach for anomaly detection of 
an in-orbit satellite using telemetry data [11]. SOMs have 
been used for fault detection and diagnosis in several 
industries. Datta, Mabroidis and Hosek combine SOMs with 
Quality Thresholding (QT) to refine the resolution of clusters 
learned by SOMs within the semi-conductor industry [12]. 
Similarly, Tian, Azarian, and Pecht train a SOM on nominal 
cooling fan bearing data but use a kNN approach in place of 
the more traditional Minimum Quantization Error (MQE) to 
assign test data anomaly scores based on their distance to 
centroids learned by the kNN model [13]. Cottrell and 
Gaubert apply anomaly scores to aircraft engine test data 
using the MQE approach that we have used in this paper and 
leverage the visualization capabilities of SOMs to visualize 
the transition states of engines from run-to-failure datasets 
[14].  

ADTM contributes to this existing bed of clustering research 
by combining a Self-Organizing Map with a Case-Base 
Reasoning (CBR) approach that assists end-users in 
responding to detected anomalies. It does so by retrieving 
records of similar past behavior with pertinent information 
about the anomaly and, when relevant, past troubleshooting 
activities.  

Such assistance mirrors the role of Mission Control during a 
failure onboard a spacecraft. In such a situation, teams of 
scientists and domain experts on the ground help astronauts 
to quickly respond to a failure to mitigate further risk. They 
do so by drawing upon years of experience with the systems 
onboard the spacecraft as well as familiarity with past 
anomalies, either from test scenarios or real-time failures. 
ADTM’s CBR module aims to mirror such remediation 
assistance in the context of deep-space exploration, where 
crew dependency on Mission Control is no longer an option 
due to significant communication delays. 

 
3. THE ADTM APPROACH 

ADTM utilizes Self-Organizing Map (SOM) Neural 
Networks to model system behavior from sensor data in an 
unsupervised fashion. Also known as a Kohonen map, a SOM 
is a two-layer artificial neural network (ANN) that uses 
unsupervised learning to produce a low-dimensional 
representation of the training samples [15]. The goal of 
training a SOM is to transform incoming inputs to a 1- or 2-
dimensional map in a topologically ordered fashion such that 
points that are close together in the higher-dimensional input 
space are close together in the lower-dimensional output 
space as well.  This mapping allows ADTM to detect patterns 
of normal or anomalous behavior in a system, as different 
types of behavior map to different output units. At the end of 
training, each input vector is associated with one or more 
output neurons, which therein become ‘implicit cluster 
centers’ akin to ‘centroids’ in the k-means algorithm.   
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A SOM maps N-dimensional weight vectors to a (k x k) lattice 
of output neurons Oi that are fully connected to the input layer 
(see Figure 1). Each neuron Oi is associated with a N-
dimensional weight vector wi and represented by a two-
dimensional coordinate of its position in the grid, e.g., Oi = 
(x, y). 

 

Figure 1: SOM architecture 
Like the clustering technique k-means, the value of k is a 
parameter that is tuned during model validation. Unlike k-
means, however, the clusters learned during SOM training 
are topologically ordered through a competitive learning rule. 
That is, each input vector xi Î X is compared with the N-
dimensional weight vector { w1j, w2j, … , wNj } associated with 
each output node Oj. The closest Oj is chosen as the winner, 
or ‘best matching unit’ (BMU), where ‘close’ is defined by 
some distance function (e.g., Euclidean distance). Each BMU 
is associated with a neighborhood of related neurons whose 
weight vectors are also updated, though to a lesser extent 
proportional to their distance to the BMU in the 2D output 
lattice. A common choice of ‘neighborhood function’ h(j,k) 
that computes the relation between two neurons Oj and Ok is: 

h(j,k) = 𝑒!
!

"d($)"                                   (1) 
where k¹ j and D is the lateral distance between the neurons 
Oj and Ok  in the output grid, and d(t)	is the time-dependent 
exponential decay. 
 
Together, the update rule for the BMU is:    

Dwji = a(t) h(i,j)( xi – wji)                          (2) 
given 

|| wj – xi || £ || wk – xi || for all j¹ k                   (3) 
where xi is the input vector and a(t) is the learning rate. 
 
We can think of this learning rule as pulling the weight vector 
wj associated with the BMU towards the input vector xi. All 
neurons in the same ‘neighborhood’ are also dragged along, 
but to a lesser extent.  

Once trained on nominal data, the SOM maps new target data 
to the most similar weight vector of an output neurons using 
the same process used during the training cycles. The 
winning neuron is again referred to as the Best Matching Unit 
(BMU). The difference between the BMU’s weight vector 
and the target point is the Minimum Quantization Error 
(MQE). We can interpret the set of weight vectors associated 
with each neuron as a condensed representation of the space 
of states seen in the training data. Thus, the MQE reflects the 
SOM’s ability to categorize new input data into one of these 

known states. A low MQE implies that the target sample has 
characteristics very similar to a sample seen during training. 
The lower the MQE, the greater the similarity between the 
target observations and the SOM of comparison. ADTM uses 
MQE thresholds to determine to detect anomalous system 
behavior. Points in the telemetry that exceed this threshold 
are flagged as anomalous. The threshold is tuned using a 
subset of the data reserved for tuning parameters. The details 
of this approach are described in [16]. 

Unsupervised learning approaches have the advantage that 
they do not need labeled examples, thus eliminating the need 
to manually label data. Furthermore, these learning 
approaches can successfully detect previously unknown or 
unanticipated anomalies. Models learned from a 
representative sample of nominal behavior can effectively 
detect deviations or off-nominal behavior [16]. This is 
beneficial for modeling complex systems like deep-space 
exploration habitats where unanticipated anomalies can occur 
and lead to serious life-threatening consequences.  However, 
identifying an anomaly is just the first step; it needs to be 
followed up by localization and tracing of the anomaly’s 
causes in order to handle the situation [17]. 

Models developed using unsupervised learning can be 
utilized for localizing the features most associated with 
observed anomalies (as discussed in [16]). That still leaves 
open the problem of tracing the causes of faulty behavior and 
finding a fix. Our solution generalizes the approach by 
modeling other known operating regimes, including fault 
regimes, using the same SOM-based approach above. It is 
based on the observation that SOM-based modeling does not 
necessarily have to be limited to the nominal operating 
regime. It can be used to model any operating regime using 
data solely representing that regime. Thus, when data from a 
system operating under a known fault is available, we can 
build a SOM for that condition and identify when a system is 
exhibiting that fault using the same SOM-based distance 
criteria as before. This allows us to detect previously known 
faults by comparing them to their respective SOMs, as well 
as novel ones when none of the models for known conditions 
exactly match the current behavior. For novel anomalies, we 
can find examples of known faults that are similar, thus 
providing astronauts with a tool to troubleshoot by 
comparison to analogous conditions.  

This insight has led us to the design of ADTM to use a case-
based reasoning (CBR) approach, where a system is modeled 
as a case-base of SOMs for different known operating 
regimes. Like supervised learning, this requires labeled 
examples of multiple conditions. However, there are some 
key differences: 

1. Like supervised learning, the data for one operating regime 
can serve as negative labeled examples for another, assuming 
there are no overlaps between the faults in the data provided. 
However, unlike supervised learning, we do not need all 
possible operating conditions.  
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2. This also means that you can still have robust models with 
limited data. If all you have is data for nominal operations, 
you can still build a robust anomaly detection and localization 
model.  

3. It also supports incremental modeling, i.e. as new 
anomalies are discovered, they can be modeled and added 
incrementally to the case-base without having to retrain the 
other SOMs. 

An added, significant benefit is that cases can include 
amplifying annotations to help users trace root causes by 
examining un-instrumented components. The annotations 
also help preserve institutional memory from previous 
episodes of similar behavior by including information on 
tests conducted and steps taken to resolve the problem. 

Case-based modeling in ADTM 

ADTM uses cases to represent different operational regimes 
for a system. A particular emphasis is on modeling known 
faults as cases. The core attribute of a case is a SOM trained 
on the data representing the corresponding operating 
condition. The SOM also serves as the index for the case. A 
case will include other pertinent information such as a 
description of the operating condition, troubleshooting steps 
and recommended actions. Each case also contains a label to 
say if it represents a nominal or a faulty condition.  

CBR is an artificial intelligence (AI) technique that aims to 
solve problems by analogy. With this approach, automated 
systems solve new problems by retrieving solutions to 
previous similar problems and altering them appropriately to 
meet current needs.  The field of CBR focuses on developing 
intelligent and efficient techniques for defining similarity 
metrics, retrieving cases based on these metrics, and 
modifying similar solutions to fit the target problem.  The 
underlying inspiration is the analogical reasoning mechanism 
that humans often use to solve novel problems. While a 
problem itself may be novel, analogical reasoning helps 
situate it in the context of similar prior experiences and to 
discover a new solution by adapting prior solutions [18]. 

CBR consists of the following basic four steps: 1. Retrieving 
a set of closest matching cases using some similarity metric, 
reusing the information in the retrieved cases to solve the 
problem, revising the prior solution if necessary to solve the 
current problem, and retaining the parts of the current 
experience for future problem solving. Defining the 
mechanisms for indexing and retrieving similar past 
experiences from the case-base, including developing an 
appropriate similarity metric, is crucial aspect of this 
modeling approach. 

In an ADTM model, a case represents an operating mode, 
nominal or faulty, of the system.  The retrieve operation will 
find the most similar operating condition by using the 
associated SOM as the index. Once found, the system reuses 
the matching cases by presenting to the user the information 

associated with the case, including information pertinent to 
diagnosing and fixing the problems. Sometimes a matched 
case will be similar enough to the target problem that its 
solution can be reused without modifications. In other cases, 
the information from the reference case will help the users 
develop a revised solution on their own. The revised solution, 
along with a new SOM trained on relevant data, becomes a 
new case for the model. This is the retain phase of CBR. 
While human effort is still required to understand and solve 
truly novel situations, access to similar prior reference 
situations provided by the CBR approach will assist users in 
applying their analogical problem-solving skills to find a 
solution more effectively. This new knowledge then becomes 
a part of system memory and can be reused in the future using 
the retrieve mechanism. Thus, CBR can support active 
learning. 

Adding a new case involves training a new SOM for the 
sensor data covering the duration of the episode and adding 
supporting details about diagnosis and mitigation. In case the 
new episode is marked as a variation of an existing case, the 
system will merge the two by retraining the associated SOM 
with the new data and updating the supporting information. 
Thus, case-based reasoning enables an easy extension of the 
model based on new observations. The initial case base for a 
system will consist of a small set of cases representing 
nominal operations as well as known anomalies. This will 
grow over time as experiences build up. The ADTM system 
is designed to include a user-facing tool to facilitate creating 
and updating the system model. 

CBR retrieval using SOMs 

Our initial implementation used SOMs as the similarity 
index, using the following algorithm: 

1. Calculate the MQE for all the data points in the 
target telemetry stream against the index SOMs for 
each of the cases in the case base. 

2. Classify each data point as Anomaly/Not Anomaly 
by comparing its MQE relative to the index SOM 
against a tuned threshold for the case [16]. 

3. The similarity of the data stream to a SOM is the 
number of points in the data set classified as NOT 
ANOMALOUS with regard to that SOM. 

Section 4 reports the results of using CBR using this indexing 
scheme to identify faults from new telemetry.  

The ultimate purpose of ADTM modeling is to analyze real-
time sensor telemetry generated within a spacecraft or habitat 
to detect anomalies as soon as they occur and alert users. 
ADTM’s case-base model allows for rapid detection of 
anomalies. However, a case-base is likely to have a large 
number of cases. Comparing incoming telemetry data in real-
time to the entire case-base for every time segment of interest 
could be prohibitively expensive computationally. On the 
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other hand, it is important to detect signs of anomalies at the 
earliest to give the crew the most amount of time to respond.  

We have developed and tested a technique for real-time 
monitoring of real-time data that balances these two 
competing criteria. The algorithm works as follows: 

1. Batch_Size = k (Batch_Size is the number of data 
points from the incoming telemetry that         
will be analyzed as a batch. k >=1) 

2. Current_Model=Nominal (If there is more than one 
nominal operating mode represented in  
the case-base, any one of these may be selected) 

3. For every new batch of data of size k 

3.1 Measure model drift relative to Current_Model 
Model_Drift = Number of points flagged as 
anomalies using MQEs derived from 
Current_Model 

3.2 If Model_Drift>Threshold*Batch_Size 
(Threshold is a configurable parameter) 
New_Model = Result of performing CBR retrieval 
to get a new model to match the  current batch of 
data 

3.3 Current_Model=New_Model 

The algorithm selects a model that is most similar to the most 
recent batch of data that was analyzed. This model is retained 
for subsequent batches, unless a significant drift is detected. 
Drift is measured by the number of anomalous points in the 
current data batch relative to the current model. If this drift is 
higher than a threshold, the ADTM analyzer is triggered to 
perform a full search with the case-base to find a case that is 
a closer match. This is retained as the current model going 
forward. This process is repeated as long as there is new 
telemetry coming in. 

This method addresses two issues: the computational cost of 
searching the case-base and controlling for noisy behavior. 
As stated earlier, comparing a data point to a SOM model is 
an expensive operation. For example, for a SOM with 100 
nodes, comparing a datapoint against a SOM requires 100 
vector operations. Doing a full case search for a datapoint 
multiplies this number by the total number of cases. 
Maintaining a current model and comparing incoming data 
points reduces number of full case searches, assuming that 
the system behavior data is not changing too rapidly. 
However, this advantage may be lost if the data being 
analyzed is noisy. The Batch_Size and Threshold parameters 
control for noisy behavior and allow ADTM to perform a full 
case-retrieval only when there is sufficient evidence for a 
change in operating regime. However, a large Batch_Size 
increases the computational cost of comparisons to 
Current_Model (which is itself a SOM comparison) and can 
also lead to over-smoothing, where genuine behavior 

transitions are missed. In our experiments, we have found a 
Batch_Size of 10 and a Threshold of 0.1 substantially reduces 
the number of full case retrievals while maintaining high 
accuracy of case identification. However, the choice of these 
parameters will depend on the system being modeled and 
must be tuned for each system. 

Using Signature Vectors for faster case retrievals 

To reduce the data analysis time, we have investigated other 
approaches to efficient matching and retrieval of cases. One 
is to use a signature vector as an alternative Case-Base 
Reasoning (CBR) indexing function. Our preliminary 
experiments (Section 4) show comparable performance to the 
SOM indexing function we have been using. Performing 
CBR look ups with a signature vector reduces computational 
and memory complexity of the indexing operation. Using a 
SOM as a case-index requires N vector operations for to 
compare a single data point to a single case, where N is the 
number of nodes in the corresponding SOM. Using a 
signature vector, on the other hand, requires only a single 
vector operation, leading a reduction in computational cost 
by a factor of N. Even for small SOM sizes such as a network 
with 10 nodes, using a signature vector can lead to a ten-fold 
increase in computational efficiency for case retrievals. We 
are experimenting with a few variations of the technique, but 
the basic principle is the same. We train a SOM to model all 
nominal behaviors. Then to classify new data, we calculate 
the feature deviation of the new data from the SOM’s k 
BMUs. This calculation gives us the contributions of each 
feature to the MQE, essentially indicating which features are 
most different from and most similar to known nominal 
behavior represented in the SOM. We construct signature 
vectors by concatenating feature deviation with the average 
weight of the k BMUs. The motivation behind this 
construction is that because the feature deviation is created 
with respect to the weights, the deviations themselves might 
be ambiguous without the context from which they were 
created. More intuitively, the weights of the SOM capture 
different nominal behaviors, it is important to know what 
nominal modes/conditions we are deviating from to 
understand what is going wrong.  

In the approach described previously, ADTM’s case-base is 
constructed by training a SOM for each operating condition 
using associated training data. For the signature vector 
approach, a SOM is created the nominal operating condition 
(one condition is chosen randomly if there are multiple 
nominal operating conditions represented in the data). The 
case for each operating condition is then constructed by 
deriving a case signature vector using the training data for 
that condition. A case signature vector is simply the average 
of the signature vectors for all data associated with that case. 
We also keep track of the maximum distance a signature 
vector associated with the case is from the case signature 
vector. Thus, under this approach, the case-base is a 
collection of cases, one for each distinct operating condition 
in the training data, where each case is indexed by its case 
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signature vector that represents the most similar reference 
behavior in the SOM and the cases deviation from it. All the 
other aspects of a case, i.e. additional annotations, are 
maintained as before. 

To retrieve a case for a new data point, the algorithm 
computes the signature vector relative to the reference SOM 
and compares it to the case-signature vectors for each case. 
The vector distance is the similarity metric used to retrieve 
the closest matches. Note that if the distance to a case 
signature vector is greater than the maximum distance vector 
for the case, the case is excluded from the list of matches. 
Thus, it is possible to return no matching catches, indicating 
that the new data represents a novel condition. To label a 
batch of data, the algorithm labels each data point as 
described and assigns the most commonly occurring label to 
the entire batch.  

 
4. ADTM PERFORMANCE STUDIES 

We have tested ADTM’s approach on data from a range of 
systems, both simulated and real. We compare the 
performance of the CBR approach using the two indexing 
mechanisms described above. Note that these experiments 
did not utilize the real-time analysis algorithm described 
earlier and instead treated the tested data for each condition 
as a single batch. 

Data Description 

We validated the performance of ADTM’s case-based 
analysis on data from a simulation of a CubeSat (named 
“LabSat”), originally designed after the Ionospheric-
Thermospheric Scanning Photometer for Ion-Neutral Studies 
(IT SPINS) project to study the nocturnal ionosphere. We 
used this dataset because it had the greatest number of 
operating conditions and fault conditions represented. The 
LabSat was subdivided into three circuit boards. Board 1 was 
designated for power generation and storage (solar array 
simulators and batteries), while Boards 2 and 3 had redundant 
regulators and loads consuming power from Board 1. The 
system is connected to software that enabled us to insert a 
variety of hardware faults. We collected nominal data from a 
15-minute run of the LabSat across all three boards, with 
telemetry collected once per second. We also generated data 
for a total of 5 anomalous conditions across the three boards. 
Note that a single fault condition generated data for all three 
boards. However, the fault often introduced anomalies in the 
measurements of only a single board, while remaining 
nominal for the rest of the boards. Therefore, our data set 
consisted of a total of 18 different operating conditions, of 
which 8 represent faulty conditions. Furthermore, of the 8 
anomalous cases, only 6 could be considered similar to each 
other in that one could be considered a progression in severity 
of another. The other 2 anomalous cases were of novel and 
not similar to any of the other anomalies. 

Experimental Procedure 

Each data set was split into a training set and a test set (using 
2/3-1/3 split for training and testing respectively). The case-
bases were created as described in the previous sections using 
the training data sets. We created a case-base for each board. 
This resulted in a case base with six cases for each board. 
Once the case base was built, the test set for each of the six 
conditions was compared to the case base to find the closest 
match using the similarity metrics described above. 

The preprocessing step consisted of standardizing the data 
using decimal scaling. The nominal training set was scaled to 
lie in the range -1.0 to +1.0. Data for all other conditions were 
scaled relative the nominal training data. There were no 
instances of missing values in the entire data set. 

We considered two cases: 

1. When the test data is an instance of some condition 
that has been seen before. In this situation, it is 
desirable CBR include the prior case in its list of 
retrieved cases. 

2. When the test data represents an instance of some 
condition never seen before. In this situation, it is 
desirable that the CBR include a prior case that is 
similar to the new data. In both situations, it is 
desirable that CBR excludes dissimilar cases from 
its list of matches. 

The effectiveness of the CBR retrieval can be measured by 
whether the list of similar cases retrieved contains an exact 
match from past experience when it exists, whether it 
contains other known similar cases, and whether it excludes 
cases that are known to be dissimilar.  

Results and Discussion 

We performed case-base retrieval using two indexing 
mechanisms: 1. SOM-based indexing, 2. Signature-based 
indexing.  

For the first of the two cases, namely where the new observed 
data is an instance of an operating regime encountered and 
modeled before, ADTM’s performance is summarized in 
Table 1. Recall that in this case, every new set of observations 
should produce an exact match with the case-base. 

This indicates that ADTM’s CBR approach using SOMs for 
indexing was successful at retrieving a case that matches the 
current behavior exactly. There was only one condition for 
which it was not able to retrieve an exact match. Even in that 
case, it did retrieve a case that was similar is cause and effect 
but differed only in severity. Furthermore, in our 
experiments, in addition to retrieving an exact match, ADTM 
also retrieved other instances of prior situations that can be 
considered similar. This provides additional information to 
users as they try to resolve observed anomalies. Finally, the 
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approach was successful in excluding dissimilar cases, 
leading to higher accuracy of information provided. 

Table 1: Performance of ADTM when prior similar 
cases exist in the case-base 

Measure SOM-based 
Indexing 

Signature-
Based 
Indexing 

Number of times an exact 
match was retrieved 

17/18 
(94.4%) 

16/18 
(88.8%) 

Number of times a similar 
match was retrieved 

18/18 
(100%) 
 

18/18 
(100%) 

Number of times an 
incorrect match was 
retrieved 

0/18 (0%) 0/18 (0%) 

 
Using signature-based indexing produced comparable 
results. While it did not retrieve the exact match for all cases, 
it did find similar matches for all. However, the benefits of 
this approach in terms of significantly reduced computational 
costs of case retrieval overcome the marginal loss of 
performance. 

Situation 2: These are the results for the case where the new 
data represents a condition that has NOT been seen before 
(Table 2). Here we focus on the 8 fault conditions. 

Table 2: Performance of ADTM when no prior similar 
cases exist in the case-base 

Measure SOM-
based 
Indexing 

Signature-
Based 
Indexing 

Number of times a similar 
match was retrieved, when 
such a match existed 

5/6 
(83.3%) 
 

5/6 (83.3%) 

Number of times an 
incorrect match was 
retrieved 

1/8 
(12.5%) 

2/8 (25%) 

 
Note that 2 of the 8 faults in the dataset represent novels 
conditions not similar to any other. Using SOMs for indexing, 
CBR did not return any matches for these faults. For 5 of the 
remaining 6 faults, CBR successfully retrieved prior similar 
cases. The signature-based indexing approach produced more 
incorrect matches than SOM-based indexing. The causes for 
this will be investigated further and the statistical significance 
of the differences in performance between these approaches 
will be studied through with more experiments. 

Our preliminary experiments demonstrate that the CBR 
approach can successfully identify and label novel anomalies 
that have either been previously encountered or are somewhat 
similar to a past anomaly. For faults that are not similar to 
anything observed in the past, the SOM-based approach 
correctly identifies the occurrence of the anomaly and 
identifies it as a novel condition. The signature-based 

retrieval mechanism does sometimes fail to recognize a novel 
anomaly. It labeled one out of the two novel faults as 
nominal. The reasons for this will be investigated further the 
approach will be further refined. 

 
6. CONCLUSIONS AND FUTURE WORK 

Preliminary experiments demonstrate the effectiveness of 
using case-based reasoning with SOM-based modeling 
approaches to detect anomalies and to find prior similar 
occurrences. Our experiments demonstrate that ADTM is 
effective accurately retrieving prior cases that have some 
similarity but are not exactly identical to the current fault. 
However, some novel anomalies may not match with any 
previously seen cases. In this case, ADTM can still flag the 
anomaly and alert users. Furthermore, ADTM can add the 
new anomaly to its case base, along with user-provided 
annotations to help future such incidents. We also 
demonstrated an innovative approach to case base indexing 
that significantly reduces the computational cost of case 
retrievals. While successful in most cases, the signature-
vector base approach demonstrated a need for further 
investigation and refinement.  

Because we were able to inject known hardware faults into 
the LabSat, the data served as a testbed for validating the 
accuracy of ADTM’s anomaly detection and localization 
techniques. Going forward, it will be important to validate 
ADTM on real system generated data. We will also 
experiment with larger samples of data from different 
operating conditions to test the robustness and 
generalizability of ADTM.  

We are currently investigating a hierarchical modeling 
architecture to model and analyze systems at different levels 
(i.e. system, subsystem, component). This type of modeling 
would help identify and explain faults that span multiple 
subsystems. The overall objective is to use these techniques 
combined with other predictive modeling approaches to 
provide NASA with a comprehensive system health 
maintenance tool.  

Additionally, we plan to integrate with the approach of using 
assessments of human physiology as sensors to detect habitat 
anomalies [23]. 
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