
 978-1-7281-7436-5/21/$31.00 ©2021 IEEE
 1

Case-Based Reasoning for System Anomaly Detection and
Management

Sowmya Ramachandran
Stottler Henke Associates, Inc.

1650 S. Amphlett Blvd.
San Mateo, CA 94402

650-931-2700
sowmya@stottlerhenke.com

Christian Belardi
Stottler Henke Associates, Inc.

1650 S. Amphlett Blvd.
San Mateo, CA 94402

650-931-2700
cbelardi@stottlerhenke.com

Abstract—Integrated System Health Management (ISHM)
technologies are mission-critical for deep space exploration.
Space habitats are complex systems, made up of several
subsystems such as Life Support, Communications, Data
Acquisition, Thermal Control, Environmental Monitoring, and
Electrical Power Systems. Deep space missions will face
increased latency in communications with Earth. As such, it is
critical that deep space aircrafts and habitats be capable of
detecting anomalies early enough to mitigate the effects of
communication delays. It would also be beneficial if the space
crew had the tools to not just detect anomalies but also to help
them resolve them without waiting for assistance from ground
control. Traditionally, model-based reasoning techniques have
been effective in monitoring the health of such operations, but
the rising demand for rapid fault detection and response in
deep-space habitats calls for autonomous monitoring software
that is agile, scalable, and can respond to previously unseen
events. Data-driven approaches using machine learning
techniques can provide the ability to detect novel anomalies and
to evolve over time. However, they are not as effective at
generating explanations or tracing root causes as rule-based
modeling systems.

In this paper, we describe a case-based reasoning (CBR)
approach to developing ISHM tool that combines the data-
driven approach with a method for diagnosing and explaining
them. CBR is an artificial intelligence (AI) technique that aims
to solve problems by analogy. The system, Anomaly Detection
via Topological feature Maps (ADTM), uses self-organizing
maps (SOMs) as an unsupervised learning approach for
modeling each individual case. ADTM’s case-base models
represent knowledge about different operational modes,
including faults, as individual cases. The design of appropriate
indexing mechanisms is crucial to the effectiveness of a case-
based model. We describe two different approaches to case-base
indexing and retrieval and compare their performance on a data
set from a simulation of a CubeSat.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. RELATED WORK ... 2
3. THE ADTM APPROACH .. 2
4. ADTM PERFORMANCE STUDIES 6
6. CONCLUSIONS AND FUTURE WORK 7
ACKNOWLEDGEMENTS ... 7
BIOGRAPHY ... 9

1. INTRODUCTION
Manned deep space travel is becoming increasingly
imminent, with multiple organizations working to accelerate
the timeline towards this future. NASA is planning a crewed
landing on Mars within the next ten years. The Artemis
mission, a step along the path to manned missions to Mars, is
already underway and has the goal of humans landing on the
Moon by 2024 [1]. SpaceX also has outlined an ambitious
plan for crewed landing on Mars [2].

Whether the destination is Mars or the Moon, these planned
missions provide significant challenges that are currently
being addressed. Integrated System Health Management is
one such area. Space travel places tremendous risks on
human life and solutions are being developed to help manage
and mitigate them. Space habitats are made up of a complex
web of systems—including but not limited to Life Support,
Communications, Data Acquisition, Thermal Control,
Environmental Monitoring, and Electrical Power Systems.
Astronauts’ lives depend on the health of these subsystems.
There is a critical need to develop tools to help future
astronauts monitor and maintain the health of their habitats,
and to handle known and unknown anomalies with limited
and access to ground staff.

Model-based reasoning (MBR) is often used to detect faults
and diagnose their causes by encoding the schematic
information into a model of the subsystem being monitored,
which includes the components (including sensors), their
normal behavior and known abnormal modes of behavior,
and the connections between components. During normal
operations, the model is used to simulate the current
subsystem behavior and compare the simulated sensor output
values to the actual sensor outputs. Significant deviations are
used to detect faults. Then the model is used to reason about
the components that are faulty and most likely to lead to the
currently deviating sensor values. The set of possible faults
(possibly including sensor faults) which explain the sensor
values is the MBR diagnosis engine’s output. The process of
using the model to diagnose failures is considered somewhat
analogous to the reasoning an engineer uses when using a
schematic to try to diagnose the fault. The process can be
made more efficient by various heuristics used by spacecraft
engineers to quickly diagnose problems and include
knowledge of which components are most likely to fail (and

2

how, e.g., mechanical relays tend to fail open while solid state
relays tend to fail closed) and/or be the most likely
explanation for certain types of sensor values. Because
models encode the effects of contextual factors, they can be
applied reliably across contexts. MBR thus requires
knowledge engineering efforts to encode these interacting
effects. Furthermore, reasoning with complex models can be
computationally expensive and this can render them
unsuitable for use in ongoing, real-time monitoring of system
health.

Data-driven approaches using machine learning techniques
overcome the problem of laborious, manual model
development and computational inefficiency. Unsupervised
approaches like clustering can automatically models patterns
of nominal behavior from unlabeled data and monitor real-
time telemetry for deviations from these behaviors [3].
Unsupervised learning has been shown to be very effective at
detecting anomalies that have never been seen before.
However, these approaches cannot effectively trace the root
causes for an anomaly for a variety of reasons: 1. Not having
the information (i.e. labels) needed to discriminate between
faulty and nominal behavior, and 2. Not having any insights
into un-instrumented system components. The latter is an
important point; not every component of a system will be
instrumented to provide telemetry and thus the models will
not have visibility into significant portions of the system.

We describe and demonstrate an approach that combines a
data-driven behavior modeling with case-based reasoning
(CBR) to address these concerns. CBR is a branch of
Artificial Intelligence that is concerned with reasoning by
analogy with past experiences. It provides a way to leverage
data-driven approaches and augment them with additional
information to guide troubleshooting and repair/mitigation.

2. RELATED WORK

The focus of this work was on unsupervised anomaly
detection for discrete sequences of subsystem data using
SOM-based models trained on nominal subsystem behavior.
Similar approaches to anomaly detection have been applied
in existing research. Principal Component Analysis has been
a widely used algorithm for anomaly detection across a wide
breadth of applications, including diagnosing offshore wind
turbines [4], cyber networks [5], and space telemetry and
telecommunications [6, 7]. Furthermore, Gaddam et. al. [8]
used a supervised approach to anomaly detection by
combining k-means clustering with ID3 decision tree
classification. The classification decisions across the clusters
and decision trees were combined for a final decision on class
membership. Naik et. al. [9] use supervised a machine
learning approach to not just detect but also predict anomalies
in spacecraft behavior using telemetry data. The main
challenge for such an approach is access to labeled fault data,
which can be limited in the space domain.

Iverson et al. [10] use k-means and density-based clustering

techniques for system monitoring in its IMS and ODVEC
software systems. Similarly, Gao, Yang, and Xing used a K-
Nearest-Neighbor (kNN) approach for anomaly detection of
an in-orbit satellite using telemetry data [11]. SOMs have
been used for fault detection and diagnosis in several
industries. Datta, Mabroidis and Hosek combine SOMs with
Quality Thresholding (QT) to refine the resolution of clusters
learned by SOMs within the semi-conductor industry [12].
Similarly, Tian, Azarian, and Pecht train a SOM on nominal
cooling fan bearing data but use a kNN approach in place of
the more traditional Minimum Quantization Error (MQE) to
assign test data anomaly scores based on their distance to
centroids learned by the kNN model [13]. Cottrell and
Gaubert apply anomaly scores to aircraft engine test data
using the MQE approach that we have used in this paper and
leverage the visualization capabilities of SOMs to visualize
the transition states of engines from run-to-failure datasets
[14].

ADTM contributes to this existing bed of clustering research
by combining a Self-Organizing Map with a Case-Base
Reasoning (CBR) approach that assists end-users in
responding to detected anomalies. It does so by retrieving
records of similar past behavior with pertinent information
about the anomaly and, when relevant, past troubleshooting
activities.

Such assistance mirrors the role of Mission Control during a
failure onboard a spacecraft. In such a situation, teams of
scientists and domain experts on the ground help astronauts
to quickly respond to a failure to mitigate further risk. They
do so by drawing upon years of experience with the systems
onboard the spacecraft as well as familiarity with past
anomalies, either from test scenarios or real-time failures.
ADTM’s CBR module aims to mirror such remediation
assistance in the context of deep-space exploration, where
crew dependency on Mission Control is no longer an option
due to significant communication delays.

3. THE ADTM APPROACH

ADTM utilizes Self-Organizing Map (SOM) Neural
Networks to model system behavior from sensor data in an
unsupervised fashion. Also known as a Kohonen map, a SOM
is a two-layer artificial neural network (ANN) that uses
unsupervised learning to produce a low-dimensional
representation of the training samples [15]. The goal of
training a SOM is to transform incoming inputs to a 1- or 2-
dimensional map in a topologically ordered fashion such that
points that are close together in the higher-dimensional input
space are close together in the lower-dimensional output
space as well. This mapping allows ADTM to detect patterns
of normal or anomalous behavior in a system, as different
types of behavior map to different output units. At the end of
training, each input vector is associated with one or more
output neurons, which therein become ‘implicit cluster
centers’ akin to ‘centroids’ in the k-means algorithm.

3

A SOM maps N-dimensional weight vectors to a (k x k) lattice
of output neurons Oi that are fully connected to the input layer
(see Figure 1). Each neuron Oi is associated with a N-
dimensional weight vector wi and represented by a two-
dimensional coordinate of its position in the grid, e.g., Oi =
(x, y).

Figure 1: SOM architecture
Like the clustering technique k-means, the value of k is a
parameter that is tuned during model validation. Unlike k-
means, however, the clusters learned during SOM training
are topologically ordered through a competitive learning rule.
That is, each input vector xi Î X is compared with the N-
dimensional weight vector { w1j, w2j, … , wNj } associated with
each output node Oj. The closest Oj is chosen as the winner,
or ‘best matching unit’ (BMU), where ‘close’ is defined by
some distance function (e.g., Euclidean distance). Each BMU
is associated with a neighborhood of related neurons whose
weight vectors are also updated, though to a lesser extent
proportional to their distance to the BMU in the 2D output
lattice. A common choice of ‘neighborhood function’ h(j,k)
that computes the relation between two neurons Oj and Ok is:

h(j,k) = 𝑒!
!

"d($)" (1)
where k¹ j and D is the lateral distance between the neurons
Oj and Ok in the output grid, and d(t)	is the time-dependent
exponential decay.

Together, the update rule for the BMU is:

Dwji = a(t) h(i,j)(xi – wji) (2)
given

|| wj – xi || £ || wk – xi || for all j¹ k (3)
where xi is the input vector and a(t) is the learning rate.

We can think of this learning rule as pulling the weight vector
wj associated with the BMU towards the input vector xi. All
neurons in the same ‘neighborhood’ are also dragged along,
but to a lesser extent.

Once trained on nominal data, the SOM maps new target data
to the most similar weight vector of an output neurons using
the same process used during the training cycles. The
winning neuron is again referred to as the Best Matching Unit
(BMU). The difference between the BMU’s weight vector
and the target point is the Minimum Quantization Error
(MQE). We can interpret the set of weight vectors associated
with each neuron as a condensed representation of the space
of states seen in the training data. Thus, the MQE reflects the
SOM’s ability to categorize new input data into one of these

known states. A low MQE implies that the target sample has
characteristics very similar to a sample seen during training.
The lower the MQE, the greater the similarity between the
target observations and the SOM of comparison. ADTM uses
MQE thresholds to determine to detect anomalous system
behavior. Points in the telemetry that exceed this threshold
are flagged as anomalous. The threshold is tuned using a
subset of the data reserved for tuning parameters. The details
of this approach are described in [16].

Unsupervised learning approaches have the advantage that
they do not need labeled examples, thus eliminating the need
to manually label data. Furthermore, these learning
approaches can successfully detect previously unknown or
unanticipated anomalies. Models learned from a
representative sample of nominal behavior can effectively
detect deviations or off-nominal behavior [16]. This is
beneficial for modeling complex systems like deep-space
exploration habitats where unanticipated anomalies can occur
and lead to serious life-threatening consequences. However,
identifying an anomaly is just the first step; it needs to be
followed up by localization and tracing of the anomaly’s
causes in order to handle the situation [17].

Models developed using unsupervised learning can be
utilized for localizing the features most associated with
observed anomalies (as discussed in [16]). That still leaves
open the problem of tracing the causes of faulty behavior and
finding a fix. Our solution generalizes the approach by
modeling other known operating regimes, including fault
regimes, using the same SOM-based approach above. It is
based on the observation that SOM-based modeling does not
necessarily have to be limited to the nominal operating
regime. It can be used to model any operating regime using
data solely representing that regime. Thus, when data from a
system operating under a known fault is available, we can
build a SOM for that condition and identify when a system is
exhibiting that fault using the same SOM-based distance
criteria as before. This allows us to detect previously known
faults by comparing them to their respective SOMs, as well
as novel ones when none of the models for known conditions
exactly match the current behavior. For novel anomalies, we
can find examples of known faults that are similar, thus
providing astronauts with a tool to troubleshoot by
comparison to analogous conditions.

This insight has led us to the design of ADTM to use a case-
based reasoning (CBR) approach, where a system is modeled
as a case-base of SOMs for different known operating
regimes. Like supervised learning, this requires labeled
examples of multiple conditions. However, there are some
key differences:

1. Like supervised learning, the data for one operating regime
can serve as negative labeled examples for another, assuming
there are no overlaps between the faults in the data provided.
However, unlike supervised learning, we do not need all
possible operating conditions.

4

2. This also means that you can still have robust models with
limited data. If all you have is data for nominal operations,
you can still build a robust anomaly detection and localization
model.

3. It also supports incremental modeling, i.e. as new
anomalies are discovered, they can be modeled and added
incrementally to the case-base without having to retrain the
other SOMs.

An added, significant benefit is that cases can include
amplifying annotations to help users trace root causes by
examining un-instrumented components. The annotations
also help preserve institutional memory from previous
episodes of similar behavior by including information on
tests conducted and steps taken to resolve the problem.

Case-based modeling in ADTM

ADTM uses cases to represent different operational regimes
for a system. A particular emphasis is on modeling known
faults as cases. The core attribute of a case is a SOM trained
on the data representing the corresponding operating
condition. The SOM also serves as the index for the case. A
case will include other pertinent information such as a
description of the operating condition, troubleshooting steps
and recommended actions. Each case also contains a label to
say if it represents a nominal or a faulty condition.

CBR is an artificial intelligence (AI) technique that aims to
solve problems by analogy. With this approach, automated
systems solve new problems by retrieving solutions to
previous similar problems and altering them appropriately to
meet current needs. The field of CBR focuses on developing
intelligent and efficient techniques for defining similarity
metrics, retrieving cases based on these metrics, and
modifying similar solutions to fit the target problem. The
underlying inspiration is the analogical reasoning mechanism
that humans often use to solve novel problems. While a
problem itself may be novel, analogical reasoning helps
situate it in the context of similar prior experiences and to
discover a new solution by adapting prior solutions [18].

CBR consists of the following basic four steps: 1. Retrieving
a set of closest matching cases using some similarity metric,
reusing the information in the retrieved cases to solve the
problem, revising the prior solution if necessary to solve the
current problem, and retaining the parts of the current
experience for future problem solving. Defining the
mechanisms for indexing and retrieving similar past
experiences from the case-base, including developing an
appropriate similarity metric, is crucial aspect of this
modeling approach.

In an ADTM model, a case represents an operating mode,
nominal or faulty, of the system. The retrieve operation will
find the most similar operating condition by using the
associated SOM as the index. Once found, the system reuses
the matching cases by presenting to the user the information

associated with the case, including information pertinent to
diagnosing and fixing the problems. Sometimes a matched
case will be similar enough to the target problem that its
solution can be reused without modifications. In other cases,
the information from the reference case will help the users
develop a revised solution on their own. The revised solution,
along with a new SOM trained on relevant data, becomes a
new case for the model. This is the retain phase of CBR.
While human effort is still required to understand and solve
truly novel situations, access to similar prior reference
situations provided by the CBR approach will assist users in
applying their analogical problem-solving skills to find a
solution more effectively. This new knowledge then becomes
a part of system memory and can be reused in the future using
the retrieve mechanism. Thus, CBR can support active
learning.

Adding a new case involves training a new SOM for the
sensor data covering the duration of the episode and adding
supporting details about diagnosis and mitigation. In case the
new episode is marked as a variation of an existing case, the
system will merge the two by retraining the associated SOM
with the new data and updating the supporting information.
Thus, case-based reasoning enables an easy extension of the
model based on new observations. The initial case base for a
system will consist of a small set of cases representing
nominal operations as well as known anomalies. This will
grow over time as experiences build up. The ADTM system
is designed to include a user-facing tool to facilitate creating
and updating the system model.

CBR retrieval using SOMs

Our initial implementation used SOMs as the similarity
index, using the following algorithm:

1. Calculate the MQE for all the data points in the
target telemetry stream against the index SOMs for
each of the cases in the case base.

2. Classify each data point as Anomaly/Not Anomaly
by comparing its MQE relative to the index SOM
against a tuned threshold for the case [16].

3. The similarity of the data stream to a SOM is the
number of points in the data set classified as NOT
ANOMALOUS with regard to that SOM.

Section 4 reports the results of using CBR using this indexing
scheme to identify faults from new telemetry.

The ultimate purpose of ADTM modeling is to analyze real-
time sensor telemetry generated within a spacecraft or habitat
to detect anomalies as soon as they occur and alert users.
ADTM’s case-base model allows for rapid detection of
anomalies. However, a case-base is likely to have a large
number of cases. Comparing incoming telemetry data in real-
time to the entire case-base for every time segment of interest
could be prohibitively expensive computationally. On the

5

other hand, it is important to detect signs of anomalies at the
earliest to give the crew the most amount of time to respond.

We have developed and tested a technique for real-time
monitoring of real-time data that balances these two
competing criteria. The algorithm works as follows:

1. Batch_Size = k (Batch_Size is the number of data
points from the incoming telemetry that
will be analyzed as a batch. k >=1)

2. Current_Model=Nominal (If there is more than one
nominal operating mode represented in
the case-base, any one of these may be selected)

3. For every new batch of data of size k

3.1 Measure model drift relative to Current_Model
Model_Drift = Number of points flagged as
anomalies using MQEs derived from
Current_Model

3.2 If Model_Drift>Threshold*Batch_Size
(Threshold is a configurable parameter)
New_Model = Result of performing CBR retrieval
to get a new model to match the current batch of
data

3.3 Current_Model=New_Model

The algorithm selects a model that is most similar to the most
recent batch of data that was analyzed. This model is retained
for subsequent batches, unless a significant drift is detected.
Drift is measured by the number of anomalous points in the
current data batch relative to the current model. If this drift is
higher than a threshold, the ADTM analyzer is triggered to
perform a full search with the case-base to find a case that is
a closer match. This is retained as the current model going
forward. This process is repeated as long as there is new
telemetry coming in.

This method addresses two issues: the computational cost of
searching the case-base and controlling for noisy behavior.
As stated earlier, comparing a data point to a SOM model is
an expensive operation. For example, for a SOM with 100
nodes, comparing a datapoint against a SOM requires 100
vector operations. Doing a full case search for a datapoint
multiplies this number by the total number of cases.
Maintaining a current model and comparing incoming data
points reduces number of full case searches, assuming that
the system behavior data is not changing too rapidly.
However, this advantage may be lost if the data being
analyzed is noisy. The Batch_Size and Threshold parameters
control for noisy behavior and allow ADTM to perform a full
case-retrieval only when there is sufficient evidence for a
change in operating regime. However, a large Batch_Size
increases the computational cost of comparisons to
Current_Model (which is itself a SOM comparison) and can
also lead to over-smoothing, where genuine behavior

transitions are missed. In our experiments, we have found a
Batch_Size of 10 and a Threshold of 0.1 substantially reduces
the number of full case retrievals while maintaining high
accuracy of case identification. However, the choice of these
parameters will depend on the system being modeled and
must be tuned for each system.

Using Signature Vectors for faster case retrievals

To reduce the data analysis time, we have investigated other
approaches to efficient matching and retrieval of cases. One
is to use a signature vector as an alternative Case-Base
Reasoning (CBR) indexing function. Our preliminary
experiments (Section 4) show comparable performance to the
SOM indexing function we have been using. Performing
CBR look ups with a signature vector reduces computational
and memory complexity of the indexing operation. Using a
SOM as a case-index requires N vector operations for to
compare a single data point to a single case, where N is the
number of nodes in the corresponding SOM. Using a
signature vector, on the other hand, requires only a single
vector operation, leading a reduction in computational cost
by a factor of N. Even for small SOM sizes such as a network
with 10 nodes, using a signature vector can lead to a ten-fold
increase in computational efficiency for case retrievals. We
are experimenting with a few variations of the technique, but
the basic principle is the same. We train a SOM to model all
nominal behaviors. Then to classify new data, we calculate
the feature deviation of the new data from the SOM’s k
BMUs. This calculation gives us the contributions of each
feature to the MQE, essentially indicating which features are
most different from and most similar to known nominal
behavior represented in the SOM. We construct signature
vectors by concatenating feature deviation with the average
weight of the k BMUs. The motivation behind this
construction is that because the feature deviation is created
with respect to the weights, the deviations themselves might
be ambiguous without the context from which they were
created. More intuitively, the weights of the SOM capture
different nominal behaviors, it is important to know what
nominal modes/conditions we are deviating from to
understand what is going wrong.

In the approach described previously, ADTM’s case-base is
constructed by training a SOM for each operating condition
using associated training data. For the signature vector
approach, a SOM is created the nominal operating condition
(one condition is chosen randomly if there are multiple
nominal operating conditions represented in the data). The
case for each operating condition is then constructed by
deriving a case signature vector using the training data for
that condition. A case signature vector is simply the average
of the signature vectors for all data associated with that case.
We also keep track of the maximum distance a signature
vector associated with the case is from the case signature
vector. Thus, under this approach, the case-base is a
collection of cases, one for each distinct operating condition
in the training data, where each case is indexed by its case

6

signature vector that represents the most similar reference
behavior in the SOM and the cases deviation from it. All the
other aspects of a case, i.e. additional annotations, are
maintained as before.

To retrieve a case for a new data point, the algorithm
computes the signature vector relative to the reference SOM
and compares it to the case-signature vectors for each case.
The vector distance is the similarity metric used to retrieve
the closest matches. Note that if the distance to a case
signature vector is greater than the maximum distance vector
for the case, the case is excluded from the list of matches.
Thus, it is possible to return no matching catches, indicating
that the new data represents a novel condition. To label a
batch of data, the algorithm labels each data point as
described and assigns the most commonly occurring label to
the entire batch.

4. ADTM PERFORMANCE STUDIES

We have tested ADTM’s approach on data from a range of
systems, both simulated and real. We compare the
performance of the CBR approach using the two indexing
mechanisms described above. Note that these experiments
did not utilize the real-time analysis algorithm described
earlier and instead treated the tested data for each condition
as a single batch.

Data Description

We validated the performance of ADTM’s case-based
analysis on data from a simulation of a CubeSat (named
“LabSat”), originally designed after the Ionospheric-
Thermospheric Scanning Photometer for Ion-Neutral Studies
(IT SPINS) project to study the nocturnal ionosphere. We
used this dataset because it had the greatest number of
operating conditions and fault conditions represented. The
LabSat was subdivided into three circuit boards. Board 1 was
designated for power generation and storage (solar array
simulators and batteries), while Boards 2 and 3 had redundant
regulators and loads consuming power from Board 1. The
system is connected to software that enabled us to insert a
variety of hardware faults. We collected nominal data from a
15-minute run of the LabSat across all three boards, with
telemetry collected once per second. We also generated data
for a total of 5 anomalous conditions across the three boards.
Note that a single fault condition generated data for all three
boards. However, the fault often introduced anomalies in the
measurements of only a single board, while remaining
nominal for the rest of the boards. Therefore, our data set
consisted of a total of 18 different operating conditions, of
which 8 represent faulty conditions. Furthermore, of the 8
anomalous cases, only 6 could be considered similar to each
other in that one could be considered a progression in severity
of another. The other 2 anomalous cases were of novel and
not similar to any of the other anomalies.

Experimental Procedure

Each data set was split into a training set and a test set (using
2/3-1/3 split for training and testing respectively). The case-
bases were created as described in the previous sections using
the training data sets. We created a case-base for each board.
This resulted in a case base with six cases for each board.
Once the case base was built, the test set for each of the six
conditions was compared to the case base to find the closest
match using the similarity metrics described above.

The preprocessing step consisted of standardizing the data
using decimal scaling. The nominal training set was scaled to
lie in the range -1.0 to +1.0. Data for all other conditions were
scaled relative the nominal training data. There were no
instances of missing values in the entire data set.

We considered two cases:

1. When the test data is an instance of some condition
that has been seen before. In this situation, it is
desirable CBR include the prior case in its list of
retrieved cases.

2. When the test data represents an instance of some
condition never seen before. In this situation, it is
desirable that the CBR include a prior case that is
similar to the new data. In both situations, it is
desirable that CBR excludes dissimilar cases from
its list of matches.

The effectiveness of the CBR retrieval can be measured by
whether the list of similar cases retrieved contains an exact
match from past experience when it exists, whether it
contains other known similar cases, and whether it excludes
cases that are known to be dissimilar.

Results and Discussion

We performed case-base retrieval using two indexing
mechanisms: 1. SOM-based indexing, 2. Signature-based
indexing.

For the first of the two cases, namely where the new observed
data is an instance of an operating regime encountered and
modeled before, ADTM’s performance is summarized in
Table 1. Recall that in this case, every new set of observations
should produce an exact match with the case-base.

This indicates that ADTM’s CBR approach using SOMs for
indexing was successful at retrieving a case that matches the
current behavior exactly. There was only one condition for
which it was not able to retrieve an exact match. Even in that
case, it did retrieve a case that was similar is cause and effect
but differed only in severity. Furthermore, in our
experiments, in addition to retrieving an exact match, ADTM
also retrieved other instances of prior situations that can be
considered similar. This provides additional information to
users as they try to resolve observed anomalies. Finally, the

7

approach was successful in excluding dissimilar cases,
leading to higher accuracy of information provided.

Table 1: Performance of ADTM when prior similar
cases exist in the case-base

Measure SOM-based
Indexing

Signature-
Based
Indexing

Number of times an exact
match was retrieved

17/18
(94.4%)

16/18
(88.8%)

Number of times a similar
match was retrieved

18/18
(100%)

18/18
(100%)

Number of times an
incorrect match was
retrieved

0/18 (0%) 0/18 (0%)

Using signature-based indexing produced comparable
results. While it did not retrieve the exact match for all cases,
it did find similar matches for all. However, the benefits of
this approach in terms of significantly reduced computational
costs of case retrieval overcome the marginal loss of
performance.

Situation 2: These are the results for the case where the new
data represents a condition that has NOT been seen before
(Table 2). Here we focus on the 8 fault conditions.

Table 2: Performance of ADTM when no prior similar
cases exist in the case-base

Measure SOM-
based
Indexing

Signature-
Based
Indexing

Number of times a similar
match was retrieved, when
such a match existed

5/6
(83.3%)

5/6 (83.3%)

Number of times an
incorrect match was
retrieved

1/8
(12.5%)

2/8 (25%)

Note that 2 of the 8 faults in the dataset represent novels
conditions not similar to any other. Using SOMs for indexing,
CBR did not return any matches for these faults. For 5 of the
remaining 6 faults, CBR successfully retrieved prior similar
cases. The signature-based indexing approach produced more
incorrect matches than SOM-based indexing. The causes for
this will be investigated further and the statistical significance
of the differences in performance between these approaches
will be studied through with more experiments.

Our preliminary experiments demonstrate that the CBR
approach can successfully identify and label novel anomalies
that have either been previously encountered or are somewhat
similar to a past anomaly. For faults that are not similar to
anything observed in the past, the SOM-based approach
correctly identifies the occurrence of the anomaly and
identifies it as a novel condition. The signature-based

retrieval mechanism does sometimes fail to recognize a novel
anomaly. It labeled one out of the two novel faults as
nominal. The reasons for this will be investigated further the
approach will be further refined.

6. CONCLUSIONS AND FUTURE WORK

Preliminary experiments demonstrate the effectiveness of
using case-based reasoning with SOM-based modeling
approaches to detect anomalies and to find prior similar
occurrences. Our experiments demonstrate that ADTM is
effective accurately retrieving prior cases that have some
similarity but are not exactly identical to the current fault.
However, some novel anomalies may not match with any
previously seen cases. In this case, ADTM can still flag the
anomaly and alert users. Furthermore, ADTM can add the
new anomaly to its case base, along with user-provided
annotations to help future such incidents. We also
demonstrated an innovative approach to case base indexing
that significantly reduces the computational cost of case
retrievals. While successful in most cases, the signature-
vector base approach demonstrated a need for further
investigation and refinement.

Because we were able to inject known hardware faults into
the LabSat, the data served as a testbed for validating the
accuracy of ADTM’s anomaly detection and localization
techniques. Going forward, it will be important to validate
ADTM on real system generated data. We will also
experiment with larger samples of data from different
operating conditions to test the robustness and
generalizability of ADTM.

We are currently investigating a hierarchical modeling
architecture to model and analyze systems at different levels
(i.e. system, subsystem, component). This type of modeling
would help identify and explain faults that span multiple
subsystems. The overall objective is to use these techniques
combined with other predictive modeling approaches to
provide NASA with a comprehensive system health
maintenance tool.

Additionally, we plan to integrate with the approach of using
assessments of human physiology as sensors to detect habitat
anomalies [23].

ACKNOWLEDGEMENTS

This work was performed under a contract awarded and
administered by National Aeronautics and Space
Administration Agency (NASA). We would like to thank Dr.
Rodney Martin and Dr. Craig Moore of NASA for their
ongoing feedback on this effort.

8

REFERENCES
[1] NASA. “NASA: Artemis.” Accessed October 13,

2020.
https://www.nasa.gov/specials/artemis/index.html.

[2] SpaceX. “SpaceX.” Accessed October 13, 2020.
http://www.spacex.com.

[3] Hastie, T., Friedman, J., & Tisbshirani, R. (2017).
The Elements of statistical learning: Data mining,
inference, and prediction. New York: Springer.

[4] Bennouna O, Heraud N, Leonowicz Z (2012)
Condition monitoring & fault diagnosis system
for Offshore Wind Turbines. 2012 11th International
Conference on Environment and Electrical
Engineering. doi: 10.1109/eeeic.2012.6221389

[5] Pascoal C, de Oliveira M, Valadas R et al. (2012)
Robust feature selection and robust PCA for internet
traffic anomaly detection. 2012 Proceedings IEEE
INFOCOM. doi: 10.1109/infcom.2012.6195548

[6] Nassar B, Hussein W, Mokhtar M (2019) Space
Telemetry Anomaly Detection Based on Statistical
PCA Algorithm. In: Zenodo.
http://doi.org/10.5281/zenodo.1109667.

[7] Mukai, R., Towfic, Z., Danos, M., Shihabi, M., & Bell,
D. (2020). MSL Telecom Automated Anomaly
Detection. 2020 IEEE Aerospace Conference, 1–6.
https://doi.org/10.1109/AERO47225.2020.9172573

[8] Gaddam S, Phoha V, Balagani K (2007) K-
Means+ID3: A Novel Method for Supervised
Anomaly Detection by Cascading K-Means Clustering
and ID3 Decision Tree Learning Methods. IEEE
Transactions on Knowledge and Data Engineering
19:345-354. doi: 10.1109/tkde.2007.44

[9] Naik, K., Holmgren, A., & Kenworthy, J. (2020).
Using Machine Learning to Automatically Detect
Anomalous Spacecraft Behavior from Telemetry Data.
2020 IEEE Aerospace Conference, 1–14.
https://doi.org/10.1109/AERO47225.2020.9172726

[10] Iverson D, Martin R, Schwabacher M et al. (2009)
General Purpose Data-Driven System Monitoring for
Space Operations. AIAA Infotech@Aerospace
Conference. doi: 10.2514/6.2009-1909

[11] Gao Y, Yang T, Xu M, Xing N (2012) An
Unsupervised Anomaly Detection Approach for
Spacecraft Based on Normal Behavior Clustering.
2012 Fifth International Conference on Intelligent
Computation Technology and Automation. doi:
10.1109/icicta.2012.126

[12] Datta A, Mavroidis C, Hosek M (2007) A Role of
Unsupervised Clustering for Intelligent Fault
Diagnosis. Volume 9: Mechanical Systems and
Control, Parts A, B, and C. doi: 10.1115/imece2007-
43492

[13] Tian J, Azarian M, Pecht M (2014) Anomaly
Detection Using Self-Organizing Maps-Based K-
Nearest Neighbor Algorithm. European Conference of
the Prognostics and Health Management Society 5

[14] Cottrell M, Gaubert P, Eloy C et al. (2009) Fault
Prediction in Aircraft Engines Using Self-Organizing
Maps. Advances in Self-Organizing Maps 37-44. doi:
10.1007/978-3-642-02397-2_5

[15] Kohonen T (1982) Self-organized formation of
topologically correct feature maps. Biological
Cybernetics 43:59-69. doi: 10.1007/bf00337288

[16] Ramachandran, S., M. Rosengarten & C.
Belardi (2020) Semi-Supervised Machine Learning
for Spacecraft Anomaly Detection & Diagnosis.
Proceedings of IEEE Aerospace Conference 2020. Big
Sky, MT, March 8-13, 2020.

[17] Farrar, C. R., & Worden, K. (2012). Structural
Health Monitoring: A Machine Learning Perspective
(1st Edition). Wiley.

 [18] Carbonell, J. (1985). Derivational analogy: A theory
of reconstructive problem solving and expertise
acquisition. (No. CMU-CS-85-115). Carnegie-Mellon
Univ Pittsburgh PA Dept of Computer Science.

[19] Fytilis, N., & Rizzo, D. M. (2013). Coupling self-
organizing maps with a Naïve Bayesian classifier:
Stream classification studies using multiple
assessment data: A Combined Naïve Bayesian-SOM
Classification Network. Water Resources Research,
49(11), 7747-7762.

[20] Guyon I, Weston J, Barnhill S, Vapnik V (2002)
Gene selection for cancer classification using support
vector machines. Machine Learning 46:389-422. doi:
10.1023/a:1012487302797

[21] Geurts P, Ernst D, Wehenkel L (2006) Extremely
randomized trees. Machine Learning 63:3-42.
doi:10.1007/s10994-006-6226-1

[22] Breiman L (2001) Machine Learning 45:5-32. doi:
10.1023/a:1010933404324

[23] Brown, S., Prasad, A., & Fink, W. (2020). Inventory
of Vital Sign Changes as Indicators of Environmental
Changes aboard Space Habitats. IEEE Aerospace
Conference Proceedings.

9

BIOGRAPHY

Dr. Sowmya Ramachandran is
a research scientist at Stottler
Henke Associates where her
research focuses on the
application of artificial
intelligence (AI) and machine
learning to improve human
performance in a broad range
of domains such as intelligence

analysis and tactical decision-making. This includes
research on intelligent performance support systems and
advanced training technologies. She led the development
of an after-action review tool for large team training
exercises that used machine learning techniques to
automatically group chat stream messages into coherent
topics. She is currently the PI on efforts to automate
performance assessment in simulation-based training
systems by generalizing from expert demonstrations of
solutions using machine learning approaches. Dr.
Ramachandran has led the development of Intelligent
Tutoring Systems for a diverse set of domains, from
training paramedics to training Information Systems
Technicians in the U.S. Navy. She combines a rigorous
background in artificial intelligence with deep knowledge

of the science of human performance and training, both
for individuals and teams. Her doctoral dissertation
developed a novel approach to learning Bayesian
Networks using a neural network training approach. The
objective was to leverage the strengths of neural networks
while endowing them with a semantic interpretation that
is comprehensible to human experts. Dr. Ramachandran
holds a Ph.D. in Computer Science from The University
of Texas at Austin. She earned a Bachelor of Technology
degree from the Indian Institute of Technology, Chennai,
India.

Christian Belardi earned a
Bachelor of Science in Computer
Science from Cornell
University’s College of
Engineering. At Stottler Henke he
has contributed to a variety of
applied reach efforts in artificial
intelligence and machine
learning. In addition to ongoing

work on self-organizing maps and case-base reasoning,
he works on self-supervised representation learning with
neural networks as the lead engineer on a DARPA funded
research effort. The primary purpose of this project is to
develop machine learning and data fusion techniques to
assess the pathogenic potential of novel bacteria. In
previous work, he has developed intelligent software for a
variety of NASA and DoD needs.

