
 1 Copyright © 2002 by ASME

Proceedings of DETC’02:
ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering

Conference
Montreal, Canada, September 29-October 2, 2002

DETC2002/CIE-34404

WEB-BASED DESIGN COORDINATION

Eric A. Domeshek
Stottler Henke Associates, Inc.

280 Broadway / 1st Fl
Arlington, MA 02474

(781) 643-1444
domeshek@shai.com

Elias Holman
Stottler Henke Associates, Inc.

280 Broadway / 1st Fl
Arlington, MA 02474

(781) 643-1444
holman@shai.com

ABSTRACT

This paper reports on a web-based groupware tool intended
to support large distributed teams of engineers in modern
engineering design practice. The Advanced Design
Coordination Tool (ADCT) presents itself to members of a
design team as a shared on-line set of engineers’ notebooks
with flexible editing, filing, viewing, browsing, and searching
capabilities. Additionally, its use of product, process, and
decision representations referencing an explicit domain
ontology, and tied together by dependency links, introduces
artificial intelligence technology that enables capabilities
beyond simple unstructured design history capture. The
resulting repository can capture a rich and structured design
rationale, which, with the system’s state management and
versioning capability, enables recording active as well as
rejected alternatives.

The system currently exploits the captured data to improve
team coordination: it applies dependency processing algorithms
to automatically generate notifications to appropriate team
members, based on changes to design notes or the detection of
design conflicts. Over time, the accumulation of structured
design histories with rationales should provide the basis for a
knowledge repository that can proactively offer advice on new
design challenges. This paper first sketches the context that
makes this tool desirable, and then describes the system’s
design and key capabilities. We finish with a discussion of
limitations and future enhancements.

Keywords: Artificial Intelligence, Design Coordination,
Design Rationale, Collaborative Work

WHAT CAN INFORMATION TECHNOLOGY (IT) DO
FOR DESIGNERS?

Over the last decades, information technology (IT) has
significantly changed the way most engineers do business. In
that time, both IT and engineering itself have evolved
considerably, so while we have reached a productive state in
computer-based design support, it is by no means an end state,
or even a steady state. This paper discusses a new sort of
engineering support tool that directly addresses one of the
major remaining sources of delay and error in engineering
projects: the need to coordinate the actions of large and often
distributed engineering teams. In addition to helping ease team
coordination problems, this class of tool can also provide a
solid base for proactive design knowledge management.

This opening section starts by characterizing some well-
known important trends in general engineering practice,
highlighting the demands they place on design support IT. It
goes on to focus on several more specific, yet still relatively
common, conditions under which a design coordination tool
can be particularly useful. Finally we consider some
constraints on plausible enterprise information systems for
engineering, as a way of setting the stage for the following
general discussion of our new tool.

General Trends
We consider here five interrelated trends in modern

engineering practice: (1) increasing system complexity; (2)
larger and more distributed design teams; (3) iterative design
and refinement; (4) concurrent engineering; and (5) ever-
changing requirements and circumstances. Together, these
realities place demands on any enterprise information
management system intended to support engineering design.

 2 Copyright © 2002 by ASME

Increasing System Complexity
As technology advances our ambitions advance too.

Engineers may have more powerful tools that make them more
productive individually, but we ask more of them collectively.
We have studied design processes in a range of domains, but
aerospace offers some of the most graphic examples of the
phenomenon. Consider, for instance, just two landmarks from
the century-long history of aviation: the Wright Flyer (1903),
and the Boeing 777 (1994). By nearly any metric you care to
name—cost, number of parts, number of functions—the size
and complexity of these two systems differ by orders of
magnitude. It takes longer and costs more to design more
complex systems, and more is at stake in the quality of their
design. At some point, computerized record keeping becomes
necessary just to track what is going on in a design project.
Design support IT needs to be scalable, potentially to support
thousands of engineers working for a decade or more (and
preserving their results many decades or longer).

Larger & More Distributed Design Teams
As suggested, despite improvements in individual

productivity, larger design projects require larger design teams.
The need to tap a widening variety of ever more specialized
expertise leads to design teams that include members from
many locations and even organizations. Escalating costs and
risks likewise drive organizations into teaming arrangements,
and lead to distributed design teams. The Boeing 777 project
involved up to 10,000 engineers spread across Boeing and
hundreds of subcontractors located all around the world. As a
consequence, design support IT needs not only to be hugely
scalable, but also to work well in a distributed environment.

Iterative Design & Refinement
Design methodologies come and go, but it seems safe to

say that for any but the most routine problems, the days of
straightforward “waterfall” design are over. Today, most
complex designs are developed through a succession of
versions, where each iteration incorporates more detail,
informed by decisions and analytic results produced during
earlier passes. IT for design needs to support some notion of
versioning for data in order to support successive refinement.
Ideally it should support not just revisions, but also multiple
simultaneous explorations, as well as merging of results from
different tracks.

Concurrent Engineering
Along with iterative design comes concurrent design, in

which representatives of all phases of a product’s life-cycle,
and as many relevant design specialists as possible, contribute
their perspectives to the design process early on. This approach
to design tends to expand the circle of design team members,
and puts extra stress on communication and organizational
supports. Again, design support IT must support ever larger
and more distributed teams, and must provide ever tighter
coupling between the work all those team members are doing.

Changing Requirements & Circumstances

No matter how clear a project’s goals seem at the start,
change is a fact of life. Iterative and concurrent design can help
promote effective risk management by enabling exploration of
difficult aspects of the design early on. Still, such explorations
are only of value if you are willing to adapt to the results—that
is, if you are prepared to shift your approach, or even reframe
your problem. Even if your goals and core solution are not
subject to significant changes, the world around you is. Things
change so quickly now that within the life-span of a large-scale
design project, it is not unusual for some key technology or
market condition to shift, enabling or requiring significant
rework. Coping with such changes becomes exponentially
harder as the size and distribution of the project team increases.
Change is likely to remain an essential element of the design
universe. An IT infrastructure that directly addresses the team
coordination problem can reasonably be expected to produce a
high payoff.

Special Conditions
In addition to the general trends just discussed, there are

several other common, though not universal, characteristics of
design environments that can place significant additional
demands on design support IT infrastructure. Here we consider
four: (1) a need for extensive formal documentation; (2) a need
to support incremental refinement of fielded systems; (3)
design of evolving product families with long life spans; and
(4) design oriented towards configuration of semi-customized
products on a shared underlying architecture, using common
subsystems.

Need for Extensive Formal Documentation
Generally speaking, large projects cannot be run on

individual memory and good intentions. When one
organization is paying millions or billions of dollars to another
to get some job done, the managers and their lawyers, at least,
are going to insist on clear requirements and some indication of
how the ultimate artifact meets those requirements. Value-
based accounting adds additional pressure to document work
products and their relationship to a work-plan that addresses the
agreed-upon requirements. Left to their own devices, many
engineers would skimp on documentation, in part because there
are more interesting and immediately productive things to do
with their time, and in part because they suspect that what they
are doing may soon need to be revised in any case. In addition
to storing and preserving documentation, design support IT
should do its best to make the authoring of coherent,
comprehensive documentation easy.

Incremental Refinement of Fielded Systems
For a significant class of complex, long-lived systems, the

initial fielding of a product is not the end of design and
development. Military systems, for instance often see several
rounds of field upgrades during their effective life. When a
team seeks to augment or modify an existing artifact, it does
well to understand the current state of the system in all its
relevant detail. In the likely event that much of the original
design team is unavailable, new work must proceed on the basis
of documentation and reverse engineering supplemented by

 3 Copyright © 2002 by ASME

limited advice from those old team members who may be
available. Significant time can be saved, and mistake avoided
if there is a good record, not only of what decisions were made
in the original design, but also of why they were made (and of
what alternatives were explicitly considered and why they were
rejected). In this context, design support IT systems that
capture, preserve and provide access to design history and
rationale are especially valuable.

Evolving Product Families with Long Life Spans
The circumstance of evolving product families is a variant

of the field upgrade situation just considered. The arguments in
favor of exploiting design history and rationale are similar,
though here, in what is potentially a fresh design, an even wider
range of decisions and alternatives may be relevant than in the
case of a mere upgrade. The question of where to hew to
original work and where to diverge is more open, and therefore
potentially benefits from even more insight into the original
design process that can inform those decisions. Also, records
of several earlier design efforts may be relevant, with pieces
from a number of different family members potentially entering
into the design of the latest variant.

Configuration from Common Subsystems &
Architectures
Our final specialized condition is again similar to the

previous two, but repetitive design from common components
places a different emphasis on the historic knowledge an IT
system should be managing. In this case, there are likely to be
experiences with analyzing (or even fielding) particular
combinations of components that, based on past experience,
can be predicted to work well or poorly together. Decisions on
such combinations in the context of new designs should be
informed by past experience with such combinations. With this
class of design problems, IT facilities initially conceived as
documentation management, and that through extensions of
content and access might reasonably be termed knowledge
management, plausibly takes a final step towards case-based
design assistance.

Constraints from the Real World
The design support tool we aim to introduce is essentially a

distributed team-oriented tool—in modern IT parlance, an
instance of groupware. To complete the picture of both the
demands and constraints on such design support software, we
survey a set of facts of modern IT life: (1) groupware has to
earn acceptance in any organization; (2) Web browsers have
become the universal front-end, especially for distributed
systems; (3) Relational Database Management Systems
(RDBMSs) have become the universal back-end, especially for
any system that manages volumes of valuable enterprise data.

Groupware Has to Earn Acceptance
Groupware is either a tremendous IT success story, or an

ongoing series of failures, depending on how you define the
category. Email and newsgroups have clearly become
ubiquitous. More proprietary applications such as Lotus Notes
are successful mergers of such generic capabilities with

additional shared data (mostly document) management, and
more recently web accessibility. But application-specific
groupware has had more than its share of failures. Easy ways
to fail with groupware include asking too much of users (in
learning curve or ongoing effort), and offering too little reward
in return for the effort (Grudin, 1994). Any design-support
tools aimed at coordinating teams of engineers must provide
users and easy point of entry, and must provide fairly
immediate rewards to the front-line designers (and not just to
their managers).

Web Browsers as Universal Front End
Nowadays most practicing engineers—indeed most design

team members whatever their background or function—are
somewhat computer-savvy. In most environments, they have
easy (if not continuous) access to networked workstations.
Still, every specialty has its own special software tools. What
most computer users share is familiarity with an operating
system, facility with a set of basic office applications, and
comfort with the web and web browsers. These browsers are,
to some extent, becoming the new universal front end for
information systems. Adherence to an evolving set of
standards affords reasonable power to control displays and
interactions, while allowing unprecedented portability across
end-user platforms. Browsers now routinely bridge across
workstation operating systems. They are starting to bridge
across entirely different classes of devices (e.g. PDAs, tablets,
cell-phones, and even set-top boxes). When a system is
naturally about distributed information management, the most
commonly accepted way to get the data to the end user, or to
support basic data entry and interaction, is through a web
browser.

RDBMSs as Universal Back End
Just as the web has sewn up the IT front end, RDBMSs

have a lock on the back end, and not just for traditional
structured data. Object databases are really still just an
interesting niche technology, while RDBMSs are being
extended to inter-operate more cleanly with object-oriented
programs and their data. Files and directory structures may
accumulate large amounts of work in process, but RDBMS
vendors are now aiming to provide a more secure version of file
systems. The core “vault” capability that managers value in
PDM systems is essentially subsumed by industrial strength
RDBMSs’ ability to manage the contents of arbitrary files
along with their metadata. It seems clear that if you want to
earn the right to manage important enterprise data, then you
have to store it in an acceptable industry standard RDBMS.

SOLUTION FRAMEWORK
This section gives a high-level overview of the tool we

have developed covering first the primary view—or
metaphor—that shapes the end-user experience, secondly the
major sorts of functionality provided by the tool, and finally,
some notes on the technology used in developing the tool.

 4 Copyright © 2002 by ASME

Metaphor
We started out wanting to attack the problem of confusion,

wasted effort, and error generated by poor coordination among
the members of design teams. The only approach we could see
to the problem involved capturing and managing a relatively
detailed network of information about the progress of a design
project. A major question, then, was how to get access to the
information our system needed?

From interviews with practicing aerospace engineers, we
learned that the front-line mechanism for capturing design
information is the “engineer’s notebook.” Every engineer we
spoke with agreed there was such a thing as an engineer’s
notebook, and readily accepted the need to keep notes.
However, even within a single company, engineers could not
agree on the exact form or content of an engineer’s notebook.
For many it was a physical bound paper notebook. For others,
it was a loose-leaf binder. In some projects, it was a rack of
binders kept in a central location. For others it was an on-line
directory structure of files. In a few cases, projects maintained
some kind of on-line database for their notes.

Each of these diverse solutions had problems and
limitations. Paper-based systems generally do not easily
support effective indexed access, can only be in one place at a
time, and are prone to ending up nowhere at all (when physical
notebooks are misplaced, or their owners retire). Computer-
based systems may or may not provide adequate search and
browsing capabilities, and the information is often opaque to
the computer. Higher end systems tend to be harder to learn
and to use. For instance, we heard major complaints about
usability from front-line engineers during the introduction of
PDM systems in their organization.

Based on this input, and mindful of the need for groupware
to ease and earn its way into actual use, we chose to structure
our system around the metaphor of a shared library of on-line
engineers’ notebooks. There is an easy entry route into using
the system: log into the system through your web browser, click
to create or open a notebook, then click and type to add new
notes to your book. Each note is simply a block of text,
optionally accompanied by attached files that might contain
graphics, supporting data, and so on. The system supports rich
search and browsing capabilities ranging from paging through
notebooks chronologically, to running attribute (e.g. author and
date) and text based searches within and across notebooks.
The system also provides security between projects, and
privacy between users.

Functionality
Making it easy to put generic textual notes on-line is just a

start. Our system also provides a useful taxonomy of note
types that reflect an analysis of design products, processes, and
decision-making; links among these typed notes can capture the
ways in which some aspects of an evolving design depend on
other facts and decisions. More ambitious users, then, can start
creating and interlinking notes of these more specialized types,
and begin to exploit the more advanced features of the system.
This section introduces some of those features at a high level.

Capture, Organize, and Safeguard Design History
& Rationale
Our engineers’ notebooks are intended to promote capture

not just of design history, but also of design rationale—the
system provides notes to structure the arguments and decisions
behind assertions. When you want to come back later and
change something about a design, it is a major advantage to
know why things were originally done in a particular way—
what other aspects of the design a feature depends on. When
you want to transfer aspects of a design from one context to
another, it is crucial to understand the dependencies on the
original context. Specialized note types and inter-note linking
mechanisms enable structured representation of history and
rationale. A web-based interface and database-backed storage
ease capture, and ensure reliable but restricted access to
information about past designs.

Encourage Formal Recording/Tracking of
Decisions & Dependencies
Our way of capturing decisions relies on an interrelated set

of specialized note types that together allow users to
characterize a structured decision process in detail. We
encourage users to frame issues, lay out alternate options for
resolving such issues, as well as sets of criteria for evaluating
the available options, and then to evaluate each option on each
criterion. This aspect of the system was inspired by Rittel’s
notion of an Issue Based Information System (IBIS) (Kunz and
Rittel, 1970; Conklin and Begeman, 1988; Ballinger, Banares-
Alcantara, and King, 1993).

We further encourage users to link assertions about the
design product and process either as reasons why issues were
framed and options chosen, or as consequences of selecting
particular options. Finally, we allow many assertions to be
expressed as simple logical formuli refering to a domain-
specific language of engineering concepts. The result is
essentially a parallel structure: a set of human-readable notes
describing decisions with their reasons and consequences on
the one hand, and a formal dependency structure linking semi-
formal assertions on the other hand.

Exploit Dependency Structures to Proactively
Manage Team Coordination
Given a formal dependency structure, the system can make

computations about the possible effects of changes and
conflicts, and generate targeted notifications to appropriate
team members based on those computations (delivering such
notifications in the same on-line web-based environment where
the users manage their notebooks, notes, and related
discussions). When a support for some decision changes, the
decision itself may need to be revisited; when a decision is
changed, the assertions it supports may need to be revisited.
Whoever is responsible for the decisions or assertions can be
notified of the relevant changes. Links to data files potentially
allow the system to trigger revision cascades based on changes
to such files (which might, for instance, represent analysis
results that help justify a decision). Formalization of design
assertions potentially eases detection of design conflicts, and

 5 Copyright © 2002 by ASME

allows exploitation of the dependency network to find those
engineers implicated in creation of the conflict, and thus
suggest an initial set of team members to be drawn into
discussions of how to resolve the conflict.

Support Structured Knowledge Management
within and Across Projects
Given both a formal decision dependency structure and

formalized assertions, it should become possible to provide
useful access to pieces of past projects based on similarity in
the requirements, prior commitments, critical issues, and
options. This is an area we have only just begun to explore, so
while the promise is clear, we count it as future work. The final
section discusses this idea in somewhat more detail.

Technology
In this section we offer some brief notes about the

technology underlying our system. We touch first on the gross
system architecture, second on the rationale underlying our
choice of tools and languages, and finally the origins of the
most distinctive data structures and algorithms in the system.

3-Tier Web-Based System
Our system has been designed as a three-tier system built

on commodity and COTS components, and open (web-based)
standards. For the client tier we support standard COTS web
browsers—in particular, MS Internet Explorer 5.x and higher,
and Netscape Navigator 6.x and higher. The browser is treated
as a sort of simple universal GUI framework. The back end is
an industry standard SQL relational database; in the current
system we use Oracle 8i, but ports to other SQL databases are
quite possible and under active consideration. The database is
responsible for enforcing data security, and supporting ad-hoc
reporting. To the greatest extent possible we have tried to
make our database schemas relatively conventional, so the
system can inter-operate with legacy systems, and so that data
is not trapped in peculiar formats that only our system can
understand. The middle tier is our own application server, built
as a set of extensions to a standard web server. It contains the
custom logic for generating data views (e.g. libraries,
notebooks, notes, notifications, and discussions) and editing
layouts, as well as the core algorithms for change propagation
and notification generation. However, to allow for easy server
replication, it minimizes caching of data, allowing distributed
users to, for the most part, see up-to-date data at the level of
quite fine-grained database commits (e.g. individual note
creation and edits).

Java + Standards-Compliance for Portability
For portability the application server is built in pure Java

using servlets running in an open-source Java web server
(currently Jetty 3.1); it should run on any platform that supports
Java 1.3 or higher. For broad compatibility and easy access
from client systems, the system sends only standard HTML
with CSS and some light JavaScript to the browser. Likewise,
on the database side, we have so far strictly limited the amount
of non-standard code in the system, preferring to see how far
we can get with standard SQL. Two major exceptions to date

include exploitation of Oracle’s indexed text retrieval options,
and hierarchical queries. Nonetheless, the existence of a basic
database abstraction layer and the clear factoring of these
exceptions make us optimistic about the level of effort required
to port to an alternate database. A port to PostgreSQL is under
consideration since it would enable delivery of a fully
functioning portable version of our system with a clean
installation and no dependencies on costly third-party software
packages.

AI-Based Representations and Dependency
Networks
The final, and most unconventional, aspect of the

technology underlying our system is the exploitation of
techniques from artificial intelligence (AI) to represent and
process information about design projects. Our work derives
from earlier work by Petrie (1993) on the Redux design
architecture, which in turn was based on AI research on truth
maintenance systems (see Forbus and deKleer, 1993 for a
comprehensive survey). Our note taxonomy encompasses a
straightforward basic representation system covering design
processes, products, and decision-making; in addition, we
support definition of arbitrarily fine-grained domain-specific
(installation-wide) ontologies to enable detailed formalization
of design assertions. It is the introduction of these AI-based
techniques that allow us to make the leap from on-line design
notebook to active design coordination tool. The next section
provides considerably more detail about the current
implementation of our ideas, focusing on design representation,
notification generation, but including discussion of other core
system features such as discussion groups and versioning.
THE ADVANCED DESIGN COORDINATION TOOL
(ADCT)

The current instantiation of the ideas outlined so far is the
Advanced Design Coordination Tool (ADCT). ADCT was
developed for NASA, as an exploration of how to address the
kinds of design support IT issues sketched in the introductory
section. During the system’s development, we worked
especially closely with engineers from Raytheon’s Knowledge
Center Southwest located with their Missile Systems Division.
The examples in this section reflect the current state of ADCT
(v3.2.3), and our access to data on a particular Raytheon design
exercise (the unmanned, unpowered, but guided “microglider”
surveillance platform).

Notebooks On Line
We introduce ADCT by presenting a collection of screen

shots that together illustrate the major system modes that carry
the notebook metaphor. Figure 1 shows the Main Window
from ADCT (sometimes also known as “Project Tracer”) in
Library View. The browser-hosted screen presents a bookshelf
full of notebooks for a chosen project and user. As the mouse
moves over each book, the book’s name appears next to the
shelf. Clicking on a notebook opens a new window for viewing
the chosen book. When the user is viewing their own
notebooks, a type-in field, color menu, and button below the
bookshelf allow for creation of new notebooks in the current
project. Currently, it is entirely up to the users to decide how

 6 Copyright © 2002 by ASME

they want to organize their information into a collection of
notebooks. The sample data from the “microglider” project
shown here is partitioned into notebooks based on the major
types of data handled by the system (e.g. Teams, Tasks, Parts,
Requirements, Notes, Assertions, and Issues).

The bottom half of Figure 1 shows a “Table of Contents”
(TOC) for the entire bookshelf—essentially a searchable index
to the system’s contents. Each notebook, when opened, has its
own TOC page as well for more focused searches. When
search criteria are entered (e.g. into the blanks at the head of
each column of the result-set table), the result set is filtered
down to a more restricted set. At any time, clicking on a row of
that table jumps to the notebook page containing the particular
note represented by that row.

Figure 1. ADCT’s Main Window (Library View)
Figure 2 shows a sample page from the Issues notebook.

Such notebook pages are the primary way of viewing detailed
information in ADCT. The idea is that each entry in the system
becomes a page in some notebook. Each notebook page tells
you what project you are working in, what notebook you are
looking at, what version you are seeing, and what page/item
you are viewing within the notebook. When viewing a note
page, not only can you create a new note, but you can also edit
the current note.

The top margin of each notebook page is taken up with
indicators and controls for moving through the notebook (e.g.
what page number is being viewed, which item from the
currently selected set). The bottom margin is taken up with
displays and controls for labeling and annotating the current
note (e.g. attaching data files, or threaded discussion entries).
The middle of the page contains the note proper: first a set of
attributes (e.g. type, name, author, data, state), then a block of
free text, and finally—for all but the most basic generic notes—
some tabular layouts of structured data and relationships to
other notes.

Figure 2. ADCT’s Notebook Window Viewing a

Sample Issue as an Issues Notebook Page
The note shown in Figure 2 is hardly a simple generic note.

Issue notes—with their central role in ADCT’s model of a
structured decision process—are actually among the most
complex data structures in the system. Figure 3 shows another
of ADCT’s more complex note types—a Part Specification—
this time in its editable form. Note also the pop-up menu of
wing attributes, which illustrates the system’s exploitation of an
ontology defining basic domain concepts. In the following
subsections, we discuss ADCT’s typology of notes in some
detail.

 7 Copyright © 2002 by ASME

Figure 3. ADCT’s Notebook Window Editing a
Sample Part Specification

(Pop-Up Menu with Attributes of a Wing)

Typed Notes
As suggested earlier, ADCT notes fall into two major

classes: product/process notes record what was considered or
decided, while rationale notes record why certain decisions
were reached.

Product/Process Notes Record “What”
Product/process notes record possibilities about the design

and the design process. Specialized note types provide ways to
capture requirements, parts breakdowns, part specifications,
team structures, tasking assignments, and other information.
ADCT currently recognizes fourteen common categories of
product/process note, and future versions will be open to
installation-wide customization. Figure 4 shows relationships
among several different types of notes:

In return for picking an appropriate note type, users get
some direct benefits. One advantage of putting types on notes
is that it becomes easier to find any particular piece of
information you might be looking for, as the system can restrict
searches based on note type—e.g. only look for requirements.
Another advantage of typed notes is that they can carry
specialized information. For instance the kind of note that
records the assignment of a task to a team can store references
to the team and the task.

Part
There will be wings

Part Decomposition
Wings will have a
deployment system

Task
Design the wing
deployment system

Task Assignment
Team X will design the
wing deployment system

Part Specification
Wing material =
aluminium

Figure 4. Sample Product/Process Notes

Those data references, in turn, serve several purposes.
First, they allow the system to recognize the meaning of the
note: if the task is ever assigned to that team again, the system
can recognize the duplication; if the task is assigned to a
different team, the system can recognize the conflict. Second,
they provide another way for users to browse and access
information: when looking at a note describing a team, it is
easy to find the team’s tasks. When looking at a note
describing a task, it is easy to find the team to which a task has
been assigned. Finally, since ADCT’s relational data store
makes it relatively easy to generate ad-hoc reports such as lists
of tasks that have not yet been assigned to any team.

Rationale Notes Record “Why”
Rationale notes let designers record the reasoning behind

the commitments captured in product or process notes. Several

kinds of rationale notes work together to capture a structured
decision process:

Issue Notes describe decision points—either major ones
that might be the focus of entire trade studies, or minor ones
that are resolved with a little thought by a single engineer.

Option Notes describe alternate possible resolutions of
Issues. A major Issue might have several well-analyzed
Options. A minor Issue might start out with only a single
recorded Option, but the Issue provides a place to attach new
Options, should the original Option not pan out.

Criteria Notes describe how the Options for an Issue are
to be evaluated. Criteria usually derive from Requirements.
The number of Criteria is likely to vary with the importance of
the Issue.

Evaluation Notes fit in an Issue’s Option/Criteria grid (see
Figure 6). Each Evaluation records a discussion and a heuristic
rating of how a given Option fares with respect to a given
Criterion.

Decision Notes provide a place to summarize the reasons
for choosing a particular Option for a particular Issue; the
Decision serves to mark the Option as active. If designers do
not want to frame an entire Issue with Options, Criteria, and
Evaluations, ADCT provides a view that focuses on Decisions
and does not require managing the other structures behind it.

Conflict Notes exist to record problems caused by
mutually incompatible assertions. When a Conflict is noted,
Decisions that support the offending product/process notes
must be revisited.

Consider a set of rationale notes from the microglider
design. Raytheon’s unmanned, guided glider was supposed to
stow in and deploy from a cylindrical canister. With
requirements for low cost, solid reliability, and a high lift/drag
ration, wing deployment became one of the major design
issues. Designers came up with eight possibilities for the wing
deployment, including wings that telescoped out, pivoted
forward, pivoted backward, or fanned out. Criteria included
packagability, cost, reliability, weight, and space. Figure 5
shows a simplified version of the decision and rationale to have
wings pivot forward. Figure 6 shows this Issue’s Options,
Criteria, and Evaluations in a grid layout.

 8 Copyright © 2002 by ASME

Requirement
Lift/Drag > 9

Issue
How to deploy
wings?

Criterium
Adequate
lift/drag

Option
Pivot forward

Requirement
Fits in 8 cm tube

Option
Fan out

Option
Pivot backward

Option
Telescope

Option
Unfold

Criterium
Packagability

Decision
Choose forward-
pivoting wings

Evaluation
Packagabilty of
telescoping wing

Figure 5. Rationale Notes for Wing Deployment Issue

Figure 6. Rationale Grid for Wing Deployment Issue

Linking “What” & “Why”
Product/process notes capture “what” may possibly be true

about the design or design process, while rationale notes
captures “why” certain decisions were reached. To complete
this picture, these two kinds of notes need to be linked together.
The linked structure is called a dependency network. Key
rationale items—notably Issues and Conflicts—depend on prior
product/process assertions, and such assertions, in turn, can
depend on rationales—most especially Options.

Conjunctions of product/process notes can raise design
Issues. In the microglider example, Requirements for
packaging and reliability combine to raise the Issue of wing
deployment. Each Option has one or more product/process
assertions that result if the Option is chosen. The “forward-
pivoting wings” Option supports notes that introduce pivots and
position them with respect to the wings and body.

These dependency links can be used to maintain
consistency as the repository contents change. Product/process
and rationale notes can be either active or inactive. To preserve
a complete record of the design process, ADCT does not delete
notes; it marks them as inactive. If any of the product/process
notes leading to an Issue become inactive, that Issue may no
longer be relevant and might also need to become inactive. If
an Issue becomes inactive, its Options should become inactive
as well. If an Option becomes inactive, the product/process

notes it leads to may deserve to be inactive as well. But since
aspects of product and process design can be supported by
more than one Option, the rule here is that all the supports for
such a note must become inactive before it is reasonable to
make the note itself inactive.

A Conflict, like an Issue, exists because of some
combination of facts about the project. In this case, the facts
don’t simply present a challenge to be solved. Instead, they
represent an inconsistency to be resolved by removing some
subset of the conflicting facts. Dependency links to Conflicts
and the optional links to Options and from Issues play into the
activity calculations as well. Figure 7 shows how incompatible
decisions for two design issues can lead to a design conflict.
Specifically, the Decision to deploy wings by fan out implies a
delta-shaped wing which conflicts with a previous Decision to
use a rectangular wing planform. A Conflict note identifies the
two conflicting Part Specification notes.

Part Spec
Wing planform =
rectangle

Issue
How to deploy
wings?

Conflict
Wing planform
= ???

Option
Fan out

Option
Rectangular
Clarke-Y wings

Decision
Choose fanning
out wings

Issue
What shape for
wings?

Decision
Choose Clarke-Y
wings

Part Spec
Wing planform =
delta triangle

Figure 7. Incompatible Decisions Leads to Conflict

Designers can create, edit, link, and visualize notes using
browser displays for each note type. When a note has links to
other notes, the titles of the referenced notes appear in the
display, and are clickable, allowing easy browsing to connected
notes. In this way, the structure of ADCT’s network of notes is
of direct value to designers trying to learn about the status and
history of a project.

Design Change Notification
Automatic change notifications are the other major payoff

of a well-organized, fully linked set of design notebooks.
Using dependency information, ADCT can automatically route
change notifications to appropriate team members. Pending
notifications trigger a flashing icon in the user’s display. From
their notifications page users can review pending notifications,
and from a notification, they can easily jump to a relevant Note.
So when are notifications generated?

The rules using dependency links to determine
active/inactive status give a feel for the mechanism. When any
team member rescinds a Decision, the corresponding Option

 9 Copyright © 2002 by ASME

becomes inactive. This may mean that some of the Option’s
dependent product/process notes no longer have any active
support. In that case, the authors of those notes are notified and
encouraged to make them inactive. If a product/process note is
removed from active status, any Issues or Options it supports
may need to be revisited, so their authors can also be notified.

ADCT also lets users turn such active/inactive decisions
over to the system on an item-by-item basis. In that case, the
system will not stop to notify an author that the status of an
item might need to be changed; it will go ahead and change the
status itself, then notify the author that the change has been
made. In these situations, the effects of changes can ripple
forward through the dependency network.

When a Conflict is noted, the system identifies relevant
parties by searching backward through the network. Each of
the product/process notes implicated in the Conflict is traced to
the active Options that are its supports, and the authors of those
Options’ Decisions are notified of the Conflict. Those
decision-makers are invited to join an ad-hoc discussion group
about the Conflict. Conflicts will normally be resolved when
one of the decision-makers rescinds one of the Decisions.

By exploiting dependencies, ADCT greatly improves
project coordination. Its notification mechanism ensures that
all the right people find out, in a timely manner, about changes
and conflicts that impact their work. Its discussion group
mechanism provides automated support for asynchronous and
distributed resolution of conflicts. In combination with the
versioning mechanisms discussed below, dependency
processing enables “what-if” explorations of alternate designs
when changes are necessary.

Discussion of Designs and Changes
Conflict discussion groups are just one example of

ADCT’s general facility for managing threaded discussion
attached to Notes. If a Note is public, team members are free to
view it and to post comments in a public forum. ADCT stores
the history of such discussions along with the basic Note.

Conflict discussions are special: they initiate automatically,
subscribing a selected group of users who are then notified of
new postings. Conflict discussions also allow inclusion of
other users into the group: either authors of other Decisions
further upstream, or managers of those already in the
discussion. Escalation of a Conflict discussion is useful when
the original notified group cannot settle on a resolution.

Versioning for Concurrent Design
As noted in the introduction, the waterfall design method is

frequently inappropriate, and design teams need the freedom to
explore alternatives and iteratively refine all aspects of the
design, as additional information is generated. To support
iterative and concurrent design, ADCT supports a branching
model for storing multiple versions of all designs. Any user
can split a branch off a previous version. Users can designate
any version as their current working version, and so long as that
version is unlocked they can perform edits that register in that
version. Each version only records its differences from prior
versions. In a future release, we plan to add support for
exporting work from a branch back to a main-line version.

FUTURES
ADCT 3.x is currently available as a customizable product.

Under a project sponsored by NIST, we are developing a set of
extensions to ADCT that address systems integration tasks, and
emphasize development of formal enterprise models
(ontologies). The Domain Expert Collaborative Ontology
Development Environment (DECODE) we are building for
NIST provides an opportunity to stretch and refine aspects of
ADCT. Still, promising extensions to ADCT far outstrip
available resources. Here we discuss some of the more
important usability and capability enhancements that we hope
to pursue in the future.

Increased Integration with Engineering Infrastructure
ADCT should access project information with as little user

effort as possible. Most engineering shops have existing
processes and legacy systems that generate and manage
information potentially of use in ADCT. For instance, planning
information about task breakdowns, time windows, team
structures, and resource assignments are commonly managed in
tools like MS-Project. As part of our original NASA research,
we built a link to import MS-Project data into ADCT. Bi-
directional links, and links to other third-party tools (e.g.
requirements management tools, analytic tools, etc) are both
possible and desirable.

A major limitation of the current implementation is that
references to files “owned” by other applications occur only as
attachments to ADCT notes. Such attachments are uploaded to
the ADCT server and effectively lose their connection to the
original file. Without a process running on each user’s
machine, it is hard to check for changes in the original files—
changes that ought to prompt notification for designers to
revisit decisions based on such files’ contents. One clean
general way to deal with this problem, especially in modern
engineering environments, is to forge links with a PDM system
that is already responsible for tracking changes to, and
centralizing storage of, design-related files.

Finer-Grained Access Controls & Distributed Storage
ADCT currently provides access controls at the level of

entire projects. It uses standard database mechanisms to
enforce such controls, so they cannot be circumvented, even by
going around the ADCT application server. The system also
provides note visibility control (private/public) for individual
notes. This is enforced only by the ADCT application server,
and so can be circumvented. Future versions of ADCT should
provide more fine-grained access controls and should enforce
them all at the database level. This can be achieved, for
instance, by greater reliance on database stored procedures, and
doing so would likely also improve system performance. The
down-side is increased implementation complexity and
decreased portability (which is equivalent to still more
implementation complexity). For applications in large
organizations (and especially “virtual” organizations) this may
be a necessary tradeoff.

Virtual organizations—project-specific teams of otherwise
separate organizations—are becoming a more common, and

 10 Copyright © 2002 by ASME

present special difficulties with regard to design information
management. The general issue is: How much information will
companies in limited cooperation (and frequent competition)
willingly share with one another? From this question spring
others, such as: If design information is going to reside in a
database, who’s machine will it live on, and who is going to
have access for what purposes? In ADCT, design notes link to
other notes so that dependency processing can produce targeted
notifications. Can we support linking and dependency
propagation if project databases fracture along organizational
boundaries, and access varies with business policies and
contractual requirements?

Engineering Unbound: Tablets and PDAs
Yet another form of decentralization we must be prepared

to support is the proliferation of small portable devices with
intermittent network connections in the hands of an
increasingly mobile workforce. Engineers have never spent all
their time chained to their desks and workstations. Along with
the limitations of common workstation I/O devices, the need
that most engineers have to get out and around has constituted a
major argument for paper-based over computer-based
engineering notebooks. In the coming few years, the
widespread adoption of tablet computers and PDAs will begin
to remove these final barriers—if the software is ready to
migrate to the new platforms, and if the problems introduced by
this form of distribution can be successfully overcome. In
truth, products like the Psion netBook and netPad, with their
embedded Java VM and available Oracle replicated data server
are already reasonably positioned to meet these challenges.
Unfortunately, the price/performance ratio of such solutions is
likely to keep a mobile version of ADCT out of the hands of the
average engineer for a few more years.

Application-Specific GUIs & I/O
ADCT provides a fairly generic and homogeneous view of

notebooks and their contents—a note is a note (though displays
of specific note types are augmented with their type-specific
data and links). The Issue note display comes the closest to
offering a truly custom layout that gives guidance about how
the note type is supposed to be used (specifically by displaying
a grid of options versus criteria with room for evaluations, and
highlighting of current and past decisions). ADCT was built to
support “generic” design, and consciously shied away from
adopting, embodying, or enforcing any particular design
methodology. While a good first-pass strategy for a general
tool, it is not necessarily the place to stop.

In our work for NIST on DECODE, methodology is front
and center. The ADCT note types will (largely) be the same,
but the user interface is being tuned to a particular view of how
systems integration and ontology development projects should
proceed. For instance, instead of generic Part notes, DECODE
will provide a custom interface for introducing systems,
subsystems, and inter-system information flows.

Easier Formalization & More Formal Reasoning
DECODE, with its focus on ontology development, is also

going to take some initial steps towards making it easier to

introduce more formalism into notes describing the
commitments entailed by design decisions. For instance,
requirement and part-specification notes can contain the
equivalent of logical assertions about the attributes and
relationships of parts, but only if a sufficient ontology is on
hand to form the assertions. But in truth, engineers are only
going to bother with such formalization if the system can repay
their efforts in some obvious way. This is an area that will
require work beyond the scope of DECODE, but we can
identify a number of ways in which formalized notes can be
useful: detecting and avoiding duplication of content; detecting
and reporting conflicting assertions; and automatically
interoperating with formal analysis tools.

Proactive Case Retrieval
One of the more powerful applications of the materials

accumulated in ADCT—and one that can be improved by the
availability of formal assertions about captured designs—is
using the corpus of past designs as a mine for reusable design
fragments and lessons learned. Such an extension would
provide the kind of knowledge management capabilities
identified earlier. Using techniques from the Case Based
Reasoning literature (Kolodner, 1993) we believe that it will
prove possible to detect recurring causal patterns (e.g.
dependency structures including formalized requirements and
part-specifications linked through issues and options) and
retrieve design decisions that have worked out well in the past.
Likewise it should prove possible to pick out patterns that have
led to design conflicts and proactively offer advise on their
resolution. This is an area of research that can only be explored
once reasonably complete records of some initial design
projects have been captured. However, we believe it holds out
significant promise as a novel and powerful kind of design
support—one whose realization will address a major class of
design support needs and add strong arguments further
supporting ADCT’s basic approach to tracking design history
and rationale.

ACKNOWLEDGMENTS
This work has been funded in part by NASA under

contract NAS1-99089, and by NIST under contract 50-DKNB-
1-SB084. We have also benefited greatly from input from
engineers in Raytheon Inc, both from conversations about their
general work environment and requirements for ADCT, as well
as from the opportunity to observe the “Microglider” design
exercise. All opinions stated in this report are those of Stottler
Henke Associates, Inc. and its employees.

REFERENCES
Ballinger, G.H. Banares-Alcantara, R. and King, J.M.P, (1993).

Using an IBIS to Record Design Rational. ECOSSE
Technical Report 1993-17, Department of Chemical
Engineering, University of Edinburgh, Edinburgh,
Scotland.

Conklin, J. and Begeman, M.I. (1988). gIBIS: A Hypertext
Tool for Exploratory Policy Discussion. ACM
Transactions on Office Information Systems, 6, 4: 303-331.

Forbus, K. D., and de Kleer, J. 1993. Building problem solvers.
Cambridge, MA: MIT Press.

 11 Copyright © 2002 by ASME

Grudin, J. 1994. Groupware and Social Dynamics: Eight
Challenges for Developers. Communications of the ACM,
37, 1, 92-105.

Kolodner, J.L. 1993. Case-Based Reasoning. San Francisco,
California: Morgan Kaufmann..

Kunz, W., Rittel, H. Issues as Elements of Information Systems.
Working Paper 131, Institute of Urban and Regional
Development, University of California at Berkeley, 1970.

Petrie, C. (1993). The Redux' Server. Proceedings of the
International Conference on Intelligent and Cooperative
Information Systems (ICICIS), Rotterdam, May.

