
978-1-6654-9032-0/23/$31.00 ©2023 IEEE

Developing Cargo Loading Software for
Navy and Marine Aircraft

Jeremy Ludwig, Bart Presnell, & Daniel Tuohy

Stottler Henke Associates, Inc.
San Mateo, CA 94402

ludwig, bpresnell, dtuohy @ stottlerhenke.com

Abstract—Managing cargo loading for U.S. Navy and Marine
Corps aircraft is a challenging task, requiring an understanding
of elements such as aircraft limitations, aircraft center of
gravity, cargo space dimensions, and tie-down procedures to
name a few. These loading requirements are specified in each
aircraft’s lengthy Cargo Loading Guide (CLG). To address the
problem of efficiently and effectively stowing cargo, the U.S.
Navy has proposed the development of an Android app that
assists aircrew in completing their loadmaster duties.

This paper describes the Aircraft Cargo Evaluator app, which
uses three specific capabilities to perform calculations and
provide feedback to help achieve efficient and effective cargo
loading. The first creates 3D models for novel cargo using
Augmented Reality. The second allows the user to develop
scenarios that include 3D models of aircraft, cargo, and tie-
down patterns, and then analyzes the tie-downs according to
CLG-defined rules. The third uses genetic algorithms to
automatically search for and efficient and effective tie-down
patterns for a scenario. The primary contribution of this work
is summarizing how existing tools from augmented reality,
computer games, and artificial intelligence were brought
together to rapidly prototype an end-to-end solution in this
challenging domain – and then following what happens as this
research prototype takes the first steps towards the reality of
operational use.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. RELATED WORK .. 2
3. METHODS .. 2
4. RESULTS AND DISCUSSION 4
5. CONCLUSION .. 6
ACKNOWLEDGEMENTS .. 6
REFERENCES .. 6
BIOGRAPHY ERROR! BOOKMARK NOT DEFINED.

1. INTRODUCTION
Managing cargo loading for U.S. Navy and Marine Corps
aircraft is a challenging task, requiring an understanding of
elements such as aircraft limitations, aircraft center of
gravity, cargo space dimensions, and tie-down procedures to

name a few. These elements differ across aircraft and are
documented in lengthy Cargo Loading Guides (CLGs). One
solution to these challenges is developing an app that runs on
an Android tablet and assists aircrew in completing their
loadmaster duties, helping to ensure that cargo is stowed
efficiently and meets loading requirements specified in the
CLGs.

This paper describes the Aircraft Cargo Evaluation (ACE)
app, which performs calculations and provides feedback to
help achieve efficient and effective cargo loading. The ACE
app has three primary requirements. First, enable the
development of a 3D model of cargo placement and tie-down
patterns. Second, evaluate the safety of the placement and tie-
downs based on the information in the CLGs. Third, generate
a complete solution, or finish a partial solution, to a specified
problem.

ACE includes three specific capabilities to achieve these
requirements. The AR Cargo Creator creates 3D models of
novel cargo using Augmented Reality (AR). The 3D Editor
allows the user to develop a 3D model of cargo and tie-down
patterns, and then analyzes the tie-downs, weight, and
balance according to CLG-defined rules. The 3D Editor
includes representations of multiple aircraft platforms. The
GA Generator uses genetic algorithms (GAs) to
automatically generate efficient and effective tie-down
patterns for a 3D model.

The following is an illustrative use case that ties these
capabilities together. Using ACE, a loadmaster or crew chief
uses the 3D Editor to quickly create a 3D model that includes
the aircraft configuration and cargo to be placed. In the less
frequent case where one of the cargo items has not already
been modeled, they will use the AR Cargo Creator to create
a new cargo model. At this point, the user could either tie-
down the cargo manually and press the ‘Analyze’ button to
ensure the correctness of the solution or press the ‘Generate’
button to invoke the GA Generator and begin the search for a
valid solution.

There are two main benefits to using ACE, as opposed to the
manual calculations that currently occur. First, there is a large
number of constraints and issues that must be considered

2

when securing a load of cargo. Doing these calculations
manually, and ensuring none are missed, is a time-consuming
task. By automating these calculations, ACE will help
loadmasters and crew chiefs to complete their work
significantly faster than the current manual process. Second,
the current system of manual calculation does not provide any
feedback to inform the loadmaster of a possible mistake that
might lead to a catastrophic event — either on the current
flight or on a future flight if the mistake is repeated. ACE
provides specific, actionable feedback that helps the user
correctly secure cargo in the current flight and provides
loadmaster training through positive examples.

The primary contribution of this paper is summarizing prior
work that describes how existing tools from augmented
reality, computer games, and artificial intelligence were
brought together to rapidly prototype an end-to-end solution
in this challenging domain [1] – and then following what
happens as this research prototype moves towards the reality
of operational use. The Related Work section briefly
describes the tools used in ACE as well as an entry point for
research on optimizing weight and balance of aircraft cargo.
Following that, the Methods and Results sections provide an
overview of the software, describe the initial evaluation
process, and highlights changes based on end user feedback.
The Conclusion summarizes progress on ACE to date and
outlines future work.

2. RELATED WORK

Augmented reality (AR) aims to provide an interactive
experience the combines both real and virtual worlds [2]. One
challenge of augmented reality is creating accurate 3D virtual
models of real-world objects to interact with. The AR Cargo
Creator component is tasked with just this problem - creating
3D models of novel real-world cargo. To do this, the AR
Cargo Creator leverages the Unity Augmented Reality (AR)
toolkit [3], which supports the development of immersive
applications that interact with virtual and real-world objects.
Specifically, we use the various features like plane tracking
that are designed to capture 3D models. By using this toolkit
ACE builds on the massive amount of research that has gone
into creating 3D models of real-word objects for AR systems.
Snap2Cad [4] is a good example of ongoing research in this
area related to ACE. The Snap2Cad system uses information
from an Android camera and the Google ARCore toolkit [5]
to retrieve the most similar object from a library of 3D
models, scale the model, and then visualize the combined
scheme. ACE will benefit as research such as this is
incorporated in the AR toolkits.

Unity [6] provides a solid foundation for the 3D Editor.
Unity is an extremely popular real-time 3D development
platform with extensive support for mobile devices. Unity
supports the development of the features required by the user
to place and restrain virtual cargo in a simulated aircraft on
an Android tablet.

Genetic Algorithms (GAs) are a search technique inspired by
the evolutionary process in biology [7]. The basic GA process
is:

1. An initial population of solutions is created.

2. Offspring solutions are created through the process of
combining two solutions through crossover and
changing a solution through mutation.

3. A fitness function determines which offspring survive to
create more offspring.

This process is continued until some threshold is reached
such as number of generations or fitness threshold. ACE uses
the open-source GeneticSharp [8] library as a foundation for
the GA Generator to generate efficient and effective tie-
down patterns.

There is significant related work in properly restraining cargo
as well as analyzing and optimizing aircraft weight and
balance. For example, the U.S. Air Force’s Air
Transportability Test Loading Activity office maintains
formulas and tools used by all federal agencies in the areas of
restraint, weight, and balance [9]. However, we did not find
any related work developing intuitive, tablet-based, software
for analyzing cargo restraint, weight, and balance as found in
ACE.

As an example of work optimizing weight and balance, [10]
describes a mixed integer programming model that
maximizes payload and minimizes center of gravity
deviation. The authors provide an in-depth review of related
work on air cargo weight and balance optimization. They also
note that while there are existing visual software tools that
calculate aircraft weight and balance many airlines still
perform this task manually. While ACE does perform weight
and balance calculations to ensure they are within guidelines,
it does not try to optimize cargo placement and instead relies
on the user to place the cargo.

3. METHODS

This section first summarizes the three main components
included in the initial ACE proof of concept [1] (previously
name AutoLoader) and then describes the evaluation process
that was carried out. The three components are the User
Interface, Computational Engine, and 3D Models.

User Interface

The AR Cargo Creator functionality leverages the Unity
AR Toolkit to allow the loadmaster to interactively create a
3D model from a real-world object, add tie-down points to
the model, and to import the model into the 3D editor app as
shown in Figure 1. Outdoor testing of the AR Cargo Creator
on a small SUV demonstrated reasonable accuracy with
picture-based plane detection, where known images are
placed on specific planes. These known images are printed
onto magnets and labelled with their plane (e.g., right side),

3

making them relatively straightforward to use. The system
worked under a wide range of angles and varying light, with
the limiting factor that the picture must fill about 50% of the
frame.

The 3D Editor relies on the Unity Engine to visualize cargo
placement and tie-down patterns. The 3D Editor is also
responsible for displaying the results of the Validator, which

include the restraint in each direction and that restraint and
other cargo loading rules are followed. Figure 2 (left) shows
an example of sufficiently restrained cargo in a heavy lift
helicopter. The green arrows indicate sufficient restraint in all
directions. The lack of a warning icon above an object
indicates that all restraint rules are followed. Figure 2 (right)
illustrates an incorrectly restrained item in another aircraft,
where the cargo box on the right has both insufficient
restraint and rule violations. The cargo box on the left is
properly tied down. Finally, the yellow blocks on the far left
indicate unavailable/unusable tie-down locations.

Computational Engine

The computational engine includes both the cargo Validator
and GA Generator. Once the cargo is placed and tied-down
in the 3D Editor, the Validator analyzes the cargo restraint
provided by tie-downs and the cargo weight and balance,
utilizing the formulas outlined in the CLGs. Further, the
editor validates that specific restraint rules are followed such
as: do not use blocked tie-down points; if a cargo object has
suspension, then 50% of the restraint must be above the
suspension; the fore/aft and port/starboard restraints must be
balanced; and mismatched restraints (e.g., chains and straps)
should not be used.

Figure 1. Creating a Model of a Car in AR Cargo
Creator (left), Importing the Model into the 3D Editor
(right).

Figure 2. Sufficiently restrained (left) and insufficiently restrained (right) cargo.

Figure 3. GA Generator in progress.

4

Within the 3D Editor app, the ‘Generate’ button launches the
GA Generator. This capability uses a genetic algorithm to
automatically search for an efficient and effective tie-down
pattern for a 3D model, as shown in Figure 3. The GA is
implemented as a set of Unity scripts that extend and heavily
modify the GeneticSharp [8] library . We chose to implement
the GA natively inside Unity in order to exploit useful
computations provided by Unity’s 3D engine. In the GA
representation, each chromosome is a solution. The
chromosome is made up of an ordered list of genes, where
each gene represents a pair of mirrored restraints between
cargo and the platform. Crossover is performed at the level of
entire pieces of cargo. That is, for each piece of cargo, all of
the genes which encode the restraints for that piece are taken
from a single parent. Likewise, each mutation operation is
performed on pairs of restraints on a piece of cargo: restraints
are added as pairs, deleted as pairs, and incrementally altered
as pairs, with mirroring enforced at every step. The fitness
function drives the search over time by favoring solutions
where the required restraint is met in all directions, with
fewer rule violations, with fewer and shorter straps, and
encouraging crisscross restraints. The GA fitness function is
structured so that it can be easily re-parameterized to weight
each of these component factors differently. This supports
searching for a variety of solutions, based on which criteria
are weighted higher.

Models

A set of three aircraft platform models were developed for the
prototype app based on the information in the CLGs.
Additionally, a handful of representative pre-existing 3D
models were used for the cargo items in the proof of concept.

Evaluation

Two informal evaluation events were carried out, where
personnel from each of the three platforms participated in
each event. The first event focused on understanding the
issues and concerns of each individual platform. To foster
this we carried out separate meetings over two days,
discussing current operations and pain points as well as
eliciting feedback by demonstrating the three primary ACE
software capabilities. During this evaluation event, the AR
Creator received the most attention. For the second
evaluation event we gathered Crew Chiefs and Loadmasters
from each of the three platforms, along with the Cargo Team
and various program leads, into a single room. This
evaluation event focused on hands-on evaluation of the 3D
Editor and GA Generator on several Android tablets. The
attendees enthusiastically participated in a dynamic, cross-
platform, evaluation of the current app and discussion of what
features should be tackled in the future.

4. RESULTS AND DISCUSSION

This section summarizes the results from the two evaluation
events and discusses the impact of these results on the
ongoing software development.

First Evaluation Event

The results of the first evaluation event fall into one of several
broad categories: use cases, fixes & features of each of the
three main app capabilities, and general app features and
concerns. The first result of this evaluation event was to
document a set of use cases for ACE in each of the three
platforms, focusing on the types of problems Loadmasters
and Crew Chiefs typically encounter. They can be
summarized as standard cargo items, a mix of standard cargo
items, and unique cargo items. ACE focuses on the first two.
As examples, standard items might include a number of pre-
restrained 463-L pallets or a single vehicle, while a mix of
standard items might include personnel, a vehicle, and some
number of non-463-L pallets.

The second result focused on fixes and features in the three
main app areas: AR Cargo Creator, 3D Editor, and GA
Generator. The feedback for the 3D Editor generally took the
form of incremental improvements. For example, making it
easier to deploy seats, adding buttons to flip to specific
viewpoints quickly, adding labels to aid placing the cargo, the
ability to customize the cargo weight and dimensions, and
performing weight and balance calculations to name a few.
Surprisingly to us, the one item that seemed to be most
annoying to the reviewers was the use of the metric system.
Similarly, feedback for the GA Generator was iterative as
well and aimed at producing the types of tie-down patterns
that people would make. This includes adding tie-downs in
pairs and making better use of crisscross patterns. The most
interesting feature request was to provide a range of solutions
according to different optimization functions, so that the user
can select the solution most appropriate for the current
conditions. For example, if the aircraft is short on straps it
might be better to select a pattern with a bigger footprint that
uses fewer straps. Feedback on the AR Cargo Creator was a
little more transformative. In short, users found the custom
magnets used for image-based plane detection to be
unworkable in the field. Other avenues were discussed, such
as using disposable stickers rather than magnets, using less-
accurate unaided plane detection combined with
measurements made with a tape measure, or to include pre-
existing templates that could be customized with a set of
measurements (removing the need for any augmented
reality). The main takeaway is that creating 3D models of
unique cargo with a tablet in an operational setting is a
challenging problem and we need to pursue new avenues of
research to address this.

The general app feedback focused on the Cargo Loading
Guides (CLGs). First, reviewers would like to see the CLG
publications included in the tablet. Second, reviewers
suggested the app should walk the user through the relevant
portions of the CLG. For example, the user would select and
customize an item and then the app would help the user verify
it will fit and can be loaded with the ramp down. Next the app
would walk the user through any pre-loading requirements
such as shoring or possible hazmat issues. After that the app
would tell the user where to place the item and then provide

5

step by step instructions for restraining it. The result is
essentially a CLG customized specifically to the cargo being
loaded.

The feedback from the first evaluation event was extremely
valuable in helping guide software development. First and
foremost, the event demonstrated that the technical proof on
concept for the 3D Editor and GA Generator was sound. The
use cases and incremental improvements were put directly
into the issue list as future work in these two components.
The feedback on the AR Cargo Creator, combined with the
lower priority of handling unique cargo items, moved the
software in the direction of customizing existing models
instead of using the camera to capture new models (for now).
Finally, the concept of a walk through ‘wizard’ has been
captured as future work. Once the app can perform all of the
individual steps required for a piece of cargo (e.g., projecting
fit, determining a location, creating a tie down pattern), then
we can begin to link all of the steps together to create the
wizard.

Second Evaluation Event

In the intervening time between the first and second
evaluation events, software development focused on
incorporating user feedback and improving the quality of
results found by the GA Generator. The 3D Editor remained
largely the same, except for removing the AR Cargo Creator
button so it would not be inadvertently accessed. While both
the GA Generator and 3D Editor were demonstrated, the bulk
of the feedback provided was aimed at the 3D Editor. The
feedback falls into three broad categories: usability,
platforms, and process integration.

The reviewers spent a lot of time identifying usability issues
and developing more streamlined alternatives. The consistent
message was to make the user interface and user experience
as simple as possible while still supporting all of the

necessary features. For example, not having undo/redo or
clunky system for manually applying straps in a research
proof of concept was perfectly acceptable – and not
acceptable in a system moving towards operational use.
Similarly, engineering outputs on the genetic algorithm
fitness function are not suitable for end users. Instead, users
need a clear understanding what the GA is looking for in a
solution and if the found solution meets minimum
requirements. Most of the items they identified were fairly
straightforward to turn into issues to be addressed in future
releases. Some identified issues do not have a straightforward
fix, such as how to model multiple items in a big pile and then
wrapping straps over it. These types of issues are being
tracked for investigation in later versions.

Having representatives from three different platforms in the
same room allowed us to quickly identify a variety of
platform-specific issues and design solutions that would
work across platforms. Platforms differ in their use cases,
possible aircraft configurations, and their restraining criteria.
For example, look at the relatively common scenario of
carrying both personnel and cargo. If you have personnel and
cargo which, do you place first? Do you try and put personnel
forward or aft of the cargo? The answer is, not surprisingly,
‘it depends’. The solution is to design the software such that
the user can either directly select which seats are occupied
and provide preferences for automated seat selection.
Similarly, each platform has several specific configuration
items that would affect weight, balance, and available cargo
space. The user should be able to easily select which are in
the current aircraft. Finally, each aircraft has its own set of
rules detailed in the Cargo Loading Guide and it is imperative
to use the set of rules matching the platform.

Feedback on process integration focused on how this app
would fit into the existing, highly regimented, processes for
verifying cargo before takeoff. For example, pilots and
aircrew are already documenting weight and balance

Figure 4. Updated user interface based on feedback from evaluation events.

6

calculations. Reviewers were interested in knowing how the
results of this app could be included in the existing process,
saving them time and energy. Also, while reviewers stressed
that it was important to have as simple and intuitive user
interface as possible, for verification and validation details on
the underlying calculations will be needed. The result of this
is to include an ‘advanced’ series of displays where the
calculations can be presented and downloaded.

Discussion

An in-progress screenshot of the app user interface is shown
in Figure 4. This version addresses many of the 3D Editor and
GA Generator issues discovered during the evaluation
process. For example, replacing yellow exclusion boxes with
deployable seats, providing a set of view buttons along the
top, and streamlining the available functions in the toolbar
along the bottom such as undo/redo. While the current
version does not yet address all the identified issues, it
demonstrates significant progress from the proof of concept
towards a minimum viable product.

5. CONCLUSION
Managing cargo loading for U.S. Navy and Marine Corps
aircraft is a challenging task, requiring an understanding of
complex requirements that differ across aircraft and are
documented in lengthy Cargo Loading Guides (CLGs). The
primary objective of the ACE system described in this paper
is to assist aircrew in completing their loadmaster duties —
helping to ensure that cargo is stowed efficiently and meets
loading requirements specified in the CLGs.

With the AR Cargo Creator, we demonstrated the capability
to develop an initial model using augmented reality to
recognize planes, to manually refine the model and add tie-
down points, and to import the created model into the 3D
Editor. With the 3D Editor, we demonstrated placing and
tying down cargo in multiple aircraft. The engine quantified
the restraint applied to cargo in each direction, validated that
restraint rules were followed, and the editor communicated
this information to the user. With the GA Generator, we
demonstrated the ability to use genetic algorithms to
efficiently search for a tie-down solution. The fitness function
improved and refined results over time by ensuring the
required restraint was met in all directions, minimizing the
number of rule violations, preferring fewer and shorter straps,
and encouraging symmetry. The proof-of-concept prototypes
successfully demonstrate the technical feasibility of key
aspects of ACE.

While the protype results successfully demonstrate the
technical feasibility of key aspects of ACE, the evaluation
events highlighted what is needed to move from the prototype
to a minimum viable product. This work includes improving
the usability of the tool and adding features based on end-user
use cases. While technically feasible, the AR Cargo Creator
concept needs to be replaced with something that is more
practical for operational use. Additionally, the app needs to
be updated to better support the needs of each of the three

individual platforms and their user communities. Finally,
looking towards the future the app needs to prepare for
rigorous verification and validation and eventual integration
with existing air cargo processes.

ACKNOWLEDGEMENTS
This material is based upon work supported by the United
States Navy under Contract No. N68335-20-C-0538. The
views, opinions, and/or findings contained in this
article/presentation are those of the author/presenter and
should not be interpreted as representing the official views or
policies, either expressed or implied, of the United States
Navy.

REFERENCES
[1] J. Ludwig and B. Presnell, “Autoloader: Cargo Handling

Software for Navy and Marine Aircraft,” presented at the
IEEE Aerospace Conference 2022, 2022.

[2] “Augmented reality,” Wikipedia. Dec. 30, 2021. Accessed:
Dec. 30, 2021. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Augmented_realit
y&oldid=1062792894

[3] U. Technologies, “Augmented Reality Development Software
| AR Engine for Apps | Unity.”
https://unity.com/unity/features/ar (accessed Nov. 11, 2020).

[4] A. Manni, D. Oriti, A. Sanna, F. De Pace, and F. Manuri,
“Snap2cad: 3D indoor environment reconstruction for AR/VR
applications using a smartphone device,” Computers &
Graphics, vol. 100, pp. 116–124, Nov. 2021, doi:
10.1016/j.cag.2021.07.014.

[5] “Build new augmented reality experiences that seamlessly
blend the digital and physical worlds | ARCore,” Google
Developers. https://developers.google.com/ar (accessed Dec.
30, 2021).

[6] U. Technologies, “Unity Real-Time Development Platform |
3D, 2D VR & AR Engine.” https://unity.com/ (accessed Nov.
11, 2020).

[7] “Genetic algorithm,” Wikipedia. Nov. 11, 2020. Accessed:
Nov. 18, 2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Genetic_algorithm
&oldid=988134173

[8] “GitHub - giacomelli/GeneticSharp: GeneticSharp is a fast,
extensible, multi-platform and multithreading C# Genetic
Algorithm library that simplifies the development of
applications using Genetic Algorithms (GAs).”
https://github.com/giacomelli/GeneticSharp (accessed Nov.
11, 2020).

[9] “ATTLA ensures aircraft cargo gets to destination safely,”
Wright-Patterson AFB.
http://www.wpafb.af.mil/News/Article-
Display/Article/818869/attla-ensures-aircraft-cargo-gets-to-
destination-safely (accessed Jul. 08, 2022).

[10] X. Zhao, Y. Yuan, Y. Dong, and R. Zhao, “Optimization
approach to the aircraft weight and balance problem with the
centre of gravity envelope constraints,” IET Intelligent
Transport Systems, vol. 15, no. 10, pp. 1269–1286, 2021, doi:
10.1049/itr2.12096.

