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Abstract— Creating and maintaining high-quality source code 
is especially important for critical systems such as those made 
for aerospace and military domains as well as for software 
product lines where long-lived, reusable modules are intended 
to be shared by multiple systems.  CBR-Insight is an open-
source automated assessment tool that relies on data science and 
interface design to provide an objective and understandable 
measure of source code quality.  CBR-Insight supports the 
ability of technical and non-technical decision makers to verify 
that a project’s software implementation follows through on 
promises around developing and sustaining reliable and 
maintainable software while managing technical debt. The 
primary contribution of this work is an in-depth discussion on 
how source code quality assessment is communicated to the 
entire development team in CBR-Insight, spanning from non-
technical decision makers overseeing the project to the software 
developers responsible for source code. Specific issues discussed 
include understandability of the explanations provided by the 
user interface along with transparency and trust in the 
underlying, technically complex, calculations and scoring 
algorithms.  
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1. INTRODUCTION 
Creating and maintaining high-quality software is especially 
important for critical systems such as those made for the 
aerospace and defense as well as for software product lines 
where long-lived, reusable modules are intended to be shared 
by multiple systems. A vital component of software 
development is creating high-quality source code that 
strengthens the reliability and maintainability of the software 
and has limited technical debt. High-quality source code is an 
investment that saves time and money in the long run: users 

will find fewer bugs, the bugs will be easier to fix, and new 
features will be easier to add.  

Software development teams employ a variety of design 
techniques, processes, and tools to continually work towards 
quality code while balancing the overall time and budget 
demands of the project. CBR-Insight (CBRI) is an open-
source automated code assessment tool that relies on data 
science and design to provide an objective and 
understandable measure of source code quality that can help 
guide decisions and direct limited resources during software 
acquisition, development, and sustainment. CBRI supports 
the ability of technical and non-technical decision makers to 
verify that a project’s software implementation follows 
through on promises around developing and sustaining 
reliable and maintainable software while managing technical 
debt.  

There is a long history of software engineering research in the 
area of source code quality, and numerous existing tools aim 
at performing automated code quality assessment and review. 
What makes CBRI a complementary addition to existing 
tools is: (i) the calculation of a small, essential set of static 
code metrics associated with software maintainability, 
reliability, and source code technical debt, (ii) using a 
customizable set of peer projects to provide the context 
needed to understand the metric results, and (iii) presenting 
the information in a format preferred by decision makers. 
This paper begins with an overview of related work and the 
CBRI source code assessment tool. Following this is an in-
depth discussion on how source code quality assessment is 
communicated to the entire development team in CBRI, 
spanning from non-technical decision makers overseeing the 
project to the software developers responsible for source 
code. The paper concludes with a description of ongoing 
work on CBRI and links to the source code on GitHub. 

2. RELATED WORK 
There is a consistent push to improve software quality for 
critical systems and software product lines. The related work 
spans several areas, including software quality models, 
technical debt, and automated code review tools. 
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Software quality models articulate what is meant by 
‘software quality.’ These models define the desired 
characteristics and sub-characteristics of software and the 
relationship between these characteristics and measurable 
properties of the software [1]. The ISO-IEC 25010: 2011 [2] 
quality model defines eight desired characteristics of 
software product quality: Functional Suitability, Performance 
Efficiency, Compatibility, Usability, Reliability, Security, 
Maintainability, and Portability. While all of these 
characteristics are important, this paper focuses specifically 
on reliability and maintainability as the bulk of existing 
research linking software quality to static code analysis uses 
these characteristics [3]. Reliability and maintainability play 
a supporting role for other characteristics such as usability 
and security. 

Software quality models based on static source code analysis 
generally follow a three-step pattern. They identify specific 
source code metrics to be calculated, describe how the 
measurements of these metrics are aggregated, and define 
how the aggregations are used to assess characteristics of 
software quality (e.g. Reliability) [4]. Some examples of 
models and tools are Software Quality Enhancement 
(SQUALE), Quamoco Benchmark for Software Quality, 
Columbus Quality Model, Software Improvement Group 
(SIG) Maintainability Model, and Software Quality 
Assessment based on Lifecycle Expectations (SQALE). As 
an open-source project, SQUALE [5] provides a veritable 
treasure trove of information on understanding and 
developing a software quality model and visualizing the 
results. SQALE [6] differs from the others in that it is an open 
methodology that defines the software quality and technical 
debt model and is implemented by tools such as SonarQube. 
CBRI builds on all of this prior work in creating its 
underlying software quality model. 

Technical debt is a measure of how much work would be 
needed to move from the current code to higher-quality code 
[7]. The source of technical debt during development and 
sustainment stems primarily from making design, 
implementation, documentation, and testing decisions that 
focus on short-term value [8]. As technical debt increases, 

changes to the software become more difficult, error-prone, 
and time-consuming, and this threatens the reliability, 
maintainability, and security software characteristics.  

This is an especially important take-away for software 
product lines, where long-lived, reusable modules are 
intended to be shared by multiple systems. Each module will 
want to invest in high software quality (low technical debt) 
initially and maintain this investment in quality over time as 
it is extended and updated. That is, as part of planned re-
usability, each module commits to making a long-term 
investment to software quality. The likely alternative is that 
the software quality will gradually degrade until, eventually, 
the problems become overwhelming [9]. 

While some technical debt is unavoidable [10], a large survey 
of software engineers and architects across multiple 
organizations provides a practical view of the causes and 
sources of avoidable technical debt [8]. Their results indicate 
that architectural decisions, overly complex code, and lack of 
code documentation are the top three avoidable sources of 
technical debt in practice. CBRI focuses on these three areas 
of source code technical debt in order to support software 
reliability and maintainability. 

There are several practical tools aimed at improving source 
code quality and reducing technical debt. Of these SonarQube 
[11] appears to be the most widely used [12]. This and other 
similar automated code review tools use rules to analyze 
every line of code to identify likely bugs, maintainability 
issues, and security flaws— encouraging developers to 
correct these issues with each code commit. 

Automated code review provides an invaluable service, 
assisting developers in catching these issues early. However, 
automated code review based strictly on rule violations may 
not present a complete picture of overall code quality [13]. 
Additionally the (generally long) list of violations generated 
for existing systems can be overwhelming for developers and 
is not necessarily helpful in providing a high-level view of 
the health of the code base [14]. CBRI aims to complement 
automated code review systems by highlighting overall 

 

Figure 1.  CBR-Insight Dashboard with three example projects 
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software quality trends in the areas of architecture, 
complexity, and clarity as well as by providing the context 
required to interpret and utilize the results. A detailed look at 
CBRI, including metrics, methods, and a real-world DevOps 
use case, can be found in [15]. 

3. CBR-INSIGHT 
The CBRI web application is composed of two main user 
interface components: Dashboard and Project View. The 
Dashboard in Figure 1 provides an at-a-glance summary 
across a number of projects, while the Project View in Figure 
2 enables a deep look into a single project. Behind the scenes, 
CBRI uses the Understand static source code analysis tool 
developed by SciTools [16] to generate the data displayed in 

the web app. The guiding design principle of the user 
interface is to include accessible explanations whenever 
possible. 

The Dashboard focuses on highlighting software code quality 
across multiple projects in three important areas: architecture, 
complexity, and clarity. Intuitive symbols and colors indicate 
the relative score, from red/alert to green/check. An overall 
letter grade (A – F) is also assigned, each with a 
corresponding color. Trending icons indicate how the area 
and overall scores have changed relative to a baseline 
measurement.  

 
 

Figure 2.  Project View general information, architecture, and complexity sections 
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The Project View provides a description of the underlying 
metrics used to generate the scores for the project and 
visualizes the calculations over time. The visualizations 
include color-coded target ranges determined by analyzing 
peer projects along with a tree-map of file size and 
complexity organized by the Core Size architecture set. Every 
section contains descriptive text to assist the user in 
understanding the scores and measurements. 

The top portion of the Project View in Figure 2  provides 
general information such as topics (e.g., machine-learning) 
and a brief description. Following this are the date, revision, 
lines of code (LOC), and number of files in the baseline and 
latest measurement. Links enable the operator to update the 
project and to view additional details on the benchmarks and 
measurements.  

The next three sections of the Project View are the 
architecture, complexity, and clarity (continued in Figure 3) 

measurements. Each section includes a description of the 
measurement and a graphical representation of the 
measurement over time, relative to peers. Hovering over a 
graph brings up a popup that shows the calculated metric 
value compared to the 25th, 50th, and 75th percentile values 
from the selected peer projects. Each section also includes 
visual indicators of change (good, bad, none), relative to the 
project baseline. For this very mature project, the trend lines 
have remained consistent over time; the visual indicators 
provide insight into the slowly creeping changes to code 
quality. 

The following section of the Project View in Figure 3 
contains a treemap, where each box is a file, the size of the 
box indicates the lines of code, and the color the number of 
complexity thresholds exceeded (darker red is worse). The 
files are organized by their determined core size architecture 
grouping. Click on architecture group to see the files with the 
group; right click to navigate back to the architectures. 

 

 

Figure 3. Project view clarity, treemap, and project info sections 
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Addressing complexity issues in the core group will likely 
have the greatest impact. The final section of the Project 
View supports the viewing and editing of detailed 
information such as the repository location, the analysis 
language, and the users with whom this repository is shared. 
A log is also included to troubleshoot repository connection 
issues. 

4. EXPLANATIONS  
There are four different types of results that CBRI attempts 
to explain to the end user: metrics, metric calculations, peer 
projects, and generated scores.  

Metrics 

The first challenge is explaining the five metrics that are 
calculated by performing a static analysis of the source code. 
This is primarily done with textual explanations for each 
metric embedded in the UI. For example, the short (two 
sentence) explanation for propagation cost is seen in Figure 
2 under the percentage value. The View More link of this 
explanation expands to show a longer definition as seen in 
Figure 5.  

Note that these explanations do not contain all of the details 
that would be required to replicate the measurement. This 
was the result of a design decision to streamline the interface 
rather than provide complex algorithm descriptions and 
examples that most users would have little reason or desire to 
read. This design decision is a point of debate – while most 
users find these explanations sufficient there are times when 
more details are requested. 

The second metrics-related challenge is explaining why these 
metrics were selected from hundreds of available static 
source code metrics [1]. Metric selection for CBRI is based 
on [17], which identifies architecture, complexity, and 
comment metrics related to software reliability and 
maintainability. The user interface builds on this, and the 
notion of preventable technical debt described in [8], to 
highlight architecture, complexity, and clarity in both the 
Dashboard and Project View.  Ultimately while there is prior 
research [17] and quantitative results [15] that provide 
evidence for the selected metrics, users familiar with static 

code analysis tend to approach the selected metrics as a 
starting set that they would like customize with additional 
metrics.   

Metric Calculations 

The are three challenges associated with a project’s 
calculated metrics results. First, users have difficulty with 
interpreting calculated values other than that more (or 
sometimes less) is bad. For example, if 2% of a project’s files 
are over complex is that good or bad? CBRI uses values 
calculated from similar peer projects [15] to develop the 
interquartile range (IQR) in which to interpret the results as 
shown in Figure 4. Graphing the calculations for a project 
over time, against the backdrop of peer-generated IQR color 
bands, provides an intuitive explanation of the metric 
calculation result and direction. 

Second, users familiar with static code analysis tend to want 
to see the calculated results for their projects within the web 
application (in addition to within the Understand integrated 
development environment as currently supported). For overly 
complex files, this information is mostly contained in the 
treemap. Results of other metrics such as duplicate lines of 
code and comment density could usefully be displayed in a 
table. However, the architecture metrics are problematic, 
involving large matrices showing connections between files. 
For example, even a relatively modest design structure matrix 
used to determine the core size [18] as shown in Figure 6 is 
difficult to make use of within the web application. 
Regardless, to ensure transparency we plan to include 
detailed results for all metrics as part of future work. 

 

Figure 5. Expanded explanation for propagation 
cost. 

 

 

Figure 4. Overly complex files over time 

 

 

Figure 6. Design structure matrix for 350+ files 
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Third, users frequently ask to see which files were included 
in the analysis results, to verify that generated and test source 
code is not included. Explicit inclusion and exclusion of 
source directories is planned as part of future work. 

Peer Projects 

Peer projects play a large role in CBRI, where they are used 
to determine the IQR bands against which each metric is 
graphed and in the scoring algorithm. Peer projects are 
selected from a vetted library drawn from the 1,000 most 
popular Java, C, C++, and C# repositories on GitHub. The 
custom set of selected peer projects, along with all of their 
lines of code, topics, metric calculations, etc. are available in 
a table by following the View Benchmark link at the top of 
the Project View. What is missing from the user interface is 
any explanation of how the peers were chosen from the 
library. The lack of selection criteria hurts overall system 
transparency and trust and would be relatively easy to address 
with a text explanation. 

Scoring Algorithm 

CBRI calculates four aggregated scores – one for the overall 
score and one in each area of architecture, complexity, 
clarity. The scores are generated directly from the calculated 
metric percentile scores. For example, if a project’s 
propagation cost score is in the 95th percentile relative to its 
peers a score of 0.95 is assigned for propagation cost. The 
area scores are the sum of the metric scores in that area; the 
overall score is the sum of the area scores. Higher scores 
indicate better performance on the underlying metrics 
relative to peers. These scores are used to generate the 
trending arrows as well as letter grades. 

Letter grades are presented in the user interface as colors and 
symbols and are based on the percentile of the score relative 
to the scores of all of the projects in the library of the same 
language. To be precise, grades are assigned by looking at the 
distribution of numeric scores across all projects in the library 
of the same language (not just peers) and then assigning letter 
grades based on this distribution with the following percentile 
cutoffs: A (0.9), B (0.7), C (0.3), D (0.1), and F (< 0.1). For 
example, all of the projects with an “A” will be those that 
scored the best against their peers; a “C” represents an 
average score. This is different from letter grade assignment 
schemes used by some other code quality tools (e.g., [19]) 
that awards A and B grades to a majority of projects. There 
is no explicit explanation of the scoring mechanism to help 
users understand the grade results. For example, users 
commonly interpret a “C” as a poor score rather than as 
average with respect to other production-level projects. This 
explanation gap is addressed as part of future work. 

5. CONCLUSION 
Software code quality has a significant impact on a software 
product’s reliability, maintainability, and security. This paper 
describes CBR-Insight, an open-source web application 
designed to measure and visualize source code quality. CBRI 
provides an objective and understandable measure of 

software quality that can help guide decisions and direct 
limited resources during software acquisition, development, 
and sustainment. One specific challenge that CBRI attempts 
to address is how source code quality assessment is 
communicated to the entire development team, with the idea 
that the assessment needs to be valuable to everyone involved 
in performing and overseeing software development.  

There is a long history of software engineering research in the 
area of software product quality, and numerous existing tools 
aim at performing automated code quality assessment. What 
makes CBRI a complementary addition to existing tools is: 
(i) the calculation of a small, essential set of metrics 
associated with maintainability, reliability, and technical 
debt, (ii) using peer projects to set the targets associated with 
each metric, and (iii) presenting the information in a format 
preferred by decision makers. CBRI components are 
available at: https://github.com/StottlerHenkeAssociates. 

Future efforts on CBRI related to explanations includes the 
issues highlighted in this paper. First, while CBRI strives to 
provide a high-level view, there is a need to add more details 
on the metric algorithms and the raw data from calculations. 
Second, the user needs a well-defined way to define the 
directories to be included and excluded from the source 
analysis. Third, clear explanations for peer project selection 
and the scoring mechanism should be included. All of these 
efforts will further the usability of the system and trust in the 
assessment results.  
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