Enhanced Visualization of Production Systems Concepts and Simulation Data for the Smart/Digital Factory

James Ong¹, Anand Paul², and Daniel Tuohy³, Feraidoon Zahiri⁴, Gregory Sutton⁵

^{1,3}Stottler Henke Associates, Inc., San Mateo, CA, 94060, U.S.A. ong@stottlerhenke.com dtuohy@stottlerhenke.com

²University of Florida Warrington College of Business, Gainesville, FL, 32611, U.S.A. anand.paul@warrington.ufl.edu

^{4,5} Warner-Robins Air Logistics Complex, Robins AFB, GA, 31098, U.S.A. feraidoon.zahiri@us.af.mil gregory.sutton@us.af.mil

ABSTRACT

Aircraft maintenance, repair, and overhaul (MRO) ensures the continuing airworthiness of aircraft or aircraft parts. Aircraft MRO is extremely costly: the U.S. Air Force spends most of its lifecycle costs to sustain, versus acquire, its aircraft. A key component of Smart Manufacturing for MRO is the use of new software tools for analyzing and exploiting manufacturing knowledge and data more effectively.

This abstract describes two new analytic tools developed for the U.S. Air Force, enhanced with data visualizations, to enable more effective MRO production systems design and operations.

Selecting appropriate mitigations to production disruptions is

challenging because the relationship between control decisions and the resulting performance is delayed and nonlinear. The Short-Term Flow Planning Tool helps analysts understand and plan for current and hypothetical changes and disruptions, such as equipment outages, by simulating the effects of various capacity adjustments, induction rates, part scrap rates, and buffer sizes on WIP, part processing rates, and part transfer rates for each process step and day during

the planning period. To help analysts interpret this multivariate data, the Tool provides a set of complementary data displays, including heat maps (

Figure 1), arrays of timelines and time series graphs (Figure 2), and animated bar graphs (Figure 3) which show snapshots of daily production status and performance.

The operations management research literature provides many insights into manufacturing system behavior as well as methods for improving system performance. Unfortunately, many of these results have not been used by practitioners.

Based on operations management principles, the Diagnostic

Tree (D-tree) provides a systematic way of reviewing possible ways of improving a production system. A D-tree is composed of nodes which each describe a performance improvement objective. Many of the nodes are linked to sub-

nodes that describe more concrete sub-objectives for achieving the objective and describe how the objective's metric varies with the values of its sub-objective metrics. To help analysts understand these multivariate relationships, a sensitivity analysis function at selected nodes shows how the objective function varies with a user-selected variable, fixing the other variables at user-specified values. The dialog in Figure 4 prompts the user for values of the sub-

objectives, and the graph in

shows how the objective variable varies with the range variable -- in this case, sequential process batch size.

ACKNOWLEDGEMENT

Funding for the work described in this paper was provided by the U.S. Air Force under contract FA857120C0010.

James Ong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

	А	В	C	D	E	F	G	Н	1	J	K	L	М	Ν	0	Р
1	Parts Processed															
2		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
3		1/1	1/2	1/3	1/4	1/5	1/6	1/7	1/8	1/9	1/10	1/11	1/12	1/13	1/14	Sum
4	Step 1	12	12	12	12	12	4	0	12	12	12	12	12	12	12	148
5	Step 2	12	12	12	12	12	0	0	12	12	12	12	12	12	12	144
6	Step 3	12	12	12	12	8	0	0	12	12	12	12	12	12	12	140
7	Step 4	12	12	12	0	0	0	16	16	12	12	12	12	12	12	140
8	Step 5	12	12	12	12	0	0	0	12	12	12	12	12	12	12	132
9	Step 6	12	12	12	12	12	0	0	0	12	12	12	12	12	12	132
10	Step 7	12	12	12	12	12	12	0	0	0	12	12	12	12	12	132
11	Step 8	12	12	12	12	12	12	12	0	0	0	12	12	12	12	132
12	Step 9	12	12	12	12	12	12	12	12	0	0	0	12	12	12	132
13	Step 10	12	12	12	12	12	12	12	12	12	0	0	0	12	12	132
14	Sum	120	120	120	108	92	52	52	88	84	84	96	108	120	120	1364

Figure 1 – Short-Term WIP Flow Tool Heat Map Shows Parts Processed for Each Step and Day

Figure 2 – WIP Flow Tool Graphs Shows Production Variable Values by Step vs. Time.

Figure 3 – Animated Bar Graphs Show Daily Status and Performance by Step vs. Day

Diagnostic Tree							
Node Browser Estimator * Node Listing All Comments Help							
Adjust Batch Size							
In a sequential batch process, the cycle time of station i equals: $CT_i = CT_a + s + WIBT + t$							
where:							
 CT_q = station queue time = (c_a² + c_e²)/2 * u/(1-u) * t_e WIBT = Wait in Batch Time = (k_p-1) * t/2 + (k_t-1) * t/2 u = station utilization = r_a * t_e / k_p t_e = effective process time for a batch = k_p * t + s 							
5 to 20 kp	size of the sequential processing batch ($x \ge 1$)						
1 S	setup time (x \ge 0)						
1 t	station process time for a single part ($x \ge 0.0001$)						
0.8 r _a	average rate of parts arrivals at the station $(x \ge 0)$						
1 <i>Ce</i>	coefficient of variation (CV) of the effective process time of a batch, including both process time and setup time $(x \ge 0)$						
1 <i>Ca</i>	coefficient of variation (CV) of the times between part arrivals at the station (x \ge 0)						
1 <i>k</i> _t	size of the transfer batch (x \ge 1)						
Estimate							
СТ	average time a part spends at each station, including processing, queueing, and waiting time						

Figure 4 – D-Tree Estimator Inputs Specify a Range for Batch Size (k_p)

Figure 5 – D-Tree XY Graph Shows How Station Cycle Time Varies with Batch Size at User-Specified Values of other Variables