
Distributed Satellite Constellation Planning and Scheduling

Robert A. Richards, Ryan T. Houlette, and John L. Mohammed

Stottler Henke Associates, Inc.
1660 South Amphlett Blvd., Suite 350

San Mateo, California 94402
richards@shai.com

Abstract
SHAI is developing a software architecture for automated,
distributed planning and coordination of constellations of
satellites. This architecture allows large satellite
constellations to manage themselves with minimal human
oversight. SHAI is utilizing an integrated approach drawing
upon a broad range of AI and non-AI techniques. Advanced
planning and scheduling algorithms permit the system to
quickly create complex plans satisfying intricate time and
other constraints. A reactive planning component deals with
unexpected, time-critical local events such as new critical
tasks. In addition, a knowledge base stores information
about the satellites’ capabilities and commitments that is
used during the distributed planning process to properly
allocate tasks to the satellites best suited to perform them.
The resulting architecture provides the capacity for robust,
scalable management of satellite constellations. The
potential benefits are reduced costs, increased operational
efficiency, and improved robustness. A prototype utilizing
a subset of the architecture has been built and verified.

Background
Since the first American satellite was placed in orbit in
1958 scientists have recognized the tremendous potential
for study of the Earth and space offered by orbiting
sensors. In the past satellites worked mainly as isolated
entities. The new satellite constellation model is desirable
because it is more robust and flexible, providing a greater
ability to adapt to changing expected and unexpected
events. However, managing a constellation requires a
tremendous amount of time and effort.
 Given the low cost and high speed of computer
processors today, it is now feasible to equip every satellite
in a constellation with enough processing power to be able
to direct its own activities. Control would thereby be
distributed throughout the entire constellation, minimizing
the reliance of the whole system on the limited and fallible
resources of any single component, and minimizing human
ground management. A well-designed and flexible social
structure would enable the constellation to coordinate its
activities as a whole, distributing tasks and allocating
responsibilities to the appropriate member satellites,
without losing the benefits of individual autonomy.
 SHAI is developing a software architecture for
automated, Distributed Spacecraft Coordination Planning

and Scheduling (D-SpaCPlanS, pronounced ‘D space
plans). This architecture allows large satellite constellations
to manage themselves with minimal human oversight. The
potential benefits are reduced costs, increased operational
efficiency, and improved robustness.

D-SpaCPlanS Overview
The D-SpaCPlanS architecture will support the creation
and maintenance of adaptive, hierarchical social structures
that will enable large satellite constellations to manage
themselves with minimal human oversight. Figure 1
illustrates the context in which the D-SpaCPlanS agent is
designed to function.

Figure 1 D-SpaCPlans Context

 To accommodate multi-level organizational structures
within individual satellites and satellite constellations, the
system will employ hierarchical task decomposition
methods allowing planning to occur at varying levels of
detail. To deal with unexpected, time-critical local events
(such as system failures), a reactive planning component
[Bonasso et al., 96] for rapid remediation is included. In
addition, a sophisticated knowledge base will store
information about the capabilities and commitments of
other satellites. This will be used during the distributed
planning process to properly allocate tasks to the satellites
best suited to perform them. The architecture will also
draw on constraint satisfaction and irrelevance reasoning
algorithms [Wolverton & desJardins 1998] to detect and
resolve conflicts between satellites’ individual plans.

Sub-components

Satellite

D-SpaCPlanS
Component

Other
On-board

Component

Ground Station

Functionality
The D-SpaCPlanS advances the idea that efficient
distributed planning in a densely-populated network of
autonomous entities requires some form of system-wide
organization to structure and guide the planning process
(see discussion of organizations in [Durfee, 1993]). To
ensure robustness and scalability, this organization should
spread authority and responsibility as evenly as possible
over all its members, thereby minimizing the impact caused
by the introduction of new members or the loss of old
members due to failure. In addition, the organization will
be able to reorganize itself to adapt to changes to the
membership of the network over time.
 In D-SpaCPlanS, the organizational principles described
above manifest themselves in the form of a flexible
hierarchy of nested groups; every satellite in a given
constellation belongs to one or more of these groups. A
rough sketch of this hierarchy is presented in Figure 2, with
solid circles representing the actual satellites in a
constellation and different-sized ovals representing groups
at different levels of the hierarchy. The groups to which a
particular satellite belongs are indicated by the ovals that
contain it. For example, Satellite 13 is a member of the
whole constellation, of Group A, and of Subgroup Alpha.
Group membership is not based on any specific properties
of a satellite – such as its physical location or functional
capabilities – but is rather an arbitrary, abstract division
whose purpose is to provide a framework for the
decomposition and distribution of the planning process
across the entire constellation. These divisions are
determined automatically by negotiation [Davis and Smith
1983] among the satellites’ social coordinator units.

Figure 2 Sample Organizational Structure

 As shown in the figure, its own autonomous manager
governs each group at each level of the hierarchy. This
manager receives task assignments for its group from the
next higher level of the hierarchy and in turn is responsible
for distributing these tasks to the most appropriate
subgroups in the level of the hierarchy immediately below.
The manager makes its determination of who is most
appropriate for a given task based on its knowledge of the
capabilities and current commitments of each of the
subgroups belonging to its group. At the lowest level,
managers assign tasks to the individual satellites in their
subgroups, which then carry out the requested tasks. At the
top of the hierarchy resides the manager for the whole

constellation, who accepts orders directly from the ground
controller. The management role of the ground controller
is greatly simplified by this hierarchical organization, since
it needs to interact with but a single entity in order to direct
the activities of dozens to hundreds of satellites. Planning
occurs at all levels of the hierarchy, with plans growing
more and more detailed the further down one goes in the
hierarchy.
 It is not uncommon for a satellite to fail in orbit for a
variety of reasons [Mohammed, 98]. Such a failure could
be catastrophic for a constellation that relies heavily on a
fixed organizational hierarchy. Imagine, for example, that
the top-level manager suddenly dies without warning. If
the satellites’ organizational scheme is unable to
compensate for this failure, the whole constellation
becomes inaccessible and useless. In our architecture,
granting the organizational structure the capacity to
dynamically reorganize itself in the face of changes to the
constellation alleviates this danger. There are two facets to
this capacity.
 First, group managers are designed in such a way that
their existence is not tied to any single satellite. Instead,
every satellite in a constellation possesses the ability,
within its automated planning architecture, to take over the
duties of a group manager. As part of this distribution of
the managerial role, each group manager periodically
broadcasts the contents of its memory to some of its
subgroups, which store this information. Then, when lack
of communication from a given manager indicates the
death of the hosting satellite, the members of the now-
managerless group cooperate to reconstruct the lost
manager on a new host using their backup copies of that
manager’s memory.
 Second, if significant imbalances in group size arise
(e.g., as old satellites fail and new ones are added), the
constellation’s managers can also collaboratively
restructure the actual groups themselves: large groups can
be split into smaller subgroups, small groups can be
merged, and groups can even be traded between managers.

Design
Figure 3 illustrates the high-level design; the arrows
indicate the direction of information flow. As can be seen
from the figure, there are four main components to the
system. Each of these will be discussed in detail below.

Figure 3 High-Level Design

whole constellation

Group A
Group B

Group C

Subgroup Alpha

Satellite 13 – current manager of Subgroup Alpha

Satellite 22– current manager of Group

Satellite 7 – current manager of constellation

Satellite 18– current manager of Group

other satellites

social coordinator

group manager

group
planner

group
agenda

conflict detection local planner/scheduler

DB

reactive
planner

local sensor
data

relevance
reasoner

deliberative planner

Social Coordinator. The social coordinator acts as the
interface between the rest of the architecture and the other
satellites in the constellation. It keeps track of all
organizational details including, among other things, which
groups the satellite belongs to and where the various group
managers are currently residing.
 The social coordinator component draws on technologies
from a number of areas. At its core, a collection of rules
describing how hierarchy management should be done.
Around these general rules are a number of smaller
knowledge modules that “know” how to deal with specific
kinds of situations. These specialized modules are activated
by the rules when the appropriate situation arises.
Group Manager. The group manager is the component
charged with actually directing the activities of the
constellation. In essence, its job is much like that of a
human manager: take orders from a higher-level manager
and pass them on to the right subgroups to be carried out.
 The group agenda subunit is a sophisticated knowledge
base that serves as the group manager’s memory, storing all
relevant information about the capabilities and scheduled
commitments of each of the subgroups being managed.
This information is updated by reports from the subgroups
as their commitments change. In turn, the group agenda
sends update reports containing a summary of the agenda’s
information about its entire group to the manager of the
level above. Thus, the group agenda subunits of all
managers, taken together, can be considered a kind of
distributed schedule/knowledge base for the constellation.
This knowledge base will need to be able to store and
retrieve multiple types of information, including complex
data combining geographical and temporal parameters – for
example, “satellite 3’s infrared camera will be available
over Honduras between 03:30 and 04:00 hours GMT on
July 16.”
 The second subunit is the group planner, which takes the
tasks given to the group manager, breaks them up into
smaller subtasks, and assigns them to specific subgroups.
At the core of this subunit sits an automated partial-order
planner that, using hierarchical task decomposition, is
capable of generating plans at different levels of detail
depending on the group manager’s position in the
hierarchy. For example, a plan generated by a high-level
manager might contain an abstract task like “Observe ocean
currents along west coast of U.S.,” while a lower-level
manager might break this very general task down into a
number of more specific tasks: “Observe 50 miles from
California shore with infrared cameras,” “Observe 30 miles
from Oregon shore with infrared cameras,” and so on. This
hierarchical decomposition of tasks continues until
“primitive” tasks that can actually be directly acted upon
are reached. This planner relies heavily on information
provided by the group agenda to determine which
subgroups are best suited to perform a particular task.
 The conflict detector is the group manager’s third
subunit. It ensures that the plans devised by different
subgroups do not conflict with one another (e.g., by trying
to use the same communications channel at the same time).

When conflicts are found, this subunit sends the plans back
to the subgroups that devised them with instructions about
how to revise them to avoid the conflict.
 Note that the group manager component of the
architecture is only active when a manager is actually being
hosted on the satellite. Thus, for most satellites in a
constellation this component lies dormant most of the time,
though it always remains ready to take over hosting duties
if necessary.
Local Planner/Scheduler. Whereas the group manager
component of the architecture handles the coordination of
groups of satellites, the local planner/scheduler component
is concerned with controlling the activities of a single
satellite, specifically the one on which the architecture is
running. The local planner receives its assignments from
the satellite’s group manager, then produces a complete
executable plan for completing those assignments. This
plan is sent to the group manager to be checked for
conflicts with the local plans of other satellites. If conflicts
are found, the local planner alters the plan according to the
manager’s instructions; otherwise, the plan is carried out as
is. The local planner/scheduler comprises three main
subunits: deliberative planner, reactive planner, and
relevance reasoner.
 The deliberative planner is an automated partial-order
planner (using SHAI’s intelligent entities concept)
combined with a constraint-satisfaction-based scheduler. It
is this planner that, given the manager’s task assignments,
produces the detailed low-level plan to carry them out. For
example, the local planner might receive the assignment,
“Observe San Francisco at 15:35:27 on August 10 with
radar.” It would then, using its built-in knowledge about
the prerequisites for different kinds of actions, determine
that in order to observe San Francisco at the desired time, it
will need to first point its radar at the correct location and
then actually take the observations by activating the radar.
At this point, the intelligent entity for the “pointing radar”
task would note that in order to point the radar, the satellite
must fire an attitude control jet; the entities representing the
jets negotiate amongst themselves to determine which jet is
the correct one to fire. This continues until a precise plan
of action is constructed. These plans generally are for
events scheduled hours or days in advance and thus the
deliberative planner does not need to be able to plan in real
time.
 On the other hand, the reactive planner , is a fast special-
purpose planner designed solely to allow the satellite to
react immediately in case of an emergency. If a solar panel
is struck by a micrometeorite, for example, the satellite
may immediately inform another satellite of the situation
and its commitments (which will now be abandoned) and
go into a safe-hold mode until an operator can intervene.
This planner does not consult with the group manager
before acting. Instead, it acts first and then informs the
manager afterwards of its actions so that the manager can
resolve any conflicts those actions might have caused.
Because it must react in seconds, and because the
remediation plans it generates are not very long, the

reactive planner does not do an in-depth, knowledge-
intensive analysis of its situation, goals, and resources to
generate a plan; rather, it relies on a relatively small set of
rules, precomputed plans, and scripts to quickly produce an
effective, appropriate response.
 The final component of the local planner is the relevance
reasoner. This subunit uses irrelevance reasoning
[Wolverton & desJardins 1998] to determine which parts of
the plan generated by the local planner could possibly
generate conflicts with other satellites. To do this it uses
models of the dependencies between tasks and resources in
combination with information about the goals of the
subgroup’s other members transmitted by the group
manager. Only these relevant parts of the plan, attached to
a skeletal plan framework, are then sent to the group
manager to be checked for conflicts. This subunit is
necessary to keep from wasting the limited communications
bandwidth available for intra-constellation communication
on the transmission of unimportant data.
Local Database. The local database is the repository for
all local information stored by the satellite: status logs for
internal systems, history of past activities, and so on. It
supports the local planning and scheduling [Muscettola,
94] module by providing the data necessary to make
informed planning decisions. It also stores scientific
observation data until it is ready to be downlinked.

Initial Prototype
The initial D-SpaCPlanS prototype (Dpr) implements
portions of the local planner/scheduler. In the prototype
each satellite has its own Dpr component to perform
scheduling specific to that satellite. The output from Dpr is
a plan and schedule for a particular satellite. Dpr monitors
the execution and replans when required. The relevance
reasoner is not implemented in the prototype.

Structure
The D-SpaCPlanS prototype consists of an overall, high-
level planning/integration engine, that provides the
deliberate and reactive planner functionality, along with
various modules that provide the basic building blocks that
the integration engine manipulates and uses in the
production of the final plan. Not all modules are
necessarily of the same order, in that the integration engine
calls upon some modules, while others will act as tools for
these modules.
 The overall goal of the system is the placement of a new
observation into an existing schedule (the existing schedule
may be blank). This is the most basic of planning and
scheduling functionality and allows for the incremental
construction of a full observation schedule. Figure 4
diagrams the major components of Dpr. The main large
box in the figure 4 corresponds to the local
planner/scheduler box in figure 3.

Plan Integration Engine. The Integration Engine is the
main planning component of the Dpr system. The primary
task of the Integration Engine is to call upon the experts to
give information concerning when and how they would
“prefer” observations to be scheduled, and then to mesh
this together to provide a heuristically good plan/schedule.
Observation and task scheduling requests are received from
ground controllers or other satellites.
Observation Geometry Expert. An important factor in
deciding which observation to perform at which time will
be when the observation is even possible. This expert
utilizes the Orbital Geometry Expert to determine whether
or not the desired target is observable and it utilizes sensor
knowledge to determine when the observation is possible.
Orbital Geometry Expert. A major component of the
Observation Geometry Expert is the computation of the
satellite’s orbital path. The Orbital Geometry Expert
accomplishes this. In the prototype, this module accesses
data generated by the Satellite Tool Kit (STK), from
Analytical Graphics, Inc.
Scheduling Utilities. The Scheduling Utilities perform
detailed scheduling operations as requested by the Plan
Integration Engine. Additional utilities to define, modify,
and access schedule data definitions are also provided.
Many of the experts within the Scheduling Utilities use
these additional utilities to carry out their function.
Observation Priority Monitor. The Priority Monitor is
tasked with providing information concerning the specified
importance and timeliness of observations. This
information is used to order observations when there is no
clear advantage of one over the other.

Figure 4 Prototype Components

Prototype Test and Verification
The Dpr includes the ability to initialize a schedule; and
accept observation schedule requests with varying priorities
and varying constraints. The Dpr schedules observations
while satisfying satellite and target site accessibility

Plan Integration
Engine

Observation
Priority Monitor

Observation
Geometry Expert

Orbital Geometry
Expert

Scheduling
Utilities

Other Satellites or
Ground Controllers

Task Requests
Timeline / Schedule

& task requests

constraints, download availability constraints and daylight
constraints.
 Dpr takes tasks, priorities, and ephemeris data as input
and generates schedules for the individual satellites and a
history of the process.
 Tests have been conducted utilizing a simulated
constellation consisting of six low-earth-orbiting remote
sensing spacecraft and associated ground infrastructure.
The spacecraft fly equally spaced in the same sun-
synchronous 653km-altitude orbit plane. There are two
groundstations: one located in Fairbanks, Alaska and the
other in Kiruna, Sweden.
 Simplifying assumptions include: 1) a task request can
be uploaded to any satellite whenever any satellite can be
reached from the ground station because task requests are
small and can be forwarded via satellite crosslinks; 2)
observation tasks can only be accomplished when the target
is in daylight; and 3) all payload memory can be
downloaded with one pass over a ground station. In the Dpr
the satellites work virtually independently of each other:
there is no master planner.
 When a satellite receives a task request (either from the
ground or another satellite) the satellite attempts to
schedule the task (on itself). If a satellite fails to
accommodate the task, it will then pass the task on to the
satellite that has not already attempted to schedule the task,
which will pass over the target first. The passed task
request includes a list of the satellites that have tried and
failed to schedule the task. When the list contains all the
other satellites if the last satellite to receive the task can not
schedule it, then the scheduling of the task will fail and the
ground station will be notified of the failure.
 For the first part of the test 24 tasks are distributed to the
6 satellites. The ground assigns each of the tasks to the
first satellite to pass over the respective targets. The result
is that all tasks are successfully scheduled on the satellites
to which they were distributed.
 The CPU time is recorded for major operations because
as the complexity of the scheduling task and constellations
grow the computational overhead may become a limiting
factor since the computations are being performed on the
satellites.
 For the second part of the test, 8 new higher-priority
tasks are added. In this case, 5 of the 8 new tasks were
scheduled by swapping out already scheduled (lower-
priority) tasks. The swapped out tasks are passed to other
satellites and eventually successfully scheduled. For
example, one of the swapped out tasks is passed to another
satellite where it fails to schedule. The task is then passed
to a third satellite where it fails again. Finally it is passed to
a fourth satellite where it is successfully scheduled. This
portion of the test verified that the system can reactively
update schedules due to new tasks being added and it can
properly handle priorities, while showing the distributed
nature of the scheduling process.
 For the third part of the test, 2 of the tasks already
scheduled fail to execute properly (for instance due to
cloud cover) and 2 more tasks are added. In this case, both

of the failed tasks are rescheduled, one on the same satellite
on which it was originally attempted, and the other by
being passed once. The new tasks are also successfully
scheduled via some swapping and passing. In addition, all
the tasks that were swapped out to accommodate the new
tasks were also eventually successfully scheduled.
 This portion of the test verified how the system can
reactively update schedules due to failed tasks, as well as
again showing how distributed reactive planning occurs
when new tasks are added while properly handle priorities.
 Statistics are captured as the system runs, the overall
statistics include:

34 observations attempted.
0 rejected because the target was not recognized or out
of range during the scheduled period.
13 passed from one satellite to another.
6 unscheduled to schedule another of higher priority.
2 rescheduled because the observation failed.
0 could not be scheduled by any satellite.

Conclusion
The design for automated distributed planning and
coordination of constellations of satellites that SHAI is
developing will allow large satellite constellations to
manage themselves with minimal human oversight. The
prototype already verifies some of the concepts while
hinting at the full potential of the complete design. The
potential is for robust, scalable management of satellite
constellations while reducing costs and increasing
operational efficiency over present constellation
management paradigms.

References
[Bonasso et al., 96] Bonasso, R.P., Kortenkamp, D., Miller, D.P.,
and Slack, M., “Experiences with an Architecture for Intelligent,
Reactive Agents,” in Intelligent Agents II, Eds. M. Woolridge,
J.P. Muller, and M.Taube, pp. 187–202, Springer Verlag, New
York, NY, 1996.
[Davis and Smith, 1983] Davis, R., and Smith, R.G.
“Negotiation as a Metaphor for Distributed Problem Solving.”
Artificial Intelligence 20, 1983. pp. 63-100.
[Durfee, 1993] Durfee, Edmund H. "Organisations, Plans, and
Schedules: An Interdisciplinary Perspective on Coordinating AI
Systems." In Journal of Intelligent Systems 3(2-4), 1993.
[Mohammed, 98] Mohammed, John L., “Spaceborne Satellite
Anomaly Resolution using Model-Based and Case-Based
Reasoning and Knowledge-Based Planning — A Preliminary
Analysis,” Report to AFRL, Phillips Research Site under contract
F29601-97-C-0050, SHAI, Jun 1998.
[Muscettola, 94] Muscettola, N., “HSTS: Integrating planning
and scheduling,” in Fox, M. and Zweben, M. (Eds.) Intelligent
Scheduling. Morgan Kaufman, 1994.
 [Wolverton & desJardins, 1998] Wolverton, Michael, and
desJardins, Marie. “Controlling Communication in Distributed
Planning Using Irrelevance Reasoning.” In Proceedings of the
Fifteenth National Conference on Artificial Intelligence, 1998.

