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Abstract 
SHAI is developing a software architecture for automated, 
distributed planning and coordination of constellations of 
satellites. This architecture allows large satellite 
constellations to manage themselves with minimal human 
oversight.  SHAI is utilizing an integrated approach drawing 
upon a broad range of AI and non-AI techniques. Advanced 
planning and scheduling algorithms permit the system to 
quickly create complex plans satisfying intricate time and 
other constraints. A reactive planning component deals with 
unexpected, time-critical local events such as new critical 
tasks.  In addition, a knowledge base stores information 
about the satellites’ capabilities and commitments that is 
used during the distributed planning process to properly 
allocate tasks to the satellites best suited to perform them. 
The resulting architecture provides the capacity for robust, 
scalable management of satellite constellations.  The 
potential benefits are reduced costs, increased operational 
efficiency, and improved robustness.  A prototype utilizing 
a subset of the architecture has been built and verified.  

Background 
Since the first American satellite was placed in orbit in 
1958 scientists have recognized the tremendous potential 
for study of the Earth and space offered by orbiting 
sensors.  In the past satellites worked mainly as isolated 
entities.  The new satellite constellation model is desirable 
because it is more robust and flexible, providing a greater 
ability to adapt to changing expected and unexpected 
events.  However, managing a constellation requires a 
tremendous amount of time and effort.   
 Given the low cost and high speed of computer 
processors today, it is now feasible to equip every satellite 
in a constellation with enough processing power to be able 
to direct its own activities.  Control would thereby be 
distributed throughout the entire constellation, minimizing 
the reliance of the whole system on the limited and fallible 
resources of any single component, and minimizing human 
ground management.  A well-designed and flexible social 
structure would enable the constellation to coordinate its 
activities as a whole, distributing tasks and allocating 
responsibilities to the appropriate member satellites, 
without losing the benefits of individual autonomy. 
 SHAI is developing a software architecture for 
automated, Distributed Spacecraft Coordination Planning 

and Scheduling (D-SpaCPlanS, pronounced ‘D space 
plans). This architecture allows large satellite constellations 
to manage themselves with minimal human oversight.  The 
potential benefits are reduced costs, increased operational 
efficiency, and improved robustness.  

D-SpaCPlanS Overview 
The D-SpaCPlanS architecture will support the creation 
and maintenance of adaptive, hierarchical social structures 
that will enable large satellite constellations to manage 
themselves with minimal human oversight. Figure 1 
illustrates the context in which the D-SpaCPlanS agent is 
designed to function. 

Figure 1 D-SpaCPlans Context  
 
 To accommodate multi-level organizational structures 
within individual satellites and satellite constellations, the 
system will employ hierarchical task decomposition 
methods allowing planning to occur at varying levels of 
detail. To deal with unexpected, time-critical local events 
(such as system failures), a reactive planning component 
[Bonasso et al., 96] for rapid remediation is included.  In 
addition, a sophisticated knowledge base will store 
information about the capabilities and commitments of 
other satellites. This will be used during the distributed 
planning process to properly allocate tasks to the satellites 
best suited to perform them.  The architecture will also 
draw on constraint satisfaction and irrelevance reasoning 
algorithms [Wolverton & desJardins 1998] to detect and 
resolve conflicts between satellites’ individual plans.  
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Functionality 
The D-SpaCPlanS advances the idea that efficient 
distributed planning in a densely-populated network of 
autonomous entities requires some form of system-wide 
organization to structure and guide the planning process 
(see discussion of organizations in [Durfee, 1993]).  To 
ensure robustness and scalability, this organization should 
spread authority and responsibility as evenly as possible 
over all its members, thereby minimizing the impact caused 
by the introduction of new members or the loss of old 
members due to failure.  In addition, the organization will 
be able to reorganize itself to adapt to changes to the 
membership of the network over time. 
 In D-SpaCPlanS, the organizational principles described 
above manifest themselves in the form of a flexible 
hierarchy of nested groups; every satellite in a given 
constellation belongs to one or more of these groups.  A 
rough sketch of this hierarchy is presented in Figure 2, with 
solid circles representing the actual satellites in a 
constellation and different-sized ovals representing groups 
at different levels of the hierarchy.  The groups to which a 
particular satellite belongs are indicated by the ovals that 
contain it.  For example, Satellite 13 is a member of the 
whole constellation, of Group A, and of Subgroup Alpha.  
Group membership is not based on any specific properties 
of a satellite – such as its physical location or functional 
capabilities – but is rather an arbitrary, abstract division 
whose purpose is to provide a framework for the 
decomposition and distribution of the planning process 
across the entire constellation.  These divisions are 
determined automatically by negotiation [Davis and Smith 
1983] among the satellites’ social coordinator units. 
 

Figure 2 Sample Organizational Structure  
 

 As shown in the figure, its own autonomous manager 
governs each group at each level of the hierarchy.  This 
manager receives task assignments for its group from the 
next higher level of the hierarchy and in turn is responsible 
for distributing these tasks to the most appropriate 
subgroups in the level of the hierarchy immediately below.  
The manager makes its determination of who is most 
appropriate for a given task based on its knowledge of the 
capabilities and current commitments of each of the 
subgroups belonging to its group.  At the lowest level, 
managers assign tasks to the individual satellites in their 
subgroups, which then carry out the requested tasks.  At the 
top of the hierarchy resides the manager for the whole 

constellation, who accepts orders directly from the ground 
controller.  The management role of the ground controller 
is greatly simplified by this hierarchical organization, since 
it needs to interact with but a single entity in order to direct 
the activities of dozens to hundreds of satellites.  Planning 
occurs at all levels of the hierarchy, with plans growing 
more and more detailed the further down one goes in the 
hierarchy.   
 It is not uncommon for a satellite to fail in orbit for a 
variety of reasons [Mohammed, 98].  Such a failure could 
be catastrophic for a constellation that relies heavily on a 
fixed organizational hierarchy.  Imagine, for example, that 
the top-level manager suddenly dies without warning.  If 
the satellites’ organizational scheme is unable to 
compensate for this failure, the whole constellation 
becomes inaccessible and useless.  In our architecture, 
granting the organizational structure the capacity to 
dynamically reorganize itself in the face of changes to the 
constellation alleviates this danger.  There are two facets to 
this capacity. 
 First, group managers are designed in such a way that 
their existence is not tied to any single satellite.  Instead, 
every satellite in a constellation possesses the ability, 
within its automated planning architecture, to take over the 
duties of a group manager.  As part of this distribution of 
the managerial role, each group manager periodically 
broadcasts the contents of its memory to some of its 
subgroups, which store this information.  Then, when lack 
of communication from a given manager indicates the 
death of the hosting satellite, the members of the now-
managerless group cooperate to reconstruct the lost 
manager on a new host using their backup copies of that 
manager’s memory.  
 Second, if significant imbalances in group size arise 
(e.g., as old satellites fail and new ones are added), the 
constellation’s managers can also collaboratively 
restructure the actual groups themselves:  large groups can 
be split into smaller subgroups, small groups can be 
merged, and groups can even be traded between managers.   

Design 
Figure 3 illustrates the high-level design; the arrows 
indicate the direction of information flow.  As can be seen 
from the figure, there are four main components to the 
system.  Each of these will be discussed in detail below. 

Figure 3 High-Level Design 
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Social Coordinator.  The social coordinator acts as the 
interface between the rest of the architecture and the other 
satellites in the constellation.  It keeps track of all 
organizational details including, among other things, which 
groups the satellite belongs to and where the various group 
managers are currently residing.   
 The social coordinator component draws on technologies 
from a number of areas.  At its core, a collection of rules 
describing how hierarchy management should be done.  
Around these general rules are a number of smaller 
knowledge modules that “know” how to deal with specific 
kinds of situations. These specialized modules are activated 
by the rules when the appropriate situation arises.  
Group Manager.  The group manager is the component 
charged with actually directing the activities of the 
constellation. In essence, its job is much like that of a 
human manager:  take orders from a higher-level manager 
and pass them on to the right subgroups to be carried out.  
 The group agenda subunit is a sophisticated knowledge 
base that serves as the group manager’s memory, storing all 
relevant information about the capabilities and scheduled 
commitments of each of the subgroups being managed.  
This information is updated by reports from the subgroups 
as their commitments change.  In turn, the group agenda 
sends update reports containing a summary of the agenda’s 
information about its entire group to the manager of the 
level above.  Thus, the group agenda subunits of all 
managers, taken together, can be considered a kind of 
distributed schedule/knowledge base for the constellation.  
This knowledge base will need to be able to store and 
retrieve multiple types of information, including complex 
data combining geographical and temporal parameters – for 
example, “satellite 3’s infrared camera will be available 
over Honduras between 03:30 and 04:00 hours GMT on 
July 16.” 
 The second subunit is the group planner, which takes the 
tasks given to the group manager, breaks them up into 
smaller subtasks, and assigns them to specific subgroups.  
At the core of this subunit sits an automated partial-order 
planner that, using hierarchical task decomposition, is 
capable of generating plans at different levels of detail 
depending on the group manager’s position in the 
hierarchy.  For example, a plan generated by a high-level 
manager might contain an abstract task like “Observe ocean 
currents along west coast of U.S.,” while a lower-level 
manager might break this very general task down into a 
number of more specific tasks:  “Observe 50 miles from 
California shore with infrared cameras,” “Observe 30 miles 
from Oregon shore with infrared cameras,” and so on.  This 
hierarchical decomposition of tasks continues until 
“primitive” tasks that can actually be directly acted upon 
are reached.  This planner relies heavily on information 
provided by the group agenda to determine which 
subgroups are best suited to perform a particular task. 
 The conflict detector is the group manager’s third 
subunit.  It ensures that the plans devised by different 
subgroups do not conflict with one another (e.g., by trying 
to use the same communications channel at the same time).  

When conflicts are found, this subunit sends the plans back 
to the subgroups that devised them with instructions about 
how to revise them to avoid the conflict. 
 Note that the group manager component of the 
architecture is only active when a manager is actually being 
hosted on the satellite.  Thus, for most satellites in a 
constellation this component lies dormant most of the time, 
though it always remains ready to take over hosting duties 
if necessary. 
Local Planner/Scheduler.  Whereas the group manager 
component of the architecture handles the coordination of 
groups of satellites, the local planner/scheduler component 
is concerned with controlling the activities of a single 
satellite, specifically the one on which the architecture is 
running.  The local planner receives its assignments from 
the satellite’s group manager, then produces a complete 
executable plan for completing those assignments.  This 
plan is sent to the group manager to be checked for 
conflicts with the local plans of other satellites.  If conflicts 
are found, the local planner alters the plan according to the 
manager’s instructions; otherwise, the plan is carried out as 
is.  The local planner/scheduler comprises three main 
subunits:  deliberative planner, reactive planner, and 
relevance reasoner. 
 The deliberative planner is an automated partial-order 
planner (using SHAI’s intelligent entities concept) 
combined with a constraint-satisfaction-based scheduler.  It 
is this planner that, given the manager’s task assignments, 
produces the detailed low-level plan to carry them out.  For 
example, the local planner might receive the assignment, 
“Observe San Francisco at 15:35:27 on August 10 with 
radar.”  It would then, using its built-in knowledge about 
the prerequisites for different kinds of actions, determine 
that in order to observe San Francisco at the desired time, it 
will need to first point its radar at the correct location and 
then actually take the observations by activating the radar.  
At this point, the intelligent entity for the “pointing radar” 
task would note that in order to point the radar, the satellite 
must fire an attitude control jet; the entities representing the 
jets negotiate amongst themselves to determine which jet is 
the correct one to fire.  This continues until a precise plan 
of action is constructed.  These plans generally are for 
events scheduled hours or days in advance and thus the 
deliberative planner does not need to be able to plan in real 
time.  
 On the other hand, the reactive planner , is a fast special-
purpose planner designed solely to allow the satellite to 
react immediately in case of an emergency. If a solar panel 
is struck by a micrometeorite, for example, the satellite 
may immediately inform another satellite of the situation 
and its commitments (which will now be abandoned) and 
go into a safe-hold mode until an operator can intervene.  
This planner does not consult with the group manager 
before acting.  Instead, it acts first and then informs the 
manager afterwards of its actions so that the manager can 
resolve any conflicts those actions might have caused.  
Because it must react in seconds, and because the 
remediation plans it generates are not very long, the 



reactive planner does not do an in-depth, knowledge-
intensive analysis of its situation, goals, and resources to 
generate a plan; rather, it relies on a relatively small set of 
rules, precomputed plans, and scripts to quickly produce an 
effective, appropriate response. 
 The final component of the local planner is the relevance 
reasoner.  This subunit uses irrelevance reasoning 
[Wolverton & desJardins 1998] to determine which parts of 
the plan generated by the local planner could possibly 
generate conflicts with other satellites.  To do this it uses 
models of the dependencies between tasks and resources in 
combination with information about the goals of the 
subgroup’s other members transmitted by the group 
manager.  Only these relevant parts of the plan, attached to 
a skeletal plan framework, are then sent to the group 
manager to be checked for conflicts.  This subunit is 
necessary to keep from wasting the limited communications 
bandwidth available for intra-constellation communication 
on the transmission of unimportant data. 
Local Database.  The local database is the repository for 
all local information stored by the satellite:  status logs for 
internal systems, history of past activities, and so on.  It 
supports the local planning and scheduling [Muscettola, 
94] module by providing the data necessary to make 
informed planning decisions.  It also stores scientific 
observation data until it is ready to be downlinked. 

Initial Prototype 
The initial D-SpaCPlanS prototype (Dpr) implements 
portions of the local planner/scheduler.  In the prototype 
each satellite has its own Dpr component to perform 
scheduling specific to that satellite.  The output from Dpr is 
a plan and schedule for a particular satellite. Dpr monitors 
the execution and replans when required.  The relevance 
reasoner is not implemented in the prototype. 

Structure 
The D-SpaCPlanS prototype consists of an overall, high-
level planning/integration engine, that provides the 
deliberate and reactive planner functionality, along with 
various modules that provide the basic building blocks that 
the integration engine manipulates and uses in the 
production of the final plan.  Not all modules are 
necessarily of the same order, in that the integration engine 
calls upon some modules, while others will act as tools for 
these modules. 
 The overall goal of the system is the placement of a new 
observation into an existing schedule (the existing schedule 
may be blank).  This is the most basic of planning and 
scheduling functionality and allows for the incremental 
construction of a full observation schedule.  Figure 4 
diagrams the major components of Dpr.  The main large 
box in the figure 4 corresponds to the local 
planner/scheduler box in figure 3. 
 

Plan Integration Engine. The Integration Engine is the 
main planning component of the Dpr system.  The primary 
task of the Integration Engine is to call upon the experts to 
give information concerning when and how they would 
“prefer” observations to be scheduled, and then to mesh 
this together to provide a heuristically good plan/schedule.  
Observation and task scheduling requests are received from 
ground controllers or other satellites. 
Observation Geometry Expert. An important factor in 
deciding which observation to perform at which time will 
be when the observation is even possible.  This expert 
utilizes the Orbital Geometry Expert to determine whether 
or not the desired target is observable and it utilizes sensor 
knowledge to determine when the observation is possible. 
Orbital Geometry Expert. A major component of the 
Observation Geometry Expert is the computation of the 
satellite’s orbital path.  The Orbital Geometry Expert 
accomplishes this.  In the prototype, this module accesses 
data generated by the Satellite Tool Kit (STK), from 
Analytical Graphics, Inc. 
Scheduling Utilities.  The Scheduling Utilities perform 
detailed scheduling operations as requested by the Plan 
Integration Engine.  Additional utilities to define, modify, 
and access schedule data definitions are also provided.  
Many of the experts within the Scheduling Utilities use 
these additional utilities to carry out their function. 
Observation Priority Monitor.  The Priority Monitor is 
tasked with providing information concerning the specified 
importance and timeliness of observations.  This 
information is used to order observations when there is no 
clear advantage of one over the other.   

 
Figure 4 Prototype Components 
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constraints, download availability constraints and daylight 
constraints.   
 Dpr takes tasks, priorities, and ephemeris data as input 
and generates schedules for the individual satellites and a 
history of the process. 
 Tests have been conducted utilizing a simulated 
constellation consisting of six low-earth-orbiting remote 
sensing spacecraft and associated ground infrastructure.  
The spacecraft fly equally spaced in the same sun-
synchronous 653km-altitude orbit plane. There are two 
groundstations: one located in Fairbanks, Alaska and the 
other in Kiruna, Sweden. 
 Simplifying assumptions include: 1) a task request can 
be uploaded to any satellite whenever any satellite can be 
reached from the ground station because task requests are 
small and can be forwarded via satellite crosslinks; 2) 
observation tasks can only be accomplished when the target 
is in daylight; and 3) all payload memory can be 
downloaded with one pass over a ground station.  In the Dpr 
the satellites work virtually independently of each other: 
there is no master planner.  
 When a satellite receives a task request (either from the 
ground or another satellite) the satellite attempts to 
schedule the task (on itself).  If a satellite fails to 
accommodate the task, it will then pass the task on to the 
satellite that has not already attempted to schedule the task, 
which will pass over the target first.  The passed task 
request includes a list of the satellites that have tried and 
failed to schedule the task.  When the list contains all the 
other satellites if the last satellite to receive the task can not 
schedule it, then the scheduling of the task will fail and the 
ground station will be notified of the failure. 
 For the first part of the test 24 tasks are distributed to the 
6 satellites.  The ground assigns each of the tasks to the 
first satellite to pass over the respective targets.  The result 
is that all tasks are successfully scheduled on the satellites 
to which they were distributed. 
 The CPU time is recorded for major operations because 
as the complexity of the scheduling task and constellations 
grow the computational overhead may become a limiting 
factor since the computations are being performed on the 
satellites. 
 For the second part of the test, 8 new higher-priority 
tasks are added.  In this case, 5 of the 8 new tasks were 
scheduled by swapping out already scheduled (lower-
priority) tasks.  The swapped out tasks are passed to other 
satellites and eventually successfully scheduled.  For 
example, one of the swapped out tasks is passed to another 
satellite where it fails to schedule. The task is then passed 
to a third satellite where it fails again. Finally it is passed to 
a fourth satellite where it is successfully scheduled.  This 
portion of the test verified that the system can reactively 
update schedules due to new tasks being added and  it can 
properly handle priorities, while showing the distributed 
nature of the scheduling process. 
 For the third part of the test, 2 of the tasks already 
scheduled fail to execute properly (for instance due to 
cloud cover) and 2 more tasks are added.  In this case, both 

of the failed tasks are rescheduled, one on the same satellite 
on which it was originally attempted, and the other by 
being passed once.  The new tasks are also successfully 
scheduled via some swapping and passing. In addition, all 
the tasks that were swapped out to accommodate the new 
tasks were also eventually successfully scheduled. 
 This portion of the test verified how the system can 
reactively update schedules due to failed tasks, as well as 
again showing how distributed reactive planning occurs 
when new tasks are added while properly handle priorities. 
 Statistics are captured as the system runs, the overall 
statistics include: 

34 observations attempted. 
0 rejected because the target was not recognized or out 
of range during the scheduled period. 
13 passed from one satellite to another. 
6 unscheduled to schedule another of higher priority. 
2 rescheduled because the observation failed. 
0 could not be scheduled by any satellite. 

Conclusion 
The design for automated distributed planning and 
coordination of constellations of satellites that SHAI is 
developing will allow large satellite constellations to 
manage themselves with minimal human oversight.  The 
prototype already verifies some of the concepts while 
hinting at the full potential of the complete design.  The 
potential is for robust, scalable management of satellite 
constellations while reducing costs and increasing 
operational efficiency over present constellation 
management paradigms. 
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