
 978-1-7821-2734-7/20/$31.00 ©2020 IEEE
 1

A Case Study Using CBR-Insight to
Visualize Source Code Quality

Jeremy Ludwig, Devin Cline, & Aaron Novstrup
Stottler Henke Associates, Inc.

San Mateo, CA 94402
ludwig, dcline, anovstrup @stottlerhenke.com

Abstract—Creating and maintaining high-quality source code is
especially important for critical systems such as those made for
NASA and the DoD, and for software product lines where long-
lived, reusable modules are intended to be shared by multiple
systems. CBR-Insight is an automated code assessment tool
developed for the US Air Force, and released as open source on
GitHub, to provide an objective and understandable measure of
software quality. CBRI-Insight supports the ability of technical
and non-technical decision makers to verify that a project’s
software implementation follows through on promises around
developing and sustaining reliable and maintainable software
while managing technical debt. The primary contributions of
this work include advancing the state of the art in assessing
software code quality, presenting a method to communicate
code quality to decision makers, and examining a case study
where these methods are applied to develop software in the
aerospace domain.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. RELATED WORK .. 1
3. CBR-INSIGHT ... 2
4. METHODS .. 5
5. RESULTS AND DISCUSSION 7
6. CASE STUDY .. 9
7. CONCLUSION .. 10
ACKNOWLEDGEMENTS .. 11
REFERENCES .. 11
BIOGRAPHY .. 12

1. INTRODUCTION

Creating and maintaining high-quality software is especially
important for critical systems such as those designed for
NASA and the DoD, and for software product lines where
long-lived, reusable modules are intended to be shared by
multiple systems. A vital component of software
development is creating high-quality source code that is
reliable, maintainable, and has limited technical debt.
Software development teams generally employ a variety of
design techniques, processes, and tools to continually work

towards quality code while balancing the overall time and
budgetary demands of the project. CBR-Insight (CBRI) is an
automated code assessment tool developed for the US Air
Force and released as open source on GitHub. CBRI provides
an objective and understandable measure of software quality
that can help guide decisions and direct limited resources
during software acquisition, development, and sustainment.
CBRI supports the ability of technical and non-technical
decision makers to verify that a project’s software
implementation follows through on promises around
developing and sustaining reliable and maintainable software
while managing technical debt.

There is a long history of software engineering research in the
area of source code quality, and numerous existing tools aim
at performing automated code quality assessment. What
makes CBR-Insight a complementary addition to existing
tools is: (i) the calculation of a small, essential set of static
code metrics associated with maintainability, reliability, and
technical debt, (ii) using a customizable set of peer projects
to determine the target ranges associated with each metric,
and (iii) presenting the information in a format preferred by
decision makers. This paper begins with an overview of
related work and an in-depth look at CBRI. Following this
high-level review, we analyze the data that underlies CBRI in
the Methods and Results & Discussion sections. Next, we
present a real-world case study that illustrates how CBRI is
applied as part of a suite of tools and processes to the
development of critical software for scheduling and
deconflicting satellite communications. The paper concludes
with a description of ongoing work on CBRI and provides
links to the source code on GitHub.

The primary contributions of this work include advancing the
state of the art in assessing software code quality, presenting
a method to communicate code quality to decision makers,
and examining a case study where these methods are applied
to develop software in an aerospace domain.

2. RELATED WORK
There is a consistent push to improve software quality for
critical systems and software product lines. The related work
spans several areas, including software quality models,
technical debt, and automated code review tools.

2

Software Quality Models

Software quality models articulate what is meant by
‘software quality.’ These models define the desired
characteristics and sub-characteristics of software and the
relationship between these characteristics and measurable
properties of the software [1]. The ISO-IEC 25010: 2011 [2]
quality model defines eight desired characteristics of
software product quality: Functional Suitability, Performance
Efficiency, Compatibility, Usability, Reliability, Security,
Maintainability, and Portability. While all of these
characteristics are important, this paper focuses specifically
on Reliability and Maintainability as the bulk of existing
research linking software quality to static code analysis uses
these characteristics [3]. Reliability and Maintainability play
a supporting role for other characteristics such as Usability
and Security.

Software quality models based on static source code analysis
generally follow a three-step pattern. They identify specific
source code metrics to be calculated, describe how the
measurements of these metrics are aggregated, and define
how the aggregations are used to assess characteristics of
software quality [4]. Some examples of models and tools are
Software Quality Enhancement (SQUALE), Quamoco
Benchmark for Software Quality, Columbus Quality Model,
Software Improvement Group (SIG) Maintainability Model,
and Software Quality Assessment based on Lifecycle
Expectations (SQALE). As an open-source project,
SQUALE [5] provides a veritable treasure trove of
information on understanding and developing a software
quality model. SQALE [6] differs from the others in that it is
an open methodology that defines the software quality and
technical debt model and is implemented using tools such as
SonarQube. CBRI builds on all of this prior work in creating
its underlying software quality model.

Technical Debt

Technical debt is a measure of how much work would be
needed to move from the current code to higher-quality code
[7]. The source of technical debt during development and
sustainment stems primarily from making design,
implementation, documentation, and testing decisions that
focus on short-term value [8]. As technical debt increases,
changes to the software become more difficult, error-prone,
and time-consuming, and this threatens the reliability,
maintainability, and security characteristics of the software.

This is an especially important take-away for software
product lines, where long-lived, reusable modules are
intended to be shared by multiple systems. Each module will
want to invest in high software quality (low technical debt)
initially and maintain this investment in quality over time as
it is extended and updated. That is, as part of planned re-
usability, each module commits to making a long-term
investment to software quality. The likely alternative is that
the software quality will gradually degrade until, eventually,
the problems become overwhelming [9].

While some technical debt is unavoidable [10], a large survey
of software engineers and architects across multiple
organizations provides a practical view of the causes and
sources of avoidable technical debt [8]. Their results indicate
that architectural decisions, overly complex code, and lack of
code documentation are the top three avoidable sources of
technical debt in practice. CBRI focuses on these three areas
of technical debt in order to support software reliability and
maintainability.

Automated Code Review

There are several practical tools aimed at improving source
code quality and reducing technical debt, such as SonarQube
[11] and Codacy [12]. These and other automated code
review tools use rules to analyze every line of code to identify
likely bugs, maintainability issues, and security flaws—
encouraging developers to correct these issues with each code
commit.

Automated code review provides an invaluable service,
assisting developers in catching these issues early. However,
automated code review based strictly on rule violations may
not present a complete picture of the overall code quality
[13]. Additionally the (generally long) list of violations
generated for existing systems can be overwhelming for
developers and is not necessarily helpful in providing a high-
level view of the health of the code base [14]. CBRI aims to
complement automated code review systems by highlighting
overall software quality trends in the areas of architecture,
complexity, and clarity as well as by providing the context in
which to interpret and make use of the results.

3. CBR-INSIGHT
CBRI is a web application equipped with two main user
interface components: Dashboard and Project View. The
Dashboard provides an at-a-glance summary across a number
of projects, while the Project View enables a deep look into
a single project. Behind the scenes, CBRI uses the
Understand static source code analysis tool developed by
SciTools to generate the data displayed in the web app.

Dashboard

The CBRI Dashboard shown in Figure 1 focuses on
highlighting software code quality across multiple projects in
three important areas: architecture, complexity, and clarity.
Intuitive symbols and colors indicate the relative score, from
red/alert to green/check. An overall letter grade (A – F) is also
assigned, each with a corresponding color. Trending icons
indicate how the area and overall scores have changed
relative to a baseline measurement.

Architecture—One especially important technique to reduce
complexity is developing software in a modular and
hierarchical fashion. The term architectural complexity is
used to describe how a software architecture makes use of
modularity and hierarchy. Modularity and hierarchy reduce
the dependencies between different pieces of the source code,
so a change in one file doesn’t propagate changes to many

3

others. Similarly, a developer can make a change in one file
without having to arrive at a detailed understanding of all of
the other affected files. Systems with a good architecture
score are those that make better use of modular and
hierarchical structures than their peers.

Complexity—Software developers also work to manage the
complexity within each individual component (class or file)
of the source code. Simply put, components that contain less
logical complexity, less coupling to other files, fewer
methods, and less code to deal with are more reliable and
maintainable. Despite this general guidance, some
complexity is always expected—there will necessarily be
some number of overly complex, highly coupled, and lengthy
components in all but the simplest of projects. Systems with
better complexity scores have fewer overly complex
components than their peers.

Clarity—Software developers (hopefully) strive to write code
that is simple and readable rather than clever. They use
descriptive names for classes, methods, and variables aimed
at making code easy to understand. They add comments to
their source code to provide an overview or to describe the
intent of the code. While difficult to objectively measure, the
clarity of source code has a marked impact on reliability and
maintainability. Systems with better clarity scores are those
found to be well commented. Additional clarity measures for
readability are discussed as part of Future Work.

Scores and grades are calculated by comparing the calculated
metrics of the project against the values from a set of peer
projects, as described in the Methods section. For interpreting
the grades, it is important to know that they are distributed on
a bell-shaped curve. The most common score is a C, with
fewer Bs and Ds and even fewer As and Fs. For example,
getting a C indicates that reliability, maintainability, and
technical debt should be about average with other production-
level projects. Improvements to the scores can be made by
addressing the areas with red and yellow scores. An F on the
other hand indicates this project is significantly worse off
than other production-level efforts. In this case, one would
expect more than usual difficulty in making changes

(maintainability) and keeping the project running well
(reliability) until the underlying code quality issues have been
addressed.

Project View

The Dashboard is the starting point for the user to drill down
into the details of each project. The Project View provides a
description of the underlying metrics used to generate the
scores for the project and visualizes the calculations over
time. The visualizations include color-coded target ranges
determined by analyzing peer projects along with a tree-map
of file size and complexity organized by the Core Size
architecture set. Every section contains accessible
descriptions to assist the user in understanding the scores and
measurements.

The top portion of the Project View in Figure 2 provides
general information such as topics (e.g., machine-learning)
and a brief description. Following this are the date, revision,
lines of code (LOC), and number of files in the baseline and
latest measurement. Links enable the operator to update the
project and to view additional details on the benchmarks and
measurements.

The next three sections of the Project View are the
architecture, complexity, and clarity measurements. Each
section includes a description of the measurement and a
graphical representation of the measurement over time,
relative to peers. Hovering over a graph brings up a popup
that shows the calculated metric value compared to the 25th,
50th, and 75th percentile values from the selected peer
projects. Each section also includes visual indicators of
change (good, bad, none), relative to the project baseline. For
this very mature project, the trend lines have remained
consistent over time; the visual indicators provide insight into
the slowly creeping changes to code quality.

Figure 1. CBRI Dashboard with three example projects

4

Figure 2. CBRI Project View general information and metric details

5

The following section of the Project View in Figure 3
contains a treemap, where each box is a file, while the size of
the box indicates the lines of code, and the color the number
of complexity thresholds exceeded (darker red is worse). The
files are organized by their determined core size architecture
grouping (core, shared, control, peripheral, and isolate). Click
on architecture group to see the files with the group; right
click to navigate back to the architectures. Addressing
complexity issues in the core group will likely have the
greatest impact.

The final section of the Project View supports the viewing
and editing of information such as the repository location, the
analysis language, and the users with whom this repository is
shared. A log is also included to troubleshoot repository
connection issues.

Understand

CBRI uses a plugin to the proprietary Understand static
source code analysis software [15] to calculate the
architecture, complexity, and clarity metrics. While CBRI
focuses on presenting decision makers an overview, software
developers can use Understand and the plugin directly to
calculate the same metrics and address identified
deficiencies. The plugin is included as part of the source code
hosted on GitHub.

4. METHODS
One of the most useful aspects of CBRI is providing a context
in which to understand the metric calculation results for a
particular project. For example, a project manager might ask:
“Is a propagation cost of 7% good or bad? If it is bad, what is
a reasonable number?” The context used to create the graphs
and scores in the web application is driven by the creation of
a library of peer projects. In order to trust the user interface,
we need to examine the underlying data. The methods section
offers details on how the project library was developed (i.e.,
by selecting and analyzing open source projects from
GitHub). A replication package is available online as part of
the open source release
(https://github.com/StottlerHenkeAssociates).

Measurements

A number of measurements were gathered through the
GitHub Application Programming Interface (API) by
examining the commits in the version control system as well
as by analyzing the source code using the Understand static
source code analysis tool developed by SciTools. These
measurements were used to develop the project library and to
assess the utility of the CBRI metrics.

Stars, open and closed issue counts, number of releases, and
topics were gathered via the GitHub API. Stars are assigned
by GitHub users and serve as a measure of a project’s
popularity. Topics are self-assigned project descriptors (e.g.,
‘machine-learning’). Number of commits and contributors

Figure 3. CBRI Project View architecture treemap and project information

6

were determined by examining the Git repository. Finally, the
number of classes and files, lines of code, and lines of
comments were measured by Understand. The lines of code
measure attempts to capture the number of lines developers
would actually need to review to comprehend the code.
Similarly, the lines of comments measure attempts to weed
out license headers and comments that aren’t meaningful.

Metrics

A brief summary is given below of the calculated metrics; see
[16] for a more detailed discussion of the specific metrics
selected for use in CBRI along with details on how they are
calculated.

Architecture—The architecture metrics are Core Size and
Propagation Cost [17]. The Core is the largest set of
components (classes or files) that are interdependently linked
to each other; Core Size refers to the size of the Core relative
to the total number of components. Propagation Cost is a
system-wide metric that describes the proportion of software
files that are directly or indirectly linked to each other. Both
of these metrics provide a single, system-wide measure of
how interconnected the source code is and therefore how
extensive/expensive a change might be on average.

Complexity—The two complexity metrics are Percent Overly
Complex and Percent Duplicate LOC. An overly complex file
is one that exceeds 4 of 5 thresholds from a set of standard
software metrics [1], including LOC, WMC-Unweighted,
WMC-McCabe, RFC, and CBO. The reasoning is that any
component that fails the majority of these metrics is likely to
actually be complex, not just large. Duplicate lines of code
are defined as blocks of ten or more lines that are exactly
repeated in more than one location. This was selected as a
reasonable threshold where abstraction should be used rather
than copy-and-paste.

Complexity—Code-To-Comment ratio is used as an initial
measure of clarity. This metric has been well studied as part
of earlier work on quality models [18].

Project Libraries

For C, C++, C#, and Java, a project library was selected by
identifying the top 1000 GitHub repositories in each
language, sorted by number of stars. In all cases, the projects
needed to be at least 200 KB. Each repository was analyzed
with Understand and the plugin to generate a table of
measurements and metrics. For C, files were used instead of
classes for object-oriented metrics. Up to 2 hours was
allowed for analysis with Understand and for running the
plugin (i.e., up to 4 hours total per project). Projects that did
not complete either step within 2 hours were not included in
the library (25 for C, 19 for C++, 5 for C#, and 1 for Java).

All project libraries were then processed to remove
repositories that were not likely to be actual software
projects. The filter removed repositories with: < 100 stars, <
30 commits, < 1 release, < 1000 lines of code, <= 0

propagation cost, >=100% comment density, >= 100%
duplicate code.

The result is a library that contains the most popular and
successful projects available in GitHub for each language.
Our assumption is that by selecting only the most successful
open source projects, the libraries will include primarily
production-quality source code, which is the target
population of CBR-Insight.

Defect Proneness

While stars are at best a measure of a repository’s popularity
on GitHub [19], CBR-Insight is attempting to score projects
based on their reliability and maintainability. To address this,
we use a measure of defect proneness based on [20]. A bug
fix (defect) commit is one that includes any of the following
key words: “error,” “bug,” “fix,” “issue,” “mistake,”
“correct,” “fault,” “defect,” or “flaw.” Defect proneness is the
ratio of defect commits to all commits.

This measure is obviously not going to discriminate bug fixes
from feature commits perfectly. Defect proneness is also only
a proxy for reliability, not maintainability. That said, defect
proneness shows a bell-shaped distribution across projects
for all languages. This matches the expectation that among
successful projects, some have numerous defects, while
others have few, and most a medium amount. Defect
proneness is also significantly associated with LOC, which
matches the general observation that more LOC leads to more
bugs. Finally, defect proneness is not significantly associated
with stars. Given these findings, we have opted to continue
the analysis using defect proneness as a better proxy for
reliability than number of stars among these successful
projects.

Peer Project Selection

Peer projects are used to provide a context in which to
understand the metric values generated for a project. For
example, a core size of 17% is by itself difficult to
understand. Peer projects support comparing that value to the
scores of similar, successful projects (e.g., the median core
size is 20%, so 17% is a reasonable number).

Peer projects are selected from the project library for a target
project in accordance with the following criteria. First, the
primary language must be the same as in the target project.
Second, a project must share at least one topic with the target
project. Third, the project must be within +/- 40% LOC of the
target project. Finally, a minimum of 25 peer projects is
required. In cases where there are not enough projects that
share a Topic, then all projects are considered within the LOC
range. If there are still not enough projects, then the 25
nearest projects in terms of LOC are selected.

Aggregated Scoring

Four project scores are created by comparing the metrics of
the target project to the selected peers. The four score
components are Architecture, Complexity, Clarity, and

7

Overall. The definitions of the numeric scores are given
below. For the numeric score, Mp is the percentile of the
metric relative to the peer projects. Some of the percentiles
are inverted; a higher score is better.

• Architecture = (1- CoreSizep) + (1- PropagationCostp)
• Complexity = (1- PercentComplexFilesp) + (1-

PercentDuplicateLOCp)
• Clarity = UsefulCommentDensityp
• Overall = Architecture + Complexity + Clarity

Each score component (Architecture, Complexity, Clarity,
and Overall) is also assigned a letter value in addition to the
numeric. The definition of all score components is based on
ScoreL, the percentile of the score relative to the scores of all
of the projects in the library of the same language. ScoreL >
0.9 = A, > 0.7 = ‘B,’ > 0.3 = ‘C,’ > 0.1 = ‘D,’ and <= 0.1 =
‘F.’ As described, grades are assigned by looking at the
distribution of numeric scores across all projects in the library
of the same language (not just peers) and then assigning letter
grades based on this distribution. So, for example, all of the
projects with an “A” will be those that scored the best against
their peers.

Statistical Methodology

We used Spearman correlation and partial correlation to
compare the strength and direction of associations between
variables. Log2 transformation was performed on variables
with a long-tailed distribution (e.g., LOC, Contributors,
Commits). Significance is determined by p <= 0.05.
Coarsened Exact Matching (CEM) is used for effect
estimation. Intuitively, what CEM does is compare projects
that are similar (e.g., similar LOC and contributors). That is,
for each value of the "treatment" variable (e.g., core size), it
finds groups of examples that are similar in terms of the
potential confounders (LOC and contributors) but that differ
on the treatment variable. Observations that can't be matched
that way are discarded. The ones that are "matched" are
weighted appropriately to reduce imbalance within and
across groups.

5. RESULTS AND DISCUSSION
After filtering, the project library contains the following
number of projects per language: C 664, C++ 700, C# 756,
and Java 669. While a few projects had 1M+ LOC, the bulk
were less than 500k. We use the project library to address
several research questions and then discuss threats to validity.

Q1: How do the metrics relate to defect proneness?

The metrics were selected based on evidence in the literature
of being indicators of reliability or maintainability. Based on
this, it is expected that core size, Propagation Cost, and
Percent Overly Complex will be significantly related to
defect proneness (reliability). Percent Duplicate LOC and
Comment Density are primarily related to maintainability
(not reliability) and therefore are not expected to relate
significantly to defect proneness.

The results generally meet these expectations as shown in
Figure 4, which analyzes all languages at once (with similar
findings for each language individually). Slight but
significant associations were found (as expected) for the
reliability measures—with one exception: Percent duplicate
LOC was found to be negatively associated with defect
proneness in some languages. This does not go against our
expectations (there is no positive association), but it is an
unexpected result that warrants further study.

Q2: How do the Architecture, Complexity, Clarity, and
Overall scores relate to defect proneness and LOC?

Based on the metrics used to create the aggregated scores, it
is expected that Architecture will be most strongly related to
defect proneness, followed by Complexity and Overall. The
Clarity score is not expected to be related to defect proneness.
Additionally, it is expected that all of the scores are
measuring something other than LOC, so there should be no
significant relationship between the scores and LOC.

The results generally met expectations as shown in Table 1.
The Architecture and Overall scores had small, significant
associations with defect proneness, accounting for LOC and
contributors. The complexity score was not associated with
defect proneness, which was unexpected and may be due to
the unexpected findings with duplicate LOC. Clarity
performed as expected as it was unrelated to defect
proneness. We do still expect that Complexity and Clarity are
associated with maintainability, based on metric selection.
None of the scores are significantly related to LOC or stars.

Figure 4. Partial correlation plot, accounting for
LOC and Contributors (p < 0.05 *, < 0.01 **, <
0.001 ***)

8

Even though the strength of association between Architecture
and Overall scores and the proxy reliability measure are small
[21], the estimated effects are significant from a software
development standpoint. Table 2 estimates the effect of
moving a project’s Architecture and Overall letter grade up
by one. For example, in C++, moving up one letter grade in
Architecture would result in 1.6 percentage point fewer
defects on average, with a standard error 0.43 away from that
average. In contrast, this is much more than the 0.254
percentage point decrease that would be expected by cutting
the size of the code base in half (log2 LOC). The effect for
Architecture is significant in all languages and is larger than
the estimated effect of cutting the code size in half in all
languages with a correspondingly larger amount of error. The
effect is significant for Overall in all languages except C and
larger than the estimated effect of cutting the code size in half
in C++ and Java. The error is correspondingly higher than for

the LOC estimated effect in all significant cases. While a
significant effect was not found for the letter grade in C,
significant effects were found for the Overall score in all
languages (not pictured). These estimates illustrate the likely
effects of improving the Architecture and Overall scores on
reliability, tempered by the large standard error which
indicates the variability in the effect.

Discussion

The takeaway is that as predicted by the literature, the
underlying metrics and the Architecture and Overall scores
built with these metrics are significantly associated with
defect proneness, are providing information on reliability
independent of LOC, and have a significant estimated effect
on reliability in all languages.

Table 1. Partial correlations between Architecture and Overall scores and defect proneness, accounting for
LOC and contributors

Table 2. Effect size estimate for Architecture and Overall score using CEM, relative to log2 LOC

9

Threats to Validity

Project Library—First, the 4,000 selected repositories
represent a tiny slice of the available repositories on GitHub.
More data would improve the analysis, especially given the
loss of projects to filtering. In particular, more projects are
needed below 4k LOC and above 260k LOC. Second, the
four-hour processing limit may have contributed to fewer
larger projects in C and C++. Third, the libraries were
generated from open source software. It is possible that
metrics and scores generated from the code of popular open
source projects might not be similar to the code of proprietary
production-level projects.

Defect Proneness—While this appears to work reasonably
well, it is clearly an imperfect proxy for reliability.

Metric Selection—A small set of metrics for reliability,
maintainability, and preventable technical debt was identified
during the Phase I research, based on a thorough literature
review. It is possible that different metrics, or a larger number
of metrics, would have yielded better results.

Peer Project Selection—Peer project selection involves a
number of free parameters (same language, shared topic, +/-
40% LOC). We selected these values based on experience
developing software as reasonable defaults. There are likely
different values that would better fit defect proneness. Given
that defect proneness is only a loose proxy of reliability and
there is no measure of maintainability, we did not attempt to
tune peer project selection parameters to improve results.

Topics—Matching shared topics across projects relies on
self-reported GitHub topics. Many projects have no topic at
all or use different terminology than other, similar topics.
Additionally, some topics such as ‘android’ are extremely
broad. In grading the peer project library, topic-based peer
selection was used infrequently in C++/C#/Java and never
used in C.

Aggregated Score—A purposely simple aggregation method
was used to create the Architecture, Complexity, Clarity, and
Overall scores, where the focus was on ease of description as
opposed to maximizing association with popularity,
reliability, etc. There are likely more complex ways to
combine this information that would yield a score that is more
highly correlated with metrics such as defect proneness.
Given that defect proneness is only a loose proxy of
reliability and there is no measure of maintainability, we did
not attempt to tune scoring.

Bias in causal inference—Inferences regarding the effect of
software design/engineering choices on reliability are
inherently causal in nature, and causal inference from
observational data is prone to bias. We attempted to mitigate
this threat by employing matching techniques (specifically,
Coarsened Exact Matching) to approximate the results of a
blocked experiment. However, just as in a blocked
experiment, bias can remain if there are any
unobserved/unblocked confounders. Unlike a blocked

experiment, we have no opportunity to randomize units into
treated and control groups in order to avoid bias caused by
unknown or uncontrollable confounders.

Maintainability—A large flaw in the analysis is that there is
no reliable measure of maintainability against which metrics
and scores could be compared, as was done for reliability.
Automated maintainability measures (e.g., Maintainability
Index) can be useful to prioritize what parts of the software
need attention, but they do not seem to correlate well with the
amount of maintenance-related effort required [10]. Given
that the metrics were selected based on their association with
reliability and maintainability in the literature, and we did
show a relationship between scores and reliability, we fully
expect similar relationships to exist between scores and
maintainability.

6. CASE STUDY
Stottler Henke is applying CBRI to the development of
critical software for scheduling and deconflicting satellite
communications for the US Air Force [22]. It is important to
note that this software, like many projects, started as a rapid
prototype to demonstrate proof of concept and then began
transitioning into a production-level system. This section
provides a high-level view of how CBRI is helping to
improve source code quality over time as part of a software
quality pipeline.

A software quality pipeline is a combination of a team’s or
organization’s culture, processes, and tools aimed at
producing high quality software – sharing much in common
with their DevOps pipeline [23]. Just like there is no single
DevOps solution that works in all contexts, there is also no
single software quality pipeline that works everywhere. In
this use case, the culture includes a focus on developing
reliable, maintainable, and secure software as a long-term
investment, the processes are those common to lean and agile
software development, and the tools are primarily the same
as those hosted by D2IE DevTools [24] for US DoD software
development.

Jira, by Atlassian, is used for issue tracking and serves as the
primary interface point between project management and
development. Issue in this case is a nebulous term—it can
mean a requirement, feature, bugfix, test, etc. Bitbucket, also
by Atlasssian, is used as the version control system. Jenkins,
an open source project, is used to compile and test the
software, and build software releases, to support continuous
delivery. Both Fortify and SonarQube are used for automated
code review, though in different ways. CBRI provides a
birds-eye view of code quality and helps guide software
development and refactoring efforts. Finally, Zephyr is used
for software test management. Jira, Zephyr, Bitbucket,
Jenkins, SonarQube, and CBRI are all integrated into an
automated pipeline via plugins.

Beginning work on an issue involves starting a new source
code branch in Bitbucket, which we will call the feature
branch. A software developer(s) then makes any changes in

10

this branch. Once the changes are made, the developer issues
a pull request that signals the feature branch is ready to merge
the change into the main development branch. This triggers
several actions. First, Jenkins compiles the feature branch and
runs automated tests on this branch. The developer needs to
correct any compilation or failed test issues to proceed.
Second, the feature branch is analyzed by SonarQube. Any
problems that SonarQube finds in the new code are posted to
the pull request in Bitbucket. Software developers are
expected to correct all identified problems before proceeding
to the next step. Third, the feature branch undergoes a manual
code review by another software developer. The reviewer
will create tasks in Bitbucket to be addressed. Once the
reviewer has verified all of the tasks have been corrected,
then the feature branch is finally merged with the main
development branch.

The objective of this process is to write clean code going
forward. The combination of automated and peer review has
three main benefits. First, the resulting code is more reliable
and maintainable. Once in a while, a bug is found, but more
often what is addressed are future maintainability issues.
Second, these reviews mentor less experienced software
developers. Requiring developers to fix all issues, whether
from SonarQube or the team lead, before merging in their
code generally encourages them to start doing the right thing
the first time. Third, the manual reviews spread knowledge of
the code out across the development team. While developed
independently, this lightweight review system is very similar
to that used by Google in terms of tools, process, and
motivation [25].

While this process focuses on good, clean code going
forward, it does not address all of the historic technical debt.
First, the team uses Fortify to identify and fix the high-
priority security-related issues. Second, CBRI is used to
guide software development and refactoring efforts.
Guidance for software development includes maintaining a
high level of quality comments, managing the complexity of
individual classes, and developing modular components as
part of the day-to-day development process. Refactoring is
taken on as time allows. There is never enough time to
address the full backlog of technical debt; CBRI is used to
identify the most complex files in the Core architecture group
as most likely to yield a return on investment.

During the last six months, this development environment
has resulted in slow but steady improvement along nearly all
dimensions: a 3% reduction in core size, a 1% reduction in
overly complex files and duplicate code, and a 1% increase
in comment density. The result was an improvement in the
complexity, clarity, and overall scores. This was during a
time period when sprints were devoted to feature
development and testing, with little time assigned to
refactoring and a 10% increase in the LOC. In addition to
suggesting refactorings, CBRI is used by the project manager
to track this reduction in technical debt over time and provide
evidence that the development environment was working as
expected.

However, it was not all good news. Propagation cost rose 6%
in this same timeframe. This points to a fundamental
challenge of architecture issues—they are not easy to fix.
Without a concerted refactoring effort to make the code base
more modular and hierarchal, adding new features across the
existing architecture tends to increase the technical debt. In
this case, CBRI is used to document the increase and
highlight the need for architecture refactoring along with new
feature development.

7. CONCLUSION

Software code quality and technical debt have significant
impact on a software product’s reliability, maintainability,
and security. This paper described the open source tool CBRI,
built for the US Air Force to measure and visualize source
code quality. The CBRI web-application provides an
objective and understandable measure of software quality
that can help guide decisions and direct limited resources
during software acquisition, development, and sustainment.
The analysis of the data behind CBRI provided evidence to
support this claim and also clearly lays out threats to validity.
Finally, a concrete use case illustrated how CBRI was used
as part of a development environment to improve code
quality in software for scheduling and deconflicting satellite
communications.

There is a long history of software engineering research in the
area of software product quality, and numerous existing tools
aim at performing automated code quality assessment. What
makes CBR-Insight a complementary addition to existing
tools is: (i) the calculation of a small, essential set of metrics
associated with maintainability, reliability, and technical
debt, (ii) using peer projects to set the targets associated with
each metric, and (iii) presenting the information in a format
preferred by decision makers. CBRI components and a
replication package are available at:
https://github.com/StottlerHenkeAssociates.

Future efforts on CBRI focus on three main areas. First is
identifying additional metrics that gauge the
understandability of software or the clarity measure. Not
surprisingly, software developers are better judges of the
understandability of code than automated systems [14], [26].
Our current approach is derived from [14], which involves
including a questionnaire on readability and
understandability as part of each manual code review. A
different approach suggested by [26] is to investigate deep
learning methods to see if they are able to accurately and
automatically assess understandability. Second is improving
the project library. This could be accomplished by including
more popular open-source projects, especially those with
more than 260k LOC, and by making it easier for
organizations to augment the library with their own projects.
Third is increasing the visibility of the CBRI results.
Currently the CBRI results are presented in a stand-alone web
application, which involves an extra step to view the results.
In our case study, we found this one extra step to present a
significant barrier at times. The solution is to build a Jira

11

dashboard plugin that would properly situate the CBRI
results within the familiar, and extensively used, Jira
dashboard.

ACKNOWLEDGEMENTS
This material is based upon work supported by the United
States Air Force Research Laboratory under Contract No.
FA8650-16-M-6732. The views, opinions, and/or findings
contained in this article/presentation are those of the
author/presenter and should not be interpreted as representing
the official views or policies, either expressed or implied, of
the AFRL. DISTRIBUTION A. Approved for public release:
distribution unlimited.

REFERENCES
[1] N. Fenton and J. Bieman, Software Metrics: A

Rigorous and Practical Approach, Third Edition, 3rd
ed. Boca Raton, FL, USA: CRC Press, Inc., 2014.

[2] Organización Internacional de Normalización, ISO-
IEC 25010: 2011 Systems and software engineering -
Systems and software Quality Requirements and
Evaluation (SQuaRE) - System and software quality
models. Geneva: ISO, 2011.

[3] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin,
“Empirical evidence on the link between object-
oriented measures and external quality attributes: a
systematic literature review,” Empir Software Eng,
vol. 20, no. 3, pp. 640–693, Jun. 2015.

[4] R. Ferenc, P. Hegedűs, and T. Gyimóthy, “Software
Product Quality Models,” in Evolving Software
Systems, T. Mens, A. Serebrenik, and A. Cleve, Eds.
Springer Berlin Heidelberg, 2014, pp. 65–100.

[5] Squale Consortium, “Visualization of Practices and
Metrics,” Mar. 2010.

[6] J.-L. Letouzey, “The SQALE Method for Managing
Technical Debt Definition Document,” 31-Mar-2016.
[Online]. Available: http://www.sqale.org/wp-
content/uploads/2016/08/SQALE-Method-EN-V1-
1.pdf. [Accessed: 03-Feb-2017].

[7] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-
Rojas, “In Search of a Metric for Managing
Architectural Technical Debt,” in Proceedings of the
2012 Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on
Software Architecture, Washington, DC, USA, 2012,
pp. 91–100.

[8] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I.
Gorton, “Measure It? Manage It? Ignore It? Software
Practitioners and Technical Debt,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of
Software Engineering, New York, NY, USA, 2015,
pp. 50–60.

[9] E. Lim, N. Taksande, and C. Seaman, “A Balancing
Act: What Software Practitioners Have to Say about
Technical Debt,” IEEE Software, vol. 29, no. 6, pp.
22–27, Nov. 2012.

[10] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical
Debt: From Metaphor to Theory and Practice,” IEEE
Software, vol. 29, no. 6, pp. 18–21, Nov. 2012.

[11] “Code Quality and Security | SonarQube.” [Online].
Available: https://www.sonarqube.org/. [Accessed:
24-Sep-2019].

[12] “Automated code reviews & code analytics.”
[Online]. Available: https://www.codacy.com/.
[Accessed: 24-Sep-2019].

[13] I. Griffith, D. Reimanis, C. Izurieta, Z. Codabux, A.
Deo, and B. Williams, “The Correspondence Between
Software Quality Models and Technical Debt
Estimation Approaches,” in Proceedings of the 2014
Sixth International Workshop on Managing Technical
Debt, Washington, DC, USA, 2014, pp. 19–26.

[14] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L.
Shi, “Why is It Important to Measure Maintainability,
and What Are the Best Ways to Do It?,” in
Proceedings of the 39th International Conference on
Software Engineering Companion, Piscataway, NJ,
USA, 2017, pp. 377–378.

[15] “SciTools.com.” [Online]. Available:
https://scitools.com/. [Accessed: 24-Dec-2018].

[16] J. Ludwig, S. Xu, and F. Webber, “Compiling static
software metrics for reliability and maintainability
from GitHub repositories,” in 2017 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC), 2017, pp. 5–9.

[17] C. Baldwin, A. MacCormack, and J. Rusnak, “Hidden
Structure: Using Network Methods to Map System
Architecture,” 2014.

[18] D. Coleman, B. Lowther, and P. Oman, “The
application of software maintainability models in
industrial software systems,” Journal of Systems and
Software, vol. 29, no. 1, pp. 3–16, Apr. 1995.

[19] H. Borges and M. Tulio Valente, “What’s in a GitHub
Star? Understanding Repository Starring Practices in
a Social Coding Platform,” Journal of Systems and
Software, vol. 146, pp. 112–129, Dec. 2018.

[20] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A
Large Scale Study of Programming Languages and
Code Quality in Github,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, New York,
NY, USA, 2014, pp. 155–165.

[21] C. J. Ferguson, “An effect size primer: A guide for
clinicians and researchers.,” Professional Psychology:
Research and Practice, vol. 40, no. 5, pp. 532–538,
Oct. 2009.

[22] R. Stottler and R. Richards, “Managed intelligent
deconfliction and scheduling for satellite
communication,” in 2018 IEEE Aerospace
Conference, 2018, pp. 1–7.

[23] A. Wiedemann, N. Forsgren, M. Wiesche, H. Gewald,
and H. Krcmar, “Research for practice: the DevOps
phenomenon,” Commun. ACM, vol. 62, pp. 44–49,
2019.

12

[24] “DI2E DevTools,” DI2E. [Online]. Available:
https://www.di2e.net/display/DI2E/DI2E+DevTools.
[Accessed: 27-Sep-2019].

[25] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and
A. Bacchelli, “Modern Code Review: A Case Study at
Google,” in Proceedings of the 40th International
Conference on Software Engineering: Software
Engineering in Practice, New York, NY, USA, 2018,
pp. 181–190.

[26] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-
Vasquez, D. Poshyvanyk, and R. Oliveto,
“Automatically Assessing Code Understandability,”
IEEE Transactions on Software Engineering, pp. 1–1,
2019.

BIOGRAPHY
Jeremy Ludwig, PhD, is a principal
engineer at Stottler Henke Associates,
Inc. He directs teams of computer
scientists and conducts research in
artificial intelligence, applying
reasoning, knowledge representation,

and machine learning to create solutions for complex,
real-world, problems.

Devin Cline is a software engineer at
Stottler Henke Associates, Inc. He has built
case based reasoning, image analysis,
behavior analysis, and visualization
components for scheduling and decision
support systems.

Aaron Novstrup is an artificial intelligence software
engineer and researcher at Stottler Henke Associates, Inc.
He has practical experience with a broad range of AI
applications, including information extraction, decision
support, and knowledge representation.

