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Abstract—Creating and maintaining high-quality source code is 
especially important for critical systems such as those made for 
NASA and the DoD, and for software product lines where long-
lived, reusable modules are intended to be shared by multiple 
systems. CBR-Insight is an automated code assessment tool 
developed for the US Air Force, and released as open source on 
GitHub, to provide an objective and understandable measure of 
software quality. CBRI-Insight supports the ability of technical 
and non-technical decision makers to verify that a project’s 
software implementation follows through on promises around 
developing and sustaining reliable and maintainable software 
while managing technical debt. The primary contributions of 
this work include advancing the state of the art in assessing 
software code quality, presenting a method to communicate 
code quality to decision makers, and examining a case study 
where these methods are applied to develop software in the 
aerospace domain.  
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1. INTRODUCTION 

Creating and maintaining high-quality software is especially 
important for critical systems such as those designed for 
NASA and the DoD, and for software product lines where 
long-lived, reusable modules are intended to be shared by 
multiple systems. A vital component of software 
development is creating high-quality source code that is 
reliable, maintainable, and has limited technical debt. 
Software development teams generally employ a variety of 
design techniques, processes, and tools to continually work 

towards quality code while balancing the overall time and 
budgetary demands of the project. CBR-Insight (CBRI) is an 
automated code assessment tool developed for the US Air 
Force and released as open source on GitHub. CBRI provides 
an objective and understandable measure of software quality 
that can help guide decisions and direct limited resources 
during software acquisition, development, and sustainment. 
CBRI supports the ability of technical and non-technical 
decision makers to verify that a project’s software 
implementation follows through on promises around 
developing and sustaining reliable and maintainable software 
while managing technical debt.  

There is a long history of software engineering research in the 
area of source code quality, and numerous existing tools aim 
at performing automated code quality assessment. What 
makes CBR-Insight a complementary addition to existing 
tools is: (i) the calculation of a small, essential set of static 
code metrics associated with maintainability, reliability, and 
technical debt, (ii) using a customizable set of peer projects 
to determine the target ranges associated with each metric, 
and (iii) presenting the information in a format preferred by 
decision makers. This paper begins with an overview of 
related work and an in-depth look at CBRI. Following this 
high-level review, we analyze the data that underlies CBRI in 
the Methods and Results & Discussion sections. Next, we 
present a real-world case study that illustrates how CBRI is 
applied as part of a suite of tools and processes to the 
development of critical software for scheduling and 
deconflicting satellite communications. The paper concludes 
with a description of ongoing work on CBRI and provides 
links to the source code on GitHub. 

The primary contributions of this work include advancing the 
state of the art in assessing software code quality, presenting 
a method to communicate code quality to decision makers, 
and examining a case study where these methods are applied 
to develop software in an aerospace domain.  

2. RELATED WORK  
There is a consistent push to improve software quality for 
critical systems and software product lines. The related work 
spans several areas, including software quality models, 
technical debt, and automated code review tools. 
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Software Quality Models 

Software quality models articulate what is meant by 
‘software quality.’ These models define the desired 
characteristics and sub-characteristics of software and the 
relationship between these characteristics and measurable 
properties of the software [1]. The ISO-IEC 25010: 2011 [2] 
quality model defines eight desired characteristics of 
software product quality: Functional Suitability, Performance 
Efficiency, Compatibility, Usability, Reliability, Security, 
Maintainability, and Portability. While all of these 
characteristics are important, this paper focuses specifically 
on Reliability and Maintainability as the bulk of existing 
research linking software quality to static code analysis uses 
these characteristics [3]. Reliability and Maintainability play 
a supporting role for other characteristics such as Usability 
and Security. 

Software quality models based on static source code analysis 
generally follow a three-step pattern. They identify specific 
source code metrics to be calculated, describe how the 
measurements of these metrics are aggregated, and define 
how the aggregations are used to assess characteristics of 
software quality [4]. Some examples of models and tools are 
Software Quality Enhancement (SQUALE), Quamoco 
Benchmark for Software Quality, Columbus Quality Model, 
Software Improvement Group (SIG) Maintainability Model, 
and Software Quality Assessment based on Lifecycle 
Expectations (SQALE). As an open-source project, 
SQUALE [5] provides a veritable treasure trove of 
information on understanding and developing a software 
quality model. SQALE [6] differs from the others in that it is 
an open methodology that defines the software quality and 
technical debt model and is implemented using tools such as 
SonarQube. CBRI builds on all of this prior work in creating 
its underlying software quality model.  

Technical Debt 

Technical debt is a measure of how much work would be 
needed to move from the current code to higher-quality code 
[7]. The source of technical debt during development and 
sustainment stems primarily from making design, 
implementation, documentation, and testing decisions that 
focus on short-term value [8]. As technical debt increases, 
changes to the software become more difficult, error-prone, 
and time-consuming, and this threatens the reliability, 
maintainability, and security characteristics of the software.  

This is an especially important take-away for software 
product lines, where long-lived, reusable modules are 
intended to be shared by multiple systems. Each module will 
want to invest in high software quality (low technical debt) 
initially and maintain this investment in quality over time as 
it is extended and updated. That is, as part of planned re-
usability, each module commits to making a long-term 
investment to software quality. The likely alternative is that 
the software quality will gradually degrade until, eventually, 
the problems become overwhelming [9]. 

While some technical debt is unavoidable [10], a large survey 
of software engineers and architects across multiple 
organizations provides a practical view of the causes and 
sources of avoidable technical debt [8]. Their results indicate 
that architectural decisions, overly complex code, and lack of 
code documentation are the top three avoidable sources of 
technical debt in practice. CBRI focuses on these three areas 
of technical debt in order to support software reliability and 
maintainability. 

Automated Code Review 

There are several practical tools aimed at improving source 
code quality and reducing technical debt, such as SonarQube 
[11] and Codacy [12]. These and other automated code 
review tools use rules to analyze every line of code to identify 
likely bugs, maintainability issues, and security flaws— 
encouraging developers to correct these issues with each code 
commit.  

Automated code review provides an invaluable service, 
assisting developers in catching these issues early. However, 
automated code review based strictly on rule violations may 
not present a complete picture of the overall code quality 
[13]. Additionally the (generally long) list of violations 
generated for existing systems can be overwhelming for 
developers and is not necessarily helpful in providing a high-
level view of the health of the code base [14]. CBRI aims to 
complement automated code review systems by highlighting 
overall software quality trends in the areas of architecture, 
complexity, and clarity as well as by providing the context in 
which to interpret and make use of the results. 

3. CBR-INSIGHT 
CBRI is a web application equipped with two main user 
interface components: Dashboard and Project View. The 
Dashboard provides an at-a-glance summary across a number 
of projects, while the Project View enables a deep look into 
a single project. Behind the scenes, CBRI uses the 
Understand static source code analysis tool developed by 
SciTools to generate the data displayed in the web app. 

Dashboard 

The CBRI Dashboard shown in Figure 1 focuses on 
highlighting software code quality across multiple projects in 
three important areas: architecture, complexity, and clarity. 
Intuitive symbols and colors indicate the relative score, from 
red/alert to green/check. An overall letter grade (A – F) is also 
assigned, each with a corresponding color. Trending icons 
indicate how the area and overall scores have changed 
relative to a baseline measurement.  

Architecture—One especially important technique to reduce 
complexity is developing software in a modular and 
hierarchical fashion. The term architectural complexity is 
used to describe how a software architecture makes use of 
modularity and hierarchy. Modularity and hierarchy reduce 
the dependencies between different pieces of the source code, 
so a change in one file doesn’t propagate changes to many 
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others. Similarly, a developer can make a change in one file 
without having to arrive at a detailed understanding of all of 
the other affected files. Systems with a good architecture 
score are those that make better use of modular and 
hierarchical structures than their peers. 

Complexity—Software developers also work to manage the 
complexity within each individual component (class or file) 
of the source code. Simply put, components that contain less 
logical complexity, less coupling to other files, fewer 
methods, and less code to deal with are more reliable and 
maintainable. Despite this general guidance, some 
complexity is always expected—there will necessarily be 
some number of overly complex, highly coupled, and lengthy 
components in all but the simplest of projects. Systems with 
better complexity scores have fewer overly complex 
components than their peers. 

Clarity—Software developers (hopefully) strive to write code 
that is simple and readable rather than clever. They use 
descriptive names for classes, methods, and variables aimed 
at making code easy to understand. They add comments to 
their source code to provide an overview or to describe the 
intent of the code. While difficult to objectively measure, the 
clarity of source code has a marked impact on reliability and 
maintainability. Systems with better clarity scores are those 
found to be well commented. Additional clarity measures for 
readability are discussed as part of Future Work. 

Scores and grades are calculated by comparing the calculated 
metrics of the project against the values from a set of peer 
projects, as described in the Methods section. For interpreting 
the grades, it is important to know that they are distributed on 
a bell-shaped curve. The most common score is a C, with 
fewer Bs and Ds and even fewer As and Fs. For example, 
getting a C indicates that reliability, maintainability, and 
technical debt should be about average with other production-
level projects. Improvements to the scores can be made by 
addressing the areas with red and yellow scores. An F on the 
other hand indicates this project is significantly worse off 
than other production-level efforts. In this case, one would 
expect more than usual difficulty in making changes 

(maintainability) and keeping the project running well 
(reliability) until the underlying code quality issues have been 
addressed. 

Project View 

The Dashboard is the starting point for the user to drill down 
into the details of each project. The Project View provides a 
description of the underlying metrics used to generate the 
scores for the project and visualizes the calculations over 
time. The visualizations include color-coded target ranges 
determined by analyzing peer projects along with a tree-map 
of file size and complexity organized by the Core Size 
architecture set. Every section contains accessible 
descriptions to assist the user in understanding the scores and 
measurements. 

The top portion of the Project View in Figure 2 provides 
general information such as topics (e.g., machine-learning) 
and a brief description. Following this are the date, revision, 
lines of code (LOC), and number of files in the baseline and 
latest measurement. Links enable the operator to update the 
project and to view additional details on the benchmarks and 
measurements.  

The next three sections of the Project View are the 
architecture, complexity, and clarity measurements. Each 
section includes a description of the measurement and a 
graphical representation of the measurement over time, 
relative to peers. Hovering over a graph brings up a popup 
that shows the calculated metric value compared to the 25th, 
50th, and 75th percentile values from the selected peer 
projects. Each section also includes visual indicators of 
change (good, bad, none), relative to the project baseline. For 
this very mature project, the trend lines have remained 
consistent over time; the visual indicators provide insight into 
the slowly creeping changes to code quality. 

 

 

 

 
Figure 1.  CBRI Dashboard with three example projects 
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Figure 2.  CBRI Project View general information and metric details 
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The following section of the Project View in Figure 3 
contains a treemap, where each box is a file, while the size of 
the box indicates the lines of code, and the color the number 
of complexity thresholds exceeded (darker red is worse). The 
files are organized by their determined core size architecture 
grouping (core, shared, control, peripheral, and isolate). Click 
on architecture group to see the files with the group; right 
click to navigate back to the architectures. Addressing 
complexity issues in the core group will likely have the 
greatest impact. 

The final section of the Project View supports the viewing 
and editing of information such as the repository location, the 
analysis language, and the users with whom this repository is 
shared. A log is also included to troubleshoot repository 
connection issues. 

Understand 

CBRI uses a plugin to the proprietary Understand static 
source code analysis software [15] to calculate the 
architecture, complexity, and clarity metrics. While CBRI 
focuses on presenting decision makers an overview, software 
developers can use Understand and the plugin directly to 
calculate the same metrics and address identified 
deficiencies. The plugin is included as part of the source code 
hosted on GitHub.  

4. METHODS  
One of the most useful aspects of CBRI is providing a context 
in which to understand the metric calculation results for a 
particular project. For example, a project manager might ask: 
“Is a propagation cost of 7% good or bad? If it is bad, what is 
a reasonable number?” The context used to create the graphs 
and scores in the web application is driven by the creation of 
a library of peer projects. In order to trust the user interface, 
we need to examine the underlying data. The methods section 
offers details on how the project library was developed (i.e., 
by selecting and analyzing open source projects from 
GitHub). A replication package is available online as part of 
the open source release 
(https://github.com/StottlerHenkeAssociates). 

Measurements 

A number of measurements were gathered through the 
GitHub Application Programming Interface (API) by 
examining the commits in the version control system as well 
as by analyzing the source code using the Understand static 
source code analysis tool developed by SciTools. These 
measurements were used to develop the project library and to 
assess the utility of the CBRI metrics. 

Stars, open and closed issue counts, number of releases, and 
topics were gathered via the GitHub API. Stars are assigned 
by GitHub users and serve as a measure of a project’s 
popularity. Topics are self-assigned project descriptors (e.g., 
‘machine-learning’). Number of commits and contributors 

 
Figure 3.  CBRI Project View architecture treemap and project information 
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were determined by examining the Git repository. Finally, the 
number of classes and files, lines of code, and lines of 
comments were measured by Understand. The lines of code 
measure attempts to capture the number of lines developers 
would actually need to review to comprehend the code. 
Similarly, the lines of comments measure attempts to weed 
out license headers and comments that aren’t meaningful. 

Metrics 

A brief summary is given below of the calculated metrics; see 
[16] for a more detailed discussion of the specific metrics 
selected for use in CBRI along with details on how they are 
calculated. 

Architecture—The architecture metrics are Core Size and 
Propagation Cost [17]. The Core is the largest set of 
components (classes or files) that are interdependently linked 
to each other; Core Size refers to the size of the Core relative 
to the total number of components. Propagation Cost is a 
system-wide metric that describes the proportion of software 
files that are directly or indirectly linked to each other. Both 
of these metrics provide a single, system-wide measure of 
how interconnected the source code is and therefore how 
extensive/expensive a change might be on average.  

Complexity—The two complexity metrics are Percent Overly 
Complex and Percent Duplicate LOC. An overly complex file 
is one that exceeds 4 of 5 thresholds from a set of standard 
software metrics [1], including LOC, WMC-Unweighted, 
WMC-McCabe, RFC, and CBO. The reasoning is that any 
component that fails the majority of these metrics is likely to 
actually be complex, not just large. Duplicate lines of code 
are defined as blocks of ten or more lines that are exactly 
repeated in more than one location. This was selected as a 
reasonable threshold where abstraction should be used rather 
than copy-and-paste. 

Complexity—Code-To-Comment ratio is used as an initial 
measure of clarity. This metric has been well studied as part 
of earlier work on quality models [18].  

Project Libraries 

For C, C++, C#, and Java, a project library was selected by 
identifying the top 1000 GitHub repositories in each 
language, sorted by number of stars. In all cases, the projects 
needed to be at least 200 KB. Each repository was analyzed 
with Understand and the plugin to generate a table of 
measurements and metrics. For C, files were used instead of 
classes for object-oriented metrics. Up to 2 hours was 
allowed for analysis with Understand and for running the 
plugin (i.e., up to 4 hours total per project). Projects that did 
not complete either step within 2 hours were not included in 
the library (25 for C, 19 for C++, 5 for C#, and 1 for Java). 

All project libraries were then processed to remove 
repositories that were not likely to be actual software 
projects. The filter removed repositories with: < 100 stars, < 
30 commits, < 1 release, < 1000 lines of code, <= 0 

propagation cost, >=100% comment density, >= 100% 
duplicate code. 

The result is a library that contains the most popular and 
successful projects available in GitHub for each language. 
Our assumption is that by selecting only the most successful 
open source projects, the libraries will include primarily 
production-quality source code, which is the target 
population of CBR-Insight.   

Defect Proneness 

While stars are at best a measure of a repository’s popularity 
on GitHub [19], CBR-Insight is attempting to score projects 
based on their reliability and maintainability. To address this, 
we use a measure of defect proneness based on [20]. A bug 
fix (defect) commit is one that includes any of the following 
key words: “error,” “bug,” “fix,” “issue,” “mistake,” 
“correct,” “fault,” “defect,” or “flaw.” Defect proneness is the 
ratio of defect commits to all commits. 

This measure is obviously not going to discriminate bug fixes 
from feature commits perfectly. Defect proneness is also only 
a proxy for reliability, not maintainability. That said, defect 
proneness shows a bell-shaped distribution across projects 
for all languages. This matches the expectation that among 
successful projects, some have numerous defects, while 
others have few, and most a medium amount. Defect 
proneness is also significantly associated with LOC, which 
matches the general observation that more LOC leads to more 
bugs. Finally, defect proneness is not significantly associated 
with stars. Given these findings, we have opted to continue 
the analysis using defect proneness as a better proxy for 
reliability than number of stars among these successful 
projects. 

Peer Project Selection 

Peer projects are used to provide a context in which to 
understand the metric values generated for a project. For 
example, a core size of 17% is by itself difficult to 
understand. Peer projects support comparing that value to the 
scores of similar, successful projects (e.g., the median core 
size is 20%, so 17% is a reasonable number).  

Peer projects are selected from the project library for a target 
project in accordance with the following criteria. First, the 
primary language must be the same as in the target project. 
Second, a project must share at least one topic with the target 
project. Third, the project must be within +/- 40% LOC of the 
target project. Finally, a minimum of 25 peer projects is 
required. In cases where there are not enough projects that 
share a Topic, then all projects are considered within the LOC 
range. If there are still not enough projects, then the 25 
nearest projects in terms of LOC are selected. 

Aggregated Scoring  

Four project scores are created by comparing the metrics of 
the target project to the selected peers. The four score 
components are Architecture, Complexity, Clarity, and 
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Overall. The definitions of the numeric scores are given 
below. For the numeric score, Mp is the percentile of the 
metric relative to the peer projects. Some of the percentiles 
are inverted; a higher score is better. 

• Architecture = (1- CoreSizep) + (1- PropagationCostp) 
• Complexity = (1- PercentComplexFilesp) + (1- 

PercentDuplicateLOCp) 
• Clarity = UsefulCommentDensityp 
• Overall = Architecture + Complexity + Clarity 

 
Each score component (Architecture, Complexity, Clarity, 
and Overall) is also assigned a letter value in addition to the 
numeric. The definition of all score components is based on 
ScoreL, the percentile of the score relative to the scores of all 
of the projects in the library of the same language. ScoreL > 
0.9 = A, > 0.7 = ‘B,’ > 0.3 = ‘C,’ > 0.1 = ‘D,’ and <= 0.1 = 
‘F.’ As described, grades are assigned by looking at the  
distribution of numeric scores across all projects in the library 
of the same language (not just peers) and then assigning letter 
grades based on this distribution. So, for example, all of the 
projects with an “A” will be those that scored the best against 
their peers. 

Statistical Methodology 

We used Spearman correlation and partial correlation to 
compare the strength and direction of associations between 
variables. Log2 transformation was performed on variables 
with a long-tailed distribution (e.g., LOC, Contributors, 
Commits). Significance is determined by p <= 0.05. 
Coarsened Exact Matching (CEM) is used for effect 
estimation.  Intuitively, what CEM does is compare projects 
that are similar (e.g., similar LOC and contributors). That is, 
for each value of the "treatment" variable (e.g., core size), it 
finds groups of examples that are similar in terms of the 
potential confounders (LOC and contributors) but that differ 
on the treatment variable. Observations that can't be matched 
that way are discarded. The ones that are "matched" are 
weighted appropriately to reduce imbalance within and 
across groups.  

5. RESULTS AND DISCUSSION 
After filtering, the project library contains the following 
number of projects per language: C 664, C++ 700, C# 756, 
and Java 669. While a few projects had 1M+ LOC, the bulk 
were less than 500k. We use the project library to address 
several research questions and then discuss threats to validity. 

Q1: How do the metrics relate to defect proneness? 

The metrics were selected based on evidence in the literature 
of being indicators of reliability or maintainability. Based on 
this, it is expected that core size, Propagation Cost, and 
Percent Overly Complex will be significantly related to 
defect proneness (reliability). Percent Duplicate LOC and 
Comment Density are primarily related to maintainability 
(not reliability) and therefore are not expected to relate 
significantly to defect proneness. 

The results generally meet these expectations as shown in 
Figure 4, which analyzes all languages at once (with similar 
findings for each language individually). Slight but 
significant associations were found (as expected) for the 
reliability measures—with one exception: Percent duplicate 
LOC was found to be negatively associated with defect 
proneness in some languages. This does not go against our 
expectations (there is no positive association), but it is an 
unexpected result that warrants further study.  

 

Q2: How do the Architecture, Complexity, Clarity, and 
Overall scores relate to defect proneness and LOC? 

Based on the metrics used to create the aggregated scores, it 
is expected that Architecture will be most strongly related to 
defect proneness, followed by Complexity and Overall. The 
Clarity score is not expected to be related to defect proneness. 
Additionally, it is expected that all of the scores are 
measuring something other than LOC, so there should be no 
significant relationship between the scores and LOC. 

The results generally met expectations as shown in Table 1. 
The Architecture and Overall scores had small, significant 
associations with defect proneness, accounting for LOC and 
contributors. The complexity score was not associated with 
defect proneness, which was unexpected and may be due to 
the unexpected findings with duplicate LOC. Clarity 
performed as expected as it was unrelated to defect 
proneness. We do still expect that Complexity and Clarity are 
associated with maintainability, based on metric selection. 
None of the scores are significantly related to LOC or stars.  

 
Figure 4.  Partial correlation plot, accounting for 
LOC and Contributors (p < 0.05 *, < 0.01 **, < 
0.001 ***) 
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Even though the strength of association between Architecture 
and Overall scores and the proxy reliability measure are small 
[21], the estimated effects are significant from a software 
development standpoint. Table 2 estimates the effect of 
moving a project’s Architecture and Overall letter grade up 
by one.  For example, in C++, moving up one letter grade in 
Architecture would result in 1.6 percentage point fewer 
defects on average, with a standard error 0.43 away from that 
average. In contrast, this is much more than the 0.254 
percentage point decrease that would be expected by cutting 
the size of the code base in half (log2 LOC). The effect for 
Architecture is significant in all languages and is larger than 
the estimated effect of cutting the code size in half in all 
languages with a correspondingly larger amount of error. The 
effect is significant for Overall in all languages except C and 
larger than the estimated effect of cutting the code size in half 
in C++ and Java. The error is correspondingly higher than for 

the LOC estimated effect in all significant cases. While a 
significant effect was not found for the letter grade in C, 
significant effects were found for the Overall score in all 
languages (not pictured). These estimates illustrate the likely 
effects of improving the Architecture and Overall scores on 
reliability, tempered by the large standard error which 
indicates the variability in the effect.  

Discussion 

The takeaway is that as predicted by the literature, the 
underlying metrics and the Architecture and Overall scores 
built with these metrics are significantly associated with 
defect proneness, are providing information on reliability 
independent of LOC, and have a significant estimated effect 
on reliability in all languages.  

 

Table 1.  Partial correlations between Architecture and Overall scores and defect proneness, accounting for 
LOC and contributors 

 
Table 2.  Effect size estimate for Architecture and Overall score using CEM, relative to log2 LOC 
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Threats to Validity 

Project Library—First, the 4,000 selected repositories 
represent a tiny slice of the available repositories on GitHub. 
More data would improve the analysis, especially given the 
loss of projects to filtering. In particular, more projects are 
needed below 4k LOC and above 260k LOC. Second, the 
four-hour processing limit may have contributed to fewer 
larger projects in C and C++. Third, the libraries were 
generated from open source software. It is possible that 
metrics and scores generated from the code of popular open 
source projects might not be similar to the code of proprietary 
production-level projects.  

Defect Proneness—While this appears to work reasonably 
well, it is clearly an imperfect proxy for reliability.   

Metric Selection—A small set of metrics for reliability, 
maintainability, and preventable technical debt was identified 
during the Phase I research, based on a thorough literature 
review. It is possible that different metrics, or a larger number 
of metrics, would have yielded better results. 

Peer Project Selection—Peer project selection involves a 
number of free parameters (same language, shared topic, +/- 
40% LOC). We selected these values based on experience 
developing software as reasonable defaults. There are likely 
different values that would better fit defect proneness. Given 
that defect proneness is only a loose proxy of reliability and 
there is no measure of maintainability, we did not attempt to 
tune peer project selection parameters to improve results. 

Topics—Matching shared topics across projects relies on 
self-reported GitHub topics. Many projects have no topic at 
all or use different terminology than other, similar topics. 
Additionally, some topics such as ‘android’ are extremely 
broad. In grading the peer project library, topic-based peer 
selection was used infrequently in C++/C#/Java and never 
used in C. 

Aggregated Score—A purposely simple aggregation method 
was used to create the Architecture, Complexity, Clarity, and 
Overall scores, where the focus was on ease of description as 
opposed to maximizing association with popularity, 
reliability, etc. There are likely more complex ways to 
combine this information that would yield a score that is more 
highly correlated with metrics such as defect proneness. 
Given that defect proneness is only a loose proxy of 
reliability and there is no measure of maintainability, we did 
not attempt to tune scoring. 

Bias in causal inference—Inferences regarding the effect of 
software design/engineering choices on reliability are 
inherently causal in nature, and causal inference from 
observational data is prone to bias. We attempted to mitigate 
this threat by employing matching techniques (specifically, 
Coarsened Exact Matching) to approximate the results of a 
blocked experiment. However, just as in a blocked 
experiment, bias can remain if there are any 
unobserved/unblocked confounders. Unlike a blocked 

experiment, we have no opportunity to randomize units into 
treated and control groups in order to avoid bias caused by 
unknown or uncontrollable confounders. 

Maintainability—A large flaw in the analysis is that there is 
no reliable measure of maintainability against which metrics 
and scores could be compared, as was done for reliability. 
Automated maintainability measures (e.g., Maintainability 
Index) can be useful to prioritize what parts of the software 
need attention, but they do not seem to correlate well with the 
amount of maintenance-related effort required [10]. Given 
that the metrics were selected based on their association with 
reliability and maintainability in the literature, and we did 
show a relationship between scores and reliability, we fully 
expect similar relationships to exist between scores and 
maintainability.   

6. CASE STUDY 
Stottler Henke is applying CBRI to the development of 
critical software for scheduling and deconflicting satellite 
communications for the US Air Force [22]. It is important to 
note that this software, like many projects, started as a rapid 
prototype to demonstrate proof of concept and then began 
transitioning into a production-level system. This section 
provides a high-level view of how CBRI is helping to 
improve source code quality over time as part of a software 
quality pipeline.  
 
A software quality pipeline is a combination of a team’s or 
organization’s culture, processes, and tools aimed at 
producing high quality software – sharing much in common 
with their DevOps pipeline [23]. Just like there is no single 
DevOps solution that works in all contexts, there is also no 
single software quality pipeline that works everywhere. In 
this use case, the culture includes a focus on developing 
reliable, maintainable, and secure software as a long-term 
investment, the processes are those common to lean and agile 
software development, and the tools are primarily the same 
as those hosted by D2IE DevTools [24] for US DoD software 
development.  
 
Jira, by Atlassian, is used for issue tracking and serves as the 
primary interface point between project management and 
development. Issue in this case is a nebulous term—it can 
mean a requirement, feature, bugfix, test, etc. Bitbucket, also 
by Atlasssian, is used as the version control system. Jenkins, 
an open source project, is used to compile and test the 
software, and build software releases, to support continuous 
delivery. Both Fortify and SonarQube are used for automated 
code review, though in different ways. CBRI provides a 
birds-eye view of code quality and helps guide software 
development and refactoring efforts. Finally, Zephyr is used 
for software test management. Jira, Zephyr, Bitbucket, 
Jenkins, SonarQube, and CBRI are all integrated into an 
automated pipeline via plugins.  
 
Beginning work on an issue involves starting a new source 
code branch in Bitbucket, which we will call the feature 
branch. A software developer(s) then makes any changes in 
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this branch. Once the changes are made, the developer issues 
a pull request that signals the feature branch is ready to merge 
the change into the main development branch. This triggers 
several actions. First, Jenkins compiles the feature branch and 
runs automated tests on this branch. The developer needs to 
correct any compilation or failed test issues to proceed. 
Second, the feature branch is analyzed by SonarQube. Any 
problems that SonarQube finds in the new code are posted to 
the pull request in Bitbucket. Software developers are 
expected to correct all identified problems before proceeding 
to the next step. Third, the feature branch undergoes a manual 
code review by another software developer. The reviewer 
will create tasks in Bitbucket to be addressed. Once the 
reviewer has verified all of the tasks have been corrected, 
then the feature branch is finally merged with the main 
development branch.  
 
The objective of this process is to write clean code going 
forward. The combination of automated and peer review has 
three main benefits. First, the resulting code is more reliable 
and maintainable. Once in a while, a bug is found, but more 
often what is addressed are future maintainability issues. 
Second, these reviews mentor less experienced software 
developers. Requiring developers to fix all issues, whether 
from SonarQube or the team lead, before merging in their 
code generally encourages them to start doing the right thing 
the first time. Third, the manual reviews spread knowledge of 
the code out across the development team. While developed 
independently, this lightweight review system is very similar 
to that used by Google in terms of tools, process, and 
motivation [25].  
 
While this process focuses on good, clean code going 
forward, it does not address all of the historic technical debt. 
First, the team uses Fortify to identify and fix the high-
priority security-related issues. Second, CBRI is used to 
guide software development and refactoring efforts. 
Guidance for software development includes maintaining a 
high level of quality comments, managing the complexity of 
individual classes, and developing modular components as 
part of the day-to-day development process. Refactoring is 
taken on as time allows. There is never enough time to 
address the full backlog of technical debt; CBRI is used to 
identify the most complex files in the Core architecture group 
as most likely to yield a return on investment.  
 
During the last six months, this development environment 
has resulted in slow but steady improvement along nearly all 
dimensions: a 3% reduction in core size, a 1% reduction in 
overly complex files and duplicate code, and a 1% increase 
in comment density. The result was an improvement in the 
complexity, clarity, and overall scores. This was during a 
time period when sprints were devoted to feature 
development and testing, with little time assigned to 
refactoring and a 10% increase in the LOC. In addition to 
suggesting refactorings, CBRI is used by the project manager 
to track this reduction in technical debt over time and provide 
evidence that the development environment was working as 
expected. 

 
However, it was not all good news. Propagation cost rose 6% 
in this same timeframe. This points to a fundamental 
challenge of architecture issues—they are not easy to fix. 
Without a concerted refactoring effort to make the code base 
more modular and hierarchal, adding new features across the 
existing architecture tends to increase the technical debt. In 
this case, CBRI is used to document the increase and 
highlight the need for architecture refactoring along with new 
feature development. 

 
7. CONCLUSION  

Software code quality and technical debt have significant 
impact on a software product’s reliability, maintainability, 
and security. This paper described the open source tool CBRI, 
built for the US Air Force to measure and visualize source 
code quality. The CBRI web-application provides an 
objective and understandable measure of software quality 
that can help guide decisions and direct limited resources 
during software acquisition, development, and sustainment. 
The analysis of the data behind CBRI provided evidence to 
support this claim and also clearly lays out threats to validity.  
Finally, a concrete use case illustrated how CBRI was used 
as part of a development environment to improve code 
quality in software for scheduling and deconflicting satellite 
communications. 

There is a long history of software engineering research in the 
area of software product quality, and numerous existing tools 
aim at performing automated code quality assessment. What 
makes CBR-Insight a complementary addition to existing 
tools is: (i) the calculation of a small, essential set of metrics 
associated with maintainability, reliability, and technical 
debt, (ii) using peer projects to set the targets associated with 
each metric, and (iii) presenting the information in a format 
preferred by decision makers. CBRI components and a 
replication package are available at: 
https://github.com/StottlerHenkeAssociates. 

Future efforts on CBRI focus on three main areas. First is 
identifying additional metrics that gauge the 
understandability of software or the clarity measure. Not 
surprisingly, software developers are better judges of the 
understandability of code than automated systems [14], [26]. 
Our current  approach is derived from [14], which involves 
including a questionnaire on readability and 
understandability as part of each manual code review. A 
different approach suggested by [26] is to investigate deep 
learning methods to see if they are able to accurately and 
automatically assess understandability. Second is improving 
the project library. This could be accomplished by including 
more popular open-source projects, especially those with 
more than 260k LOC, and by making it easier for 
organizations to augment the library with their own projects. 
Third is increasing the visibility of the CBRI results. 
Currently the CBRI results are presented in a stand-alone web 
application, which involves an extra step to view the results. 
In our case study, we found this one extra step to present a 
significant barrier at times. The solution is to build a Jira 
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dashboard plugin that would properly situate the CBRI 
results within the familiar, and extensively used, Jira 
dashboard.  

ACKNOWLEDGEMENTS 
This material is based upon work supported by the United 
States Air Force Research Laboratory under Contract No. 
FA8650-16-M-6732. The views, opinions, and/or findings 
contained in this article/presentation are those of the 
author/presenter and should not be interpreted as representing 
the official views or policies, either expressed or implied, of 
the AFRL. DISTRIBUTION A. Approved for public release: 
distribution unlimited. 
 

REFERENCES 
[1] N. Fenton and J. Bieman, Software Metrics: A 

Rigorous and Practical Approach, Third Edition, 3rd 
ed. Boca Raton, FL, USA: CRC Press, Inc., 2014. 

[2] Organización Internacional de Normalización, ISO-
IEC 25010: 2011 Systems and software engineering - 
Systems and software Quality Requirements and 
Evaluation (SQuaRE) - System and software quality 
models. Geneva: ISO, 2011. 

[3] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin, 
“Empirical evidence on the link between object-
oriented measures and external quality attributes: a 
systematic literature review,” Empir Software Eng, 
vol. 20, no. 3, pp. 640–693, Jun. 2015. 

[4] R. Ferenc, P. Hegedűs, and T. Gyimóthy, “Software 
Product Quality Models,” in Evolving Software 
Systems, T. Mens, A. Serebrenik, and A. Cleve, Eds. 
Springer Berlin Heidelberg, 2014, pp. 65–100. 

[5] Squale Consortium, “Visualization of Practices and 
Metrics,” Mar. 2010. 

[6] J.-L. Letouzey, “The SQALE Method for Managing 
Technical Debt Definition Document,” 31-Mar-2016. 
[Online]. Available: http://www.sqale.org/wp-
content/uploads/2016/08/SQALE-Method-EN-V1-
1.pdf. [Accessed: 03-Feb-2017]. 

[7] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-
Rojas, “In Search of a Metric for Managing 
Architectural Technical Debt,” in Proceedings of the 
2012 Joint Working IEEE/IFIP Conference on 
Software Architecture and European Conference on 
Software Architecture, Washington, DC, USA, 2012, 
pp. 91–100. 

[8] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. 
Gorton, “Measure It? Manage It? Ignore It? Software 
Practitioners and Technical Debt,” in Proceedings of 
the 2015 10th Joint Meeting on Foundations of 
Software Engineering, New York, NY, USA, 2015, 
pp. 50–60. 

[9] E. Lim, N. Taksande, and C. Seaman, “A Balancing 
Act: What Software Practitioners Have to Say about 
Technical Debt,” IEEE Software, vol. 29, no. 6, pp. 
22–27, Nov. 2012. 

[10] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical 
Debt: From Metaphor to Theory and Practice,” IEEE 
Software, vol. 29, no. 6, pp. 18–21, Nov. 2012. 

[11] “Code Quality and Security | SonarQube.” [Online]. 
Available: https://www.sonarqube.org/. [Accessed: 
24-Sep-2019]. 

[12] “Automated code reviews & code analytics.” 
[Online]. Available: https://www.codacy.com/. 
[Accessed: 24-Sep-2019]. 

[13] I. Griffith, D. Reimanis, C. Izurieta, Z. Codabux, A. 
Deo, and B. Williams, “The Correspondence Between 
Software Quality Models and Technical Debt 
Estimation Approaches,” in Proceedings of the 2014 
Sixth International Workshop on Managing Technical 
Debt, Washington, DC, USA, 2014, pp. 19–26. 

[14] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. 
Shi, “Why is It Important to Measure Maintainability, 
and What Are the Best Ways to Do It?,” in 
Proceedings of the 39th International Conference on 
Software Engineering Companion, Piscataway, NJ, 
USA, 2017, pp. 377–378. 

[15] “SciTools.com.” [Online]. Available: 
https://scitools.com/. [Accessed: 24-Dec-2018]. 

[16] J. Ludwig, S. Xu, and F. Webber, “Compiling static 
software metrics for reliability and maintainability 
from GitHub repositories,” in 2017 IEEE 
International Conference on Systems, Man, and 
Cybernetics (SMC), 2017, pp. 5–9. 

[17] C. Baldwin, A. MacCormack, and J. Rusnak, “Hidden 
Structure:  Using  Network Methods to Map  System 
Architecture,” 2014. 

[18] D. Coleman, B. Lowther, and P. Oman, “The 
application of software maintainability models in 
industrial software systems,” Journal of Systems and 
Software, vol. 29, no. 1, pp. 3–16, Apr. 1995. 

[19] H. Borges and M. Tulio Valente, “What’s in a GitHub 
Star? Understanding Repository Starring Practices in 
a Social Coding Platform,” Journal of Systems and 
Software, vol. 146, pp. 112–129, Dec. 2018. 

[20] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A 
Large Scale Study of Programming Languages and 
Code Quality in Github,” in Proceedings of the 22Nd 
ACM SIGSOFT International Symposium on 
Foundations of Software Engineering, New York, 
NY, USA, 2014, pp. 155–165. 

[21] C. J. Ferguson, “An effect size primer: A guide for 
clinicians and researchers.,” Professional Psychology: 
Research and Practice, vol. 40, no. 5, pp. 532–538, 
Oct. 2009. 

[22] R. Stottler and R. Richards, “Managed intelligent 
deconfliction and scheduling for satellite 
communication,” in 2018 IEEE Aerospace 
Conference, 2018, pp. 1–7. 

[23] A. Wiedemann, N. Forsgren, M. Wiesche, H. Gewald, 
and H. Krcmar, “Research for practice: the DevOps 
phenomenon,” Commun. ACM, vol. 62, pp. 44–49, 
2019. 



12 
 

[24] “DI2E DevTools,” DI2E. [Online]. Available: 
https://www.di2e.net/display/DI2E/DI2E+DevTools. 
[Accessed: 27-Sep-2019]. 

[25] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and 
A. Bacchelli, “Modern Code Review: A Case Study at 
Google,” in Proceedings of the 40th International 
Conference on Software Engineering: Software 
Engineering in Practice, New York, NY, USA, 2018, 
pp. 181–190. 

[26] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-
Vasquez, D. Poshyvanyk, and R. Oliveto, 
“Automatically Assessing Code Understandability,” 
IEEE Transactions on Software Engineering, pp. 1–1, 
2019. 

BIOGRAPHY 
Jeremy Ludwig, PhD, is a principal 
engineer at Stottler Henke Associates, 
Inc. He directs teams of computer 
scientists and conducts research in 
artificial intelligence, applying 
reasoning, knowledge representation, 

and machine learning to create solutions for complex, 
real-world, problems.  

Devin Cline is a software engineer at 
Stottler Henke Associates, Inc. He has built 
case based reasoning, image analysis, 
behavior analysis, and visualization 
components for scheduling and decision 
support systems. 
 

Aaron Novstrup is an artificial intelligence software 
engineer and researcher at Stottler Henke Associates, Inc. 
He has practical experience with a broad range of AI 
applications, including information extraction, decision 
support, and knowledge representation. 

 
 


