
Towards Decentralized
Network Management and Reliability*

Lynn W. Jones and Tamitha L. Carpenter
Stottler Henke Associates, Inc.

1107 NE 45th St., Suite 427
Seattle, WA 98105

* Support for this work was provided by the Defense Advanced Research Projects Agency through contract number
DAAH01-00-C-R220.

Abstract - We depend more and more on computer
networks, yet the growth of networks and their
heterogeneous composition make ensuring network
reliability a daunting task. SHAI introduces a novel
alternative approach that pushes monitoring and
response out into the network in support of better
scalability and decision making. Using autonomous
agents, the system detects and responds to network
degrading events, even those not previously observed,
and even when parts of the network have failed. This
paper describes our motivation and system
architecture and gives an example of how this system
might perform.

Index Terms - Anomaly detection, case based
reasoning, intelligent agents, machine learning,
network management, network security.

1. Introduction
As computing power has grown, so has our

reliance on computers and networks.
Communications, transportation, just-in-time
inventory and production, energy and water
supply – the very foundations of our economic,
personal, and political safety all depend on
reliable network availability. And yet, computer
networks are fraught with vulnerabilities.
Computer "crackers" continue to find new ways
to exploit weaknesses in both hardware and
software. The Internet itself permits scripts,
viruses, and other attack tools to be disseminated
as rapidly as their solutions. A more widespread
but less publicized problem is that of computer
misuse or attack by “insiders” such as disgruntled
employees or spies [1]. These incidents might
include the planting of viruses or launching of
denial of service (DoS) attacks just like ones
mounted from outside the network, or they might

be much more subtle and harder to detect, such as
unauthorized viewing or theft of information or
falsification of data.

There are a number of tools aimed at
particular aspects of network security, such as
policy management consoles ([2], [3]), virus
scanners ([4], [5]), and intrusion detection
systems (IDSs) ([6], [7]). Many virus scanners
and IDSs are signature-based; that is, they match
suspicious files or activities against previously
identified patterns. Some of these systems are
“brittle” and can easily be circumvented by
making small changes in the attack sequence or
even in the subject line of emails delivering the
virus [8]. Virus scanners are fairly successful at
detecting known viruses before they can cause
damage, because the behavior of a given virus is
relatively fixed. Intrusion and attack signatures
are more difficult to match because there is no
definitive window of time during which attack
precursors (such as gaining administrative
privilege) must occur. Exploits of this nature,
while perhaps detectable, are more difficult to
predict and prevent.

Other weaknesses trouble signature-based
systems. They are always a step behind the
attackers, since they use profiles of attacks that
have already occurred. They cannot protect the
first victims of a new exploit, and other networks
remain vulnerable while a signature definition for
the attack or virus is being produced. New
vulnerabilities and exploits are constantly being
discovered, and as the signature libraries grow,
searching them consumes too many resources for
real-time protection. Signature-based systems
also tend to match similar patterns that do not
indicate viruses, intrusions, or attacks, generating

false alarms that make them more difficult and
time consuming to administer. Some newer IDSs
are combating these shortcomings by developing
anomaly detection or hybrid approaches ([9],
[10]).

Network management tasks are not confined
to security. A computer network, like any other
complex system, has its share of equipment
failures that can lead to downtime and loss of
service. Unlike many other systems, however,
computer networks are evolving extremely
rapidly and are comprised of many different
hardware and software components, utilizing
different protocols, developed at different times
by different vendors and to different
specifications. In addition to routine faults,
constant upgrading of hardware, software, and
drivers presents opportunity for conflict between
various components. Meanwhile, backward-
compatibility requirements allow security and
other flaws to persist. Because of the complexity
and opacity of network behavior, interoperability
and configuration errors may be difficult to detect
and diagnose. Thus, even in a world free of
malicious computer users, building and
maintaining computer networks requires
considerable expertise and ongoing effort.
Various network monitoring and management
tools do exist, but many are device- or vendor-
specific. Integration, however, is improving ([11],
[12], [13]).

The task of maintaining network health is
compounded by the difficulty of accurately
diagnosing problems once symptoms are
observed. There is no exact correspondence
between network problems and their underlying
causes [14]. Faults, misconfigurations, attacks
and misuse may manifest themselves in a variety
of ways, and observable symptoms may have a
number of possible causes. Problems may be
intermittent and difficult to consistently
reproduce. Relatively minor faults can persist
undetected, exacerbating and masking the causes
of larger events that might occur.

As these issues indicate, computer networks
are analogous to other complex systems, such as
automobile engines and manufacturing processes,
requiring automated analysis and control in order
to remain functional and reliable. In this paper
we present a work in progress, the Multi-Agent
System for Network Resource Reliability
(MASRR). This system is designed specifically

to address the following needs and shortcomings
of currently available approaches:

Scalability. Cooperating agents each monitor a
part of the network and share information as
needed, reducing redundant messages and
eliminating the processing and data transfer
bottleneck of a centralized system.
Interoperability. Agents themselves are
platform-independent and offer a consistent
interface to the administrator. Platform and
device specific modules allow an agent executing
in one environment to monitor or act upon
network elements of different types and having
proprietary management interfaces.
Survivability. The decentralized system allows
agents to continue to act even when parts of the
network have been compromised or have become
unavailable. Localized response and reasoning
under uncertainty enable MASRR to preserve
network operation as much as possible, even in
the face of faults or attacks. Agents protect
themselves from triggering a denial of service
effect by taking progressive action, making small
corrections while gathering more information and
increasing certainty as to the real cause of a
problem.
Concurrent diagnosis. Network problems and
symptoms have many-to-many relationships.
Agents can follow several lines of reasoning at
once in order to gather more information and take
appropriate response. Information fusion by
cooperating agents gives a “big-picture” view of
the network to an individual agent monitoring
only a part of the network.
Integration of security and management.
MASRR agents recognize any number of
network-degrading events and are able to respond
to faults and misconfigurations as well as
intrusions and attacks. While MASRR is not
itself an IDS, agents can reason about the output
of an IDS (or several different IDS systems) for
improved diagnosis and response.
Anomaly detection. Signatures of attacks,
intrusions, and faults are useful for diagnosing
symptoms, but they do not aid in the recognition
of events not previously observed. MASRR
makes use of a novel anomaly detection
component, also under development. This
modeling of normal network behavior and usage
promotes detection of anomalous insider usage as
well.

Accurate alarm rate. Computer network usage is
dynamic. There are normal periods of activity,
similar to highway rush hours, but even these will
drift over time. Moreover, no two networks will
have identical characteristics. MASRR agents
and their anomaly detection components learn
what is “normal” for the specific parts of the
network they monitor and then detect departures
from expectation. They adapt to changes when
appropriate. Thus MASRR agents stay closely
“tuned” to the network to present low false alarm
and low false negative (missed alarm) rates.
Low overhead for real-time operation. Agents
will perform routine monitoring using standard
Managed Information Base (MIB) data. This
information is small, widely supported, and easy
to collect and process. When suspicions warrant,
higher cost data, such as packet and network flow
traces, may be collected. In addition, the ability to
process IDS output maximizes the utility of both
the IDS and of MASRR.

The remainder of this paper presents some
details of the MASRR system architecture,
including “thumbprinting” of the normal network
behavior and selection of actions in response to

symptoms. We give an example of how the
system might behave in a particular, real-world
situation. Our conclusions describe the project
status and outline some future work.

2. Description of MASRR
The MASRR system consists of a collection

of semi-autonomous agents deployed throughout
a computer network. Decentralized monitoring
and response fulfills requirements of scalability
and survivability, as described in the preceding
section. The agent architecture, shown in Figure
1, illustrates how MASRR addresses some of the
other requirements.

The component we have called the Mailroom
provides interoperability. It separates agent
reasoning from platform-specific details of
execution. Our prototype agents are implemented
in Java, which provides a standard interface to
some operations. Other operations, however, will
interact directly with a proprietary element such
as an operating system or a router. The agent can
ask for and reason about, for example, the IP
address of its default gateway, and the Mailroom
abstracts away details such as whether to use
ipconfig (on Windows®) or route (on
Linux™), and how to parse the desired
information from the command output.

MASRR agents evaluate the network by
building thumbprints of normal behavior and
noting when the current behavior deviates from
what is expected. An important part of the
Thumbprints component is SHAI’s innovative
Change and Anomaly Detection (ChAD) data
mining system [15]. ChAD’s unique, adaptive
approach allows it to report on changes in
behavior, transition between learned normal
periods of behavior, and to adapt to the changes
as needed. Thumbprinting includes heuristic
evaluation of raw data as well as the output of the
ChAD system, using encoded expertise from
network security and management domains.

The Actions component further integrates
network management and security. Using
domain knowledge, it links symptoms to
responses. The prototype MASRR system
includes a library of action cases, which are
composed of one or more steps and may contain
their own logic for handling ordering of steps,
time-outs, and contingencies. Action cases are
indexed by evaluations of network behavior,

Figure 1. MASSR agent architecture.

including the Thumbprint and messages from
peer agents. One or more action cases are
selected using the current set of evaluations. The
agent can pursue multiple lines of reasoning,
using a recorded history, and can take intermedi-
ate action while gathering more information to
decrease uncertainty about possible causes of
problems (concurrent diagnosis). Certainly the
library cannot contain actions for every
conceivable event, but there are sufficient
representative cases that can be adapted to
respond to and improve many situations, even
those not previously observed.

The Thumbprints and Actions modules
combine to provide effective response to
network-degrading events, whether caused by
fault or attack. False alarms are reduced by a
thumbprinting method that adapts to changes
even as it reports them, and by encoding actions
and their selection indices that promote
remediative response as the agent obtains
diagnostic information and reassesses the effects
of its actions.

3. Example Scenario
We recount a network misconfiguration

scenario and describe how MASRR would
perform in similar circumstances. A broadcast
storm is a “state in which a message that has been
broadcast across a network results in even more
responses, and each response results in still more
responses in a snowball effect. A severe
broadcast storm can block all other network
traffic, resulting in a network meltdown.
Broadcast storms can usually be prevented by
carefully configuring a network to block illegal
broadcast messages” [16]. Not all broadcast
traffic is bad – many routers and services use
broadcasts to advertise availability of network
resources. However, misconfigurations can allow
broadcasts to “run amok,” degrading network
performance. Storms can subside on their own
but may recur frequently, as in this real-world
example [17]:

In a Novell IPX network, thousands of broadcast
packets were seen in short periods of time. The
packets included Routing Information Protocol
(RIP) and Service Advertising Protocol (SAP)
messages, from both routers and servers,
announcing services and routes that were no

longer reachable. The packets that appeared to be
the beginning of the storm were from routers
announcing that they had lost contact with
hundreds of networks and SAP services. All the
other routers and servers then propagated the
announcements. Here are the steps the network
analysts took to identify and correct the cause:
ú examined the intervals at which the storms

were occurring,
ú filtered the data to isolate traffic at one

router,
ú learned that the first packet of the storm

always announced the unreachability of the
same network or service lost during the prior
storm,

ú found that every five minutes, a router was
announcing that a particular server was no
longer reachable,

ú compared these messages with SAPs
advertising availability of that server.

They found that the advertisements occurred over
two-minute intervals and then were absent over
three-minute intervals and suspected that a router
had been configured to supply RIP and SAP
across a WAN link every five minutes, which
they found to be true. However, the receiving
router was configured to expect updated RIP and
SAP messages every minute. When updates
weren't received, the router assumed the networks
and services were unavailable and broadcast that
announcement, thus causing the broadcast storm.
When the receiving router was set to expect five-
minute RIP and SAP updates, the broadcast
storms went away.

There are several items of note. First, these
broadcast storms had been occurring undetected,
and were only found when the company held a
training session led by independent network
management consultants. The disruption of the
network was too transient to have been otherwise
investigated, yet the impact could have made
other problems hard to find, or could potentially
have compounded other problems, inducing
enough stress to overwhelm the network. Next,
the diagnostics concentrated on network traces,
looking at evidence of the broadcast storm. The
analysts looked at the message origins and
intervals, and not at whether or not the service
was truly unreachable. Finally, their suspicion
(and conclusion) was likely drawn from a great
deal of knowledge and experience. We are not

told if this was the first diagnosis that they
pursued.

MASRR’s response to such a situation. While
the above scenario transpired on a network of
hundreds of nodes, we illustrate the scenario with
the small abstraction of a network as diagrammed
in Figure 2. The scale of the problem can be
reduced to the task of, rather than detecting the
broadcast storm itself, observing the discrepancy
in information between peer agents monitoring
the routers. Initially, service V is available. The
sending router S advertises the availability every
5 minutes. Router R announces availability every
minute, and is also expecting receipt of an
advertisement every minute.

Around time t, S and R advertise the
availability of service V. A minute later, R’s path
to V has not been refreshed. R assumes that
service V is no longer available, and broadcasts
that message. This announcement goes only to
“downstream” routers 3 and 4, and the broadcast
storm is confined to R’s subnet. MASRR agent
MR observes the broadcast but has received no
“bad news” from peer agent MS. Agent MR

queries MS about the loss of service V; MS replies
that V is available. The two agents work together
to determine why R thinks the service is
unavailable. Cases selected during the reasoning
process include an action to compare and
reconcile the advertisement intervals configured

in the routers. This case is retrieved by the
description of symptoms and is adapted to correct
router R’s refresh interval to 5 minutes so that it
will not incorrectly announce that Service V has
been lost.

At the same time, agents M3 and M4 go
through the same process. However, their up-
stream peer, MR, informs them that the problem
lies further upstream. Thus M3 and M4 respond
by accepting that the service is effectively
unavailable and deferring problem solving to MR.
Agents M3 and M4 can implement selective
filtering of broadcasts to prevent the storms,
which is the cause of the network degradation
they observe. Similar events may or may not be
occurring at M1 or M2, depending on the router
configurations at 1 and 2. When MR and MS

resolve the discrepancy between refresh intervals,
MR informs agents M3 and M4, which then
remove the broadcast filters.

MASRR agents’ ChAD models would have
been trained on data that included the broadcast
storms, so the corrected behavior would trigger
anomaly reports. However, MASRR agents use
records of their actions (the History, in Figure 1)
along with performance metrics and heuristics to
recognize that there is no improper activity taking
place. ChAD models adapt to the new, normal
characteristics, and MASRR remains in operation
without intervention by the administrator.

Comparison. The scenario exemplifies what we
consider a traditional approach to network
management, with data analysis occurring at a
centralized location (in this case, by human
analysts). We see differences along the following
measures:
MASRR’s decentralized approach detects or
corrects the situation sooner than the centralized
approach. MASRR agents recognize the
discrepancy in their observations before the
broadcast storm symptoms are observed, and
immediately assess that the problem is occurring
between S and R. The centralized approach starts
by examining the broadcast storm packet trace in
the subnets and has to deduce or infer the location
of the problem.
The decentralized approach is less expensive,
in terms of processing time and bandwidth
consumption. Before the centralized processor
can begin diagnosis of the root cause of the
example situation, it must first correlate packet

Figure 2. Small abstraction of a network
topology. The “sending” router S advertises that
it has a path to service V every 5 minutes. The
“receiving” router R expects the advertisement to
refresh every minute. MASRR agents Mi monitor
the routers and switches in the network.

trace data, which, in turn, requires that all the
data be shipped to a centralized location.
MASRR agents can concentrate on identifying
and correcting the problem after transmitting a
small amount of data across a local
communication path. Information from
uninvolved stations is not considered, and most,
if not all, of the relevant information is locally
available.
Our decentralized approach is less reliant on
network connectivity. Because the centralized
approach requires the data to be sent to one
location, if the connection is lost or becomes too
congested, the data will not arrive. With
MASRR, only communication between S and R
is required; if that fails, then the service is truly
unavailable from R’s point of view. In general,
MASRR agents reason amongst themselves; if
connections between peers are lost, they continue
to monitor and act to improve or preserve
network reliability locally.
MASRR’s agent-reasoning approach provides
meaningful reporting to the network adminis-
trator. In the example, detailed analysis revealed
a network-degrading situation that had previously
gone undetected. Even if the administrator had
used some of the available network monitoring
tools, substantial analysis would have remained
in order to track down the source of the broadcast
storms. MASRR agents would detect this
problem without supervision and either resolve it
automatically or alert the administrator to the
misconfiguration. In either case, the system
would provide a detailed explanation of its
reasoning and the root cause of the problem.

4. Conclusions and Future Work

SHAI is developing a prototype of the
MASRR system to meet the need for scalable
network management and security. Key strengths
of the system are its abilities to detect faults and
attacks not previously observed, to recognize
anomalous network usage, to adapt to changing
network characteristics, and to continue taking
corrective action even when parts of the network
have failed. Much remains to be done. We
recognize that this paper does not address
security of the MASRR system itself. We have
deferred that study in favor of developing
anomaly detection and agent reasoning, claiming

that we can use known approaches to solve these
issues. The system requires significant knowl-
edge engineering to create the action template
library and indexing. Other issues, such as Qual-
ity of Service, administrative policy enforcement,
installation and deployment, and more, have been
included in our requirements analysis and design
work but are not presented in this paper.

Other areas that we would particularly like to
develop include machine learning and feature
selection components. The learning component
would assess the effectiveness of actions in order
to improve both indexing and adaptation of
actions. It would also employ post-analysis to
identify event pre-cursors for prediction or earlier
detection. A feature selection approach such as
that of Cabrera, et. al. [1] would also improve
action case indexing as well as give the agent
better predictive abilities. These additions would
make the agents much more proactive in their
response, allowing them to steer the network to
minimize or prevent problems. These compo-
nents were considered in developing our
architecture, but they will not be developed under
our current contract.

We expect to conduct experiments with the
prototype MASRR system this summer and to
report results in the fall.

References

[1] J.B.D. Cabrera, L. Lewis, X. Qin, W. Lee,
and R. K. Mehra, “Proactive Intrusion
Detection: A Study on Temporal Data
Mining,” in Data Mining in Computer
Security, Daniel Barbará and Sushil Jajodia,
eds., Kluwer Academic Press. March 2002.

[2] Tripwire Policy Manager,
http://www.tripwire.com.

[3] Microsoft Windows® Group Policy and
Active Directory,
http://www.microsoft.com.

[4] Norton AntiVirus.
http://www.symantec.com.

[5] VirusScan. http://www.mcafee.com.

[6] RealSecure®, http://www.isi.net.

[7] Cisco IDS (formerly NetRanger).
http://www.cisco.com.

[8] PC Computer Notes & Online Tutorials:
Viruses.
http://www.pccomputernotes.com/viruses/-
viruses.htm.

[9] Mazu Networks.
http://www.mazunetworks.com.

[10] Peakflow DoS by Arbor Networks.
http://www.arbornetworks.com.

[11] SolSoft NP, http://www.solsoft.com.

[12] SPECTRUM suite,
http://www.aprisma.com.

[13] StormWatch, http://www.okena.com.

[14] T. Oates, Fault Identification in Computer
Networks: A Review and a New Approach,
Technical Report 95-113, University of
Massachusetts at Amherst, Computer
Science Department. 1995.

[15] L. W. Jones, ChAD: Change and Anomaly
Detection - Discovering when a system is
not behaving normally, August 2001.
http://64.81.14.30/ReliabilityWeb/.

[16] Webopedia: Online Dictionary for
Computer and Internet Terms.
http://www.webopedia.com.

[17] Bill Alderson and J. Scott Haugdahl, "A
Broadcast Storm Becomes A
Thunderstorm", in Network Computing
online magazine.
http://www.networkcomputing.com/611/-
611alderson.html.

