
 978-1-7821-2734-7/20/$31.00 ©2020 IEEE 

  1 

 

Leveraging PHM in Conjunction with Intelligent 

Scheduling to Improve Manufacturing Resilience 
Robert Richards 

Stottler Henke Associates Inc. (SHAI) 
1650 S. Amphlett Blvd., Suite 300 

San Mateo, CA, 94402 
richards@stottlerhenke.com 

Jim Ong 
Stottler Henke Associates Inc. (SHAI) 

1650 S. Amphlett Blvd., Suite 300 
San Mateo, CA, 94402 

ong@mail.stottlerhenke.com 

 

 

Abstract—The scheduling of a manufacturing facility is a 

complex endeavor even when the equipment resources are 

always considered available or at least available 24/7 except for 

planned maintenance.  However, under real-world conditions, 

the added complexity of unplanned downtime can significantly 

increase the difficulty of meeting deadlines. More reliable and 

efficient operations can be achieved by predicting problems 

and then rescheduling operations to minimize or avoid the 

problems’ adverse effects. Stottler Henke Associates 

Incorporated (SHAI) has been working with the US Air Force 

on best practices for leveraging diagnostics, prognostics, and 

health management in conjunction with intelligent scheduling 

to improve manufacturing system resilience. 

 

The goal, then, is for diagnostic systems to identify impending 

faults quickly and automatically, providing the information 

needed to the intelligent scheduling system in order to 

minimize or completely mitigate the issues. Prognostic systems 

can estimate impending failures or rates of performance 

degradation; the intelligent scheduling system uses these 

diagnoses and predictions, along with the manufacturing 

deadlines and priorities, to develop mitigation strategies to 

minimize or avoid disruptions. The strategies include 

scheduling offline operations optimally to minimize the effects 

of the machines being offline; rescheduling operations due to 

machines being offline, reconfiguring systems to change their 

capacity and performance profiles, and/or reduce the usage of 

critical equipment to lengthen their remaining useful life. In 

the most uncomplicated cases, the schedule can be adjusted 

using simple strategies such as reassigning tasks from the 

faulted equipment to other equipment with similar capabilities. 

However, in many cases, more global analysis of an adjustment 

of the schedule is necessary to satisfy the facility’s deadlines 

and other manufacturing goals.  

 

A system for resilience needs to be able to model and simulate 

the manufacturing system.  That is, scenarios need to run to 

evaluate the manufacturing system’s response to various types 

of problem scenarios and analyze the effectiveness of 

responses. This evaluation capability can be used to compare 

resilience strategies that specify optimal policies for employing 

diagnostic and prognostic capabilities and for responding to 

current and projected faults via rescheduling and 

reconfiguration. This will provide insight into the most critical 

pieces of equipment as related to unplanned downtime.  That 

is, when operating under normal conditions, the most 

constrained pieces of equipment, may be different from the 

equipment that has the most significant adverse effect if it was 

unavailable. Intuitively this may be difficult to understand, 

take the example that every piece manufactured goes through 

one of two of the same machines that are running at full speed, 

but there is a 3rd machine that performs a specialized 

operation on a subset of very high-value parts.  In this case, the 

two machines are the constraint on overall throughput, but it 

may not be evident that the 3rd machine, if down, is the 

constraint on profit.  Being able to run scenarios will surface 

actual cause and effect relationships. 

 

This paper will expand on these ideas and lessons learned from 

real-world application of these ideas.  
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1. INTRODUCTION 

Resilience is "the ability of a system to withstand 

potentially high-impact disruptions, and it is characterized 

by the capability of the system to mitigate or absorb the 

impact of disruptions, and quickly recover to normal 

conditions." [1].  By leveraging the results of prognostics 

and health management (PHM) of equipment in 

conjunction with intelligent scheduling the resilience of 

manufacturing processes can be increased. 

Prognostics and Health Management (PHM) is a 

technology to enhance the effective reliability and 

availability of a product in its life cycle conditions by 

detection of current and approaching failures. Prognostics 

is the real-time enhancement of reliability and availability 

and the prediction of the remaining useful life of the 

product by assessing the extent of deviation or degradation 

of a product’s monitored parameters from its expected 

normal operating conditions. Prognostics can yield an 

advance warning of impending failure in a system, thereby 
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enabling more efficient and effective maintenance and 

corrective actions [2]. 

Predictive maintenance [3] is a maintenance management 

method that leverages PHM to determine maintenance 

actions by using the actual equipment condition, versus 

average statistics about equipment failure rates, in order to 

optimize total plant operation. The common premise of 

predictive maintenance is that regular monitoring of the 

actual mechanical condition, operating efficiency, and other 

indicators of the operating condition of machines and 

process systems will provide the data required to ensure the 

maximum interval between repairs and minimize the 

number and cost of unscheduled outages created by 

machine failures. That is, since predictive maintenance 

techniques are designed to help determine the condition of 

in-service equipment in order to estimate when 

maintenance should be performed, greater utility and cost 

savings are possible versus routine or time-based 

preventive maintenance, as maintenance tasks are only 

performed when warranted. Predictive maintenance is also 

known as condition-based maintenance since the actual 

measured condition of an item is used to determine when to 

perform maintenance.  This contrasts with other 

maintenance management methods such as: 

• Run to failure – Fix the machine only after it 

breaks down. 

• Preventive maintenance – Preventive maintenance 

tasks are performed, based on elapsed time or 

hours of equipment operation. This method 

assumes similar MTBF for machines of each type. 

 

2. SCHEDULING  

Scheduling, at its most basic, is the process of assigning 

tasks to resources over time, with the goal of optimizing the 

result according to one or more objectives [4], many times 

the objective is to maximize throughput when using a 

limited set of resources. Scheduling is heavily used in 

aircraft maintenance to minimize the time and cost 

associated with the completion of multiple competing 

maintenance projects. The Aurora scheduling framework is 

one example of a general-purpose intelligent scheduler that 

has been successfully applied to a variety of domains [5], 

[6], ranging from aircraft production and submarine 

maintenance. Intelligent scheduling combines graph 

analysis techniques with heuristic scheduling techniques to 

quickly produce an effective schedule based on a defined 

set of tasks and constraints [7]. The constraints include at 

least the following: 

• Temporal: Tasks must be scheduled between the 

project start and end dates; each task has duration 

and an optional start date and an optional end date. 

• Calendar: Tasks can only be scheduled during 

working shifts; tasks cannot be scheduled on 

holidays. 

• Ordering: Tasks can optionally be assigned to 

follow either immediately after/before another 

task or sometime after/before another task; 

optionally with a specific offset time in between. 

• Resource: Each task can require that resources be 

available for the task to be scheduled.  Examples 

of resources include people with specific skillsets, 

e.g., machinist, equipment, e.g., CNC 4-axis mill, 

and physical space, e.g., the tasks that can only be 

performed in a specific location. 

 

Human Derived Heuristics: Importance of 

Scheduling is an NP-complete problem, that is, the size of 

the solution space grows exponentially as the model grows 

linearly and therefore problems of any reasonable size 

cannot be solved simply mathematically. Most ‘solutions’, 

such as resource leveling, use a simple algorithm, and thus 

result in far suboptimal results. Stottler Henke Associates 

Inc. (SHAI) has employed a strategy that includes 

leveraging scheduling heuristics learned from many of the 

world’s best human schedulers in order to solve complex 

scheduling challenges in reasonable amounts of time.  See 

in Figure 1 that included in the many components involved 

in intelligent scheduling, is the important Human 

Directives. 

 

Consider the following extremely simple example (which is 

therefore easier to use to illustrate this point) where:  

• three activities, called Activity 1, 2, and 3, from 

three different orders are all competing for time on 

similar machines in a particular work center.    

• The priority is highest (or the due date is soonest) 

for Activity 1 and lowest for Activity 3.    

• Two different machines exist, A which is 

expensive and precise and B which costs less and 

has higher throughput.    

• Machine A is required for Activity 3, but it can 

also process activities 1 and 2, though it is not 

efficient to do so.    

Figure 1. Aurora intelligent scheduler architecture 
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Let’s look at a solution from a simple scheduler: Activity 1 

is chosen first for assignment, since it has the highest 

priority, and it so happens that at the moment Activity 

1 can begin, only Machine A is available, so Machine A is 

assigned to Activity 1.  Activity 2 is assigned to Machine 

B, which has become available soon after Machine 

A.  Activity 2 is soon completed, owing to Machine B’s 

fast production rate.  When Activity 3 is finally examined, 

its required machine, Machine A, is busy and, worse, busy 

on an activity that it wasn’t essential for.  Meanwhile 

Machine B is idle.    

Obviously, this is a suboptimal solution since a different 

assignment would have prevented Machine B from 

being idle and prevented expensive Machine A from being 

assigned to a task that didn’t need it.  Of course, a more 

complex scheduler could “look ahead” to see if the cheaper 

machine might be soon available, but for any such 

workaround there’s a corresponding example that still 

causes problems.  And each of these rules has to be 

anticipated and created by the scheduling system software 

developer.  

Perhaps a scheduling system could be written that 

systematically tried every possible solution and selected the 

best, and therefore optimal, one.  In the example above, the 

number of possible solutions is 2 choices for Activity 1 

times 2 choices for Activity 2 times 2 choices for Activity 3 

= only 8 possible solutions.  However, consider an activity 

list consisting of only 30 simple resource assignments 

where (for simplicity's sake) only one resource is required 

for each activity.   Assume on average 4 meaningfully 

distinct choices (e.g. different machines) for each 

activity.  This means that there are 30 distinct decisions 

with 4 choices each, so the number of solutions is 4 x 4 x 4 

.... x 4 =   

430 = over a million trillion possible solutions,   

which are clearly impractical to systematically search.  And 

this calculation was based on an extreme 

oversimplification.  The more realistic, complicated 

planning problem is much more difficult.  This is the 

essence of NP-Complete problems.  The widely recognized 

and clearly applicable NP-Completeness Theorem states 

that to guarantee an optimal solution to an NP-Complete 

problem, it would requires exponential time (e.g. MN where 

M is the average number of options per choice and N is the 

number choices) which is clearly impractical in this case, 

since N is typically in the thousands.  An optimal solution 

can simply not be guaranteed for this application. 

Therefore, to determine near-optimal solutions in 

reasonable timeframes requires heuristics learned from 

actual human experts on a large number of situations. We 

have developed both general heuristics for producing good 

solutions and the techniques and architecture to incorporate 

domain specific knowledge and heuristics into the planning 

system.  Our expertise includes substantial experience 

eliciting the required knowledge and cognitive processes 

from expert planners, then mimicking those processes in 

software to create advanced intelligent planning and 

scheduling systems.  To wit, Aurora mimics the decision-

making process of expert schedulers. 

  

3. INCORPORATING PHM DRIVEN 

MAINTENANCE WITH OVERALL PLAN 

SCHEDULING 

To be explicit, the PHM required to produce the predictive 

maintenance knowledge is non-trivial; that is, PHM is itself 

a very complex endeavor, however, for the purposes of this 

research we are assuming that the ability to predict future 

equipment failures is robust and will be assumed as an 

input. 

The situational awareness provided by the predictive 

maintenance informs the scheduling system of the current 

and projected state of the various equipment / devices 

within the plant.  Each resource in the scheduling system 

has a calendar associated with it, and the equipment / 

devices are just one type of resource. The projected state of 

each device drives the calendar associated with the device. 

For example, the human resources also have calendars 

representing such things as known vacation days.  Just as 

the schedule will need to adapt to updates to personnel 

vacancies, the schedule needs to update based on predictive 

maintenance information.  A benefit of predictive 

maintenance is that in most cases the prediction will 

provide a range of time for maintenance.  That is, a 

machine may be shown to need maintenance within the 

next 100 hours of operation, otherwise the risk of failure is 

too high.  Therefore, the specific time within the next 100 

hours when actual maintenance occurs is flexible and the 

scheduling system can be used to mitigate the disruption to 

the overall schedule.  Furthermore, sometimes when one 

machine greatly affects the utilization capability of other 

machines, it can be investigated whether performing 

upcoming maintenance on the other machines is 

advantageous.  That is, even though other machines may 

not require maintenance yet, it would still be advantageous 

to perform routine maintenance early so the clock is reset, 

and the machines will run farther into the future without 

requiring maintenance again.  Figure 2 shows a sample 

calendar, and its visual display. 

Therefore, the intelligent scheduler is invoked to try to 

determine alternative schedule(s) that meets the production 

demands. The alternate schedule might assign different 

equipment resources, if available, to perform the task, 

and/or it might reschedule one or more tasks as needed. 

Although simple changes to the schedule are usually 

preferred, an intelligent scheduling system can generate 

feasible (or acceptable) schedules, even when significant 

changes are necessary. 
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Lessons Learned 

SHAI has been working with the US Air Force on best 

practices for leveraging diagnostics, prognostics, and health 

management in conjunction with intelligent scheduling to 

improve manufacturing systems.  The lessons learned are 

mainly related to what aspects of the scheduling system 

need to be adapted to properly adapt to predictive 

maintenance knowledge. 

Human Derived Heuristics—As described above, 

intelligent scheduling requires leveraging knowledge 

learned from human schedulers. When taking into account 

predictive scheduling, additional heuristics, learned from 

schedulers in the same domain as where the predictive 

maintenance occurs is necessary. This is due to the fact that 

the types of tradeoffs that are preferred cannot be 

determined mathematically in most situations. Of course, in 

actual situations, the heuristics in the system can be 

overridden by the human schedulers at the time, but it 

greatly improves the utility of the scheduling system if the 

scheduling system can provide useful suggestions and 

complete options for the human scheduler to draw from. 

For example, it may be normally either preferable to work 

overtime, or to try to outsource certain work, due to 

machine downtime; so, it is helpful for the automated 

intelligent scheduler to know which is preferred. Of course, 

this could get more specific by saying certain machines 

when they are down, are preferred to be mitigated via 

overtime, where other machines when they are predicted to 

be down it is best to be mitigated via outsourcing.  Thus, 

the US Air Force heuristics may be different from the 

heuristics used in other facilities. 

Preference Constraints—We also learned from our 

experience with the US Air Force that when dealing with an 

environment that will be taking into account predictive 

maintenance, it is important to have all of the flexibility that 

is available in the real world, modeled in the scheduling 

system. One important aspect of this is what we refer to as 

preference constraints. A preference constraint represents 

situations where different options are available, but there is 

a preference for one option over another. For example, there 

may be a CNC milling machine that is much faster than a 

manual milling machine, even though the manual milling 

machine has the capability to do the same operations. So, 

for our predictive maintenance situation, we would want the 

CNC milling machine to be the default, and the manual 

milling machine to act usually as a backup. Therefore, the 

ability to set a preference between resources is very 

important. That is, a resource pool could be created for this 

type of milling operations and include both machines with a 

preference set for the CNC machine. Now, when the 

scheduling system sees the situation where the calendar 

shows that the CNC milling machine is unavailable, it will 

try to then use the manual milling machine instead. This 

flexibility may be able to keep the projects on schedule. 

However, depending on the situation, it may take more 

changes, such as working extra shifts, or using other slower 

manual milling machines to keep the projects on time, but 

again, other capabilities in the scheduling system will help 

one determine if this is necessary. 

Simulation and Monte Carlo Analysis—The significant 

benefit of predictive maintenance is that there is time to plan 

for the maintenance and the maintenance itself may be 

possible to take place over an extended period of time. For 

example, the maintenance may be necessary in the next 

eight weeks. This allows one to determine when in the next 

eight weeks it would be the least disruptive. Let’s also 

assume, for the sake of argument that the maintenance takes 

a total of 48 hours of calendar time; depending on the 

ramifications of the downtime, analysis might show that all 

of it can be performed during the normal day shift, in which 

case this would take six calendar days to complete. This 

provides the added flexibility that if six days of downtime 

cannot be accommodated, the minimum amount of 

downtime on the calendar could be two calendar days, if the 

repairs were conducted 24 hours a day. Thus, one can run 

various simulations to determine what is the cost benefit 

from different repair schemes. That is, is the extra overtime, 

or nighttime cost for the repair worth it, due to increased 

throughput and the potential increased profit. Another 

benefit of having this known eight week time span is that 

one can determine where in that time span to conduct the 

repairs, utilizing this knowledge one might be able to build 

up buffers, or inventory, working the machine more than 

normal, so that downstream activities will not be starved.  

 

 

4. VISUALIZATION 

Experience with the US Air Force and others had 

demonstrated that visualization is very important to help 

the schedulers better understand the situation, and the 

options available to them. Since the scheduling system, in 

many cases will not be able to determine a complete 

solution on its own, human schedulers will work in 

conjunction with a scheduling system and its visual output 

Figure 2. Calendar view 
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to come up with the best option. For example, in situations 

where there is a long string of steps to complete a 

deliverable, one may be able to visualize the work in 

progress at different stages and visualize the ramifications 

of delays or stoppages at different stations. Overall, the 

graphs in the visualization in Figure 3, shows what happens 

over time when there is a stoppage at a specific step.  

 

Visualization shows how steps upstream from the 

inoperable equipment will eventually be blocked from 

producing more, in this case because there is nowhere to 

store their output. Similarly, stations downstream from the 

blockage will not be able to continue working because they 

are starved for supplies. If plans can be made ahead of 

time, knowing that the situation is going to occur, storage 

areas may be able to be set up, so there is a buffer, possibly 

before and after the station that will be offline. If, for 

example, downstream tasks may be faster than the slowest 

task in the process, which let’s assume is upstream from the 

task that needs to go down from repair, one could build up 

a buffer to hold inventory before the down machine so that 

it will build up during the time the machine is down, but 

not build up so much that it will never be able to clear 

because when the machine comes back online, the 

upstream machines will still be producing more products. 

Also, it’s possible the upstream tasks and the steps that will 

be going down, will try to overproduce so that a buffer after 

the machine of inventory can be created, so that when the 

machine is down, this inventory will be drawn down so the 

downstream tasks can stay partially or completely busy 

during the machine downtime. Simulation and 

visualizations will help the factory understand what options 

are available., and what is the best option to maximize 

throughput based on detected downtime of a machine.  

 

Understanding how the equipment that is predicted to 

require maintenance is being utilized overall is important in 

understanding the ramifications of its unavailability.  A 

histogram helps surface this information, see Figure 4. 

  

 

In addition, the use of filtering and color coding can also 

help to better explain how the equipment of interest is 

being used. For example, referring to Figure 5, the items in 

red may be designate the situation where there is substitute 

equipment, but the tasks are now scheduled to take longer 

than when the downed equipment would be used. 

 

Similarly, color coding helps reveal where equipment of 

interest is currently used in a network diagram.  For 

example, see Figure 6 and Figure 7, looking at the network 

diagram at different levels of zoom, one could designate 

tasks that use the equipment of interest in orange to quickly 

visualize how much it is used overall in the project. 

Figure 3. Delays caused at various steps 

 

Figure 4. Histogram plot 

 

Figure 5. Gantt chart with color coding 
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5. CONCLUSIONS  

Scheduling a manufacturing, production or maintenance 

facility, even when assuming all the equipment is available 

24/7, is already an incredibly difficult scheduling 

challenge; incorporating the reality of machinery 

maintenance only adds to the complexity. Preventative 

maintenance diagnostic systems help to mitigate some of 

this complexity by identifying impending faults the 

intelligent scheduling system has the opportunity to 

minimize, or completely mitigate the effects, either fully 

automatically or in conjunction with human schedulers. 

Prognostic systems can estimate impending failures or rates 

of performance degradation; the intelligent scheduling 

system uses these diagnoses and predictions, along with the 

manufacturing deadlines and priorities, to develop 

mitigation strategies to minimize or avoid disruptions. The 

strategies include scheduling offline operations optimally to 

minimize the effects of the machines being offline; 

rescheduling operations due to machines being offline, 

reconfiguring systems to change their capacity and 

performance profiles, and/or reduce the usage of critical 

equipment to lengthen their remaining useful life. If the 

scheduling system cannot mitigate the required 

maintenance satisfactorily via its own strategies learned 

from humans and tested via automated Monte Carlo 

analysis, the results of the scenarios and the visualizations 

of the results will aid the human scheduler in determining 

the best plan forward in a mixed initiative manner.  By 

visually surfacing knowledge about the ramifications of 

different scenarios, the human scheduler will be better 

informed to decide what future scenarios to test, resulting 

in maximizing the throughput with the least amount of 

effort by the human scheduler.  
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