
 978-1-7821-2734-7/20/$31.00 ©2020 IEEE 
  1 
 

Semi-Supervised Machine Learning for Spacecraft 
Anomaly Detection & Diagnosis 

Sowmya Ramachandran 
Stottler Henke Associates, Inc. 

1650 S. Amphlett Blvd. 
San Mateo, CA 91109 

sowmya@stottlerhenke.com 

Maia Rosengarten 
Stottler Henke Associates, Inc. 

1650 S. Amphlett Blvd. 
San Mateo, CA 91109 

mrosengarten@stottlerhenke.com 

Christian Belardi 
Stottler Henke Associates, Inc. 

1650 S. Amphlett Blvd. 
San Mateo, CA 91109 

cbelardi@stottlerhenke.com 

Abstract—This paper describes Anomaly Detection via 
Topological-feature Map (ADTM), a data-driven approach to 
Integrated System Health Management (ISHM) for monitoring 
the health of spacecraft and space habitats. Developed for NASA 
Ames Research Center, ADTM leverages proven artificial 
intelligence techniques for rapidly detecting and diagnosing 
anomalies in near real-time. ADTM combines Self-Organizing 
Maps (SOMs) as the basis for modeling system behavior with 
supervised machine learning techniques for localizing detected 
anomalies. A SOM is a two-layer artificial neural network 
(ANN) that produces a low-dimensional representation of the 
training samples. Once trained on normal system behavior, 
SOMs are adept at detecting behavior previously not 
encountered in the training data. Upon detecting anomalous 
behavior, ADTM uses a supervised classification approach to 
determine a subset of measurands that characterize the 
anomaly. This allows it to localize faults and thereby provide 
extra insight. We demonstrate the effectiveness of our approach 
on telemetry data collected from a lab-stationed CubeSat (the 
“LabSat”) connected to software that gave us the ability to 
trigger several real hardware faults. We include an analysis and 
discussion of ADTM’s performance on several of these fault 
cases. We conclude with a brief discussion of future work, which 
contains investigation of a hierarchical SOM-architecture as 
well as a Case-Based Reasoning module for further assisting 
astronauts in diagnosis and remediation activities. 
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1. INTRODUCTION 
Integrated System Health Management (ISHM) technologies 
are mission-critical for space-exploration. Space habitats are 

made up of a complex web of subsystems. Traditionally, 
model-based reasoning techniques have been effective in 
monitoring the health of such operations, but the rising 
demand for rapid fault detection and response in deep-space 
habitats calls for autonomous monitoring software that is 
agile and can respond to previously unseen events. In 
particular, communication delays between on-board crews 
and Earth-bound experts could make the difference between 
a successful and failed mission, risking the loss of both 
equipment and crew. The accelerated plans for establishing a 
lunar outpost within the next decade and for sending human 
exploration teams to Mars in the 2030s are making these 
considerations particularly salient.  

Model-based reasoning systems are effective at detecting and 
diagnosing faults that are known, but their knowledge can be 
insufficient when faced with novel situations. Complete 
mathematical models of systems and subsystems may 
overcome these problems. However, they are 
computationally expensive, especially for modeling complex 
systems with a high number of interdependent parts. On the 
other hand, data-driven approaches using machine learning 
techniques overcome model-based limitations by evolving 
their knowledge with new situations. But they are not as 
effective at generating explanations or tracing root causes as 
rule-based modeling systems. Approaches to causal 
representations like Bayesian Networks do not scale to the 
level necessary to model a complex system such as a space 
habitat. A well-designed solution to this problem will offer 
computational efficiency and scalability while also 
combining the strength of rule-based and machine-learning 
based approaches.  

This paper will describe a solution called Anomaly Detection 
via Topological-feature Map (ADTM) that combines proven 
data-driven and knowledge-based artificial intelligence 
techniques in a unique way to learn models of system 
behavior from data and use these models to identify and 
diagnose anomalies. We use Self-Organizing Maps (SOMs) 
as the basis for modeling system behavior. A SOM is a two-
layer artificial neural network (ANN) that uses unsupervised 
learning to produce a low-dimensional representation of the 
training samples. Once trained on normal system behavior, 
SOMs are powerful at detecting behavior previously not 
encountered in the training data (i.e., anomalies).  
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Upon detecting anomalous behavior, ADTM uses a 
supervised classification approach to determine a subset of 
measurands that characterize the anomaly. This allows it to 
localize faults and thereby provide extra insight.  

In future work, we will combine the benefits of this data-
driven approach with a Case-Based Reasoning approach to 
matching system behavior with similar prior observations. 
The goal is to assist astronauts in remediation and recovery 
activities by drawing from a knowledge base of known 
anomalies and response activities. While a situation might not 
have been encountered before in the exact form, there may be 
enough similarities with prior events that it can apply the 
knowledge to narrow the search space for diagnosis and 
response. Once encountered, new behaviors can be used to 
retrain a SOM and be added as a new example to the case-
base; in this way, the anomaly detection and diagnosis system 
can evolve as system behavior evolves over time. 
 

2. RELATED WORK 
The focus of this work was on unsupervised anomaly 
detection for discrete sequences of subsystem data using 
SOM-based models trained on nominal subsystem behavior. 
Similar approaches to anomaly detection have been applied 
in existing research. Principal Component Analysis has been 
a widely used algorithm for anomaly detection across a wide 
breadth of applications, including diagnosing offshore wind 
turbines [1], cyber networks [2], and space telemetry [3]. 
Furthermore, Gaddam used a supervised approach to 
anomaly detection by combining k-means clustering with 
ID3 decision tree classification [4]. The classification 
decisions across the clusters and decision trees were 
combined for a final decision on class membership. The main 
challenge for such an approach is access to labeled fault data, 
which can be limited in the space domain. 

NASA Ames Research Center (ARC) uses k-means and 
density-based clustering techniques for system monitoring in 
its IMS and ODVEC software systems [5]. Similarly, Gao, 
Yang, and Xing used a K-Nearest-Neighbor (kNN) approach 
for anomaly detection of an in-orbit satellite using telemetry 
data [6]. SOMs have been used for fault detection and 
diagnosis in several industries. Datta, Mabroidis and Hosek 
combine SOMs with Quality Thresholding (QT) to refine the 
resolution of clusters learned by SOMs within the semi-
conductor industry [7]. Similarly, Tian, Azarian, and Pecht 
train a SOM on nominal cooling fan bearing data but use a 
kNN approach in place of the more traditional Minimum 
Quantization Error (MQE) to assign test data anomaly scores 
based on their distance to centroids learned by the kNN 
model [8]. Cottrell and Gaubert apply anomaly scores to 
aircraft engine test data using the MQE approach that we 
have used in this paper (see Section 4.1) and leverage the 
visualization capabilities of SOMs to visualize the transition 
states of engines from run-to-failure datasets [9].  

ADTM contributes to this existing bed of clustering research 

by combining a Self-Organizing Map with an Extra Tree 
Classifier for both detecting and localizing faults, which has 
rarely (if at all) been used in the ISHM space domain. 
Significantly, ADTM also provides remediation capabilities 
with a Case-Base Reasoning (CBR) module that assists end-
users in responding to detected anomalies. It does so by 
retrieving records of similar past behavior with pertinent 
information about the anomaly and, when relevant, past 
troubleshooting activities.  

Such assistance mirrors the role of Mission Control during a 
failure onboard a spacecraft. In such a situation, teams of 
scientists and domain experts on the ground help astronauts 
inflight quickly respond to a failure to mitigate further risk. 
They do so by drawing upon years of experience with the 
systems onboard the spacecraft as well as familiarity with 
past anomalies, either from test scenarios or real-time 
failures. ADTM’s CBR module aims to mirror such 
remediation assistance in the context of deep-space 
exploration, where crew dependency on Mission Control is 
no longer an option due to significant communication delays. 
 

3. SELF-ORGANIZING MAP BACKGROUND 
ADTM leverages the benefits of an unsupervised neural 
network called a Self-Organizing Map (SOM) for implicit 
data clustering and anomaly detection. Also known as a 
Kohonen map, a SOM is a two-layer artificial neural network 
(ANN) that uses unsupervised learning to produce a low-
dimensional representation of the training samples [10]. 
Inspired by the way sensory input (auditory, olfactory, tactile, 
etc.) map to specific areas of the cerebral cortex, SOMs are 
also tuned to various patterns of input data during training 
(Figure 1). Consistent with this analogy, the nodes in the 
output layer of a SOM are also called “neurons.” 

 

 

Figure 1: Self-Organizing Map Diagram 

The goal of training a SOM is to transform incoming inputs 
to a 1- or 2-dimensional map in a topologically ordered 
fashion such that points that are close together in the higher-
dimensional input space are close together in the lower-
dimensional output space as well.  This mapping allows us to 
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detect patterns of normal or anomalous behavior in a system, 
as different types of behavior map to different output units. 

Specifically, the N-dimensional input data is fed into the 
SOM in the first layer and fully connected to a lattice of (l 
rows, p columns) output neurons Oi in the second layer. Each 
neuron Oi  is associated with a N-dimensional weight vector 
wi . We represent Oi  by a two-dimensional coordinate of its 
position in the (l by p) grid, e.g., Oi = (xi, yi). Like the 
clustering technique k-means, the values of l and p are 
parameters that are tuned during model validation.  

Based on the literature [11], we chose l and p such that 𝑙𝑝 =
5	√𝑁. Unlike k-means, however, the clusters learned during 
SOM training are topologically ordered through the 
following competitive learning process: 

Each input vector xi Î X is compared with the N-dimensional 
weight vector {w1j, w2j, … , wNj } associated with each output 
node Oj. The closest Oj is chosen as the winner, or ‘Best 
Matching Unit’ (BMU), where ‘close’ is defined by a 
distance function (we chose Euclidean distance). Each BMU 
is associated with an entire neighborhood of related neurons 
whose weight vectors are also updated, though to a lesser 
extent, proportional to their distance to the BMU in the 2D 
output lattice.  

In other words, entire neighborhoods of related neurons get 
updated in the direction of the input data that is closest to 
them, so that the topology of the N-dimensional input space 
is preserved in the 2-dimensional output space. A common 
choice of neighborhood function ℎ(𝑗, 𝑘) that computes the 
relation between two neurons Oj and Ok is: 

ℎ(𝑗, 𝑘) 	= 	 𝑒/
01

1d(2)1   (1) 
 
where k¹j and D is the lateral distance between the neurons 
Oj and Ok  in the output grid, and d(𝑡)	is the time-dependent 
exponential decay. 

Together, the update rule for the BMU is:   

  D𝑤56 	= 	a(𝑡)	ℎ(𝑖, 𝑗)(	𝑥6	–	𝑤56)  (2)
     

given  

  ||𝑤5	–	𝑥6	||	£	||𝑤;	–	𝑥6	||  (3) 

for all j¹ k where xi is the input vector and a(t) is the learning 
rate. 

We can think of this learning rule as pulling the weight vector 
wj associated with the BMU in the direction of the input 
vector xi. All neurons in the same ‘neighborhood’ are also 
dragged along, but to a lesser extent.  

4. METHODS 
An effective Integrated System Health Management (ISHM) 
system has several key goals. The first is anomaly detection, 
which we achieve through a Self-Organizing Map-based 
approach as described in Section 4.1. Once an anomaly is 
detected, the second goal is to localize such deviation to the 
effected subsystems and/or components, which is a necessary 
step towards tracing its root causes. We achieve this goal 
through a supervised machine learning technique described 
in Section 4.2. The final goal is to quickly formulate and 
evaluate the most useful courses of action to mitigate the 
situation; our approach to such remediation assistance 
through Case-Base Reasoning techniques is described in 
Section 4.3. 
 

Anomaly Detection  
Once trained on nominal data (as described in Section 3), the 
SOM maps new data seen online to the most similar weight 
vector wi of the output neurons Oi, using Euclidean Distance 
as the similarity metric. Recall that we refer to the winning 
Oi as the Best Matching Unit (BMU). The difference between 
the BMU’s weight vector and the test point is the Minimum 
Quantization Error (MQE). A low MQE implies that the new 
sample closely aligns with a previously seen sample from the 
training data and is therefore nominal, whereas a higher MQE 
connotes that the point is anomalous, either because it 
contains a true fault or because it captures novel nominal 
behavior unseen during training.  

For this preliminary research, we defined a range of nominal 
MQE scores and classified all samples as anomalous during 
testing if they fell outside that range. Tuning these thresholds 
is tricky in the absence of data representing faulty behavior. 
The range was chosen by re-running the training data through 
an already-trained SOM and setting the 1-percentile value 
and the 99-percentile value of the resulting MQEs as the 
lower and upper bounds respectively. Fine tuning this 
threshold is an area of future work. 

While flagging novel nominal behaviors (in addition to 
faults) is a significant benefit of our approach, it is useful 
insofar as the SOM learns to recognize such novel behaviors 
as nominal in the future. Otherwise, future instances of such 
behaviors would continue to (incorrectly) be flagged as 
anomalous, causing unnecessary noise and false positives.  

To this end, our future work includes a framework for quickly 
retraining SOMs on previously unseen nominal behaviors 
upon detection, allowing our ISHM tool to quickly adapt to 
the changing circumstances of deep-space exploration. As the 
SOMs learn a wider state space of nominal behaviors over 
time, the anomalies that they do detect will trend towards real 
faults or rare (and unknown) nominal behaviors; the 
corresponding alerts will thus prove more meaningful and 
useful to end-users.  
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Anomaly Localization  
Reporting the key contributors to an anomaly aids users in 
localizing the causes of a system performance problem. 
ADTM uses a supervised learning approach to this task. This 
is based on the insight that behavior identified as anomalous 
can be treated as belonging to a distinct class from behavior 
identified as non-anomalous. The task then is to learn the 
features that accurately predict the class given the data. 

Note that for this analysis, we are not concerned about the 
accuracy of anomaly identification, i.e., the external 
consistency of anomaly detection with respect to ground 
truth. Our goal instead is to determine the features that 
accurately separate two given segments of data. The data 
points labeled as anomalies are grouped into one class, and 
the weight-vectors learned by the SOMs during training on 
nominal data form the second class. This highlights one of 
the benefits of the SOM-based approach: the weight vectors 
of the SOM are effectively a reduced representation of the 
training data and lead to efficient storage for future analysis.  

A number of supervised feature extraction approaches are 
available. We experimented with two such approaches in our 
research: Recursive Feature Elimination (RFE) [12], and 
Extra Tree Classifier [13]. RFE is an iterative technique that 
successively eliminates the set of least significant features for 
a classifier, until a desired number of features remains. It 
relearns a classifier during each iteration from a reduced set 
of features. It can be used with any supervised learning 
technique; we experimented with logistic regression. Extra 
Tree Classifier is a variant of the Random Forest approach 
[14]. We found that Extra Tree Classifier produced superior 
results compared to RFE with logistic regression. 
 

Remediation Assistance 

ADTM uses Case-Based Reasoning (CBR) as its 
fundamental remediation modeling and analysis mechanism. 
CBR is an artificial intelligence (AI) technique that aims to 
solve problems by analogy. With this approach, automated 
systems solve new problems by retrieving solutions to 
previous similar problems and altering them appropriately to 
meet current needs.   

The field of CBR focuses on developing intelligent and 
efficient techniques for defining similarity metrics, retrieving 
cases based on these metrics, and modifying similar solutions 
to fit the target problem.  The underlying inspiration is the 
analogical reasoning mechanism that humans often use to 
solve novel problems. While a problem itself may be novel, 
analogical reasoning helps situate it in the context of similar 
prior experiences and to discover a new solution by adapting 
prior solutions [15]. 

CBR consists of the following basic four steps: 

• RETRIEVE the most similar cases(s) 

• REUSE the information and knowledge in the 
retrieved case(s) to solve the problem. 

• REVISE the solution used in the retrieved case(s) 
• RETAIN the parts of this experience for future 

problem solving. 
 
For ADTM, each case represents an operating mode, nominal 
or faulty, of the system.  The core attribute of a case is a SOM 
trained on the data represented by the case. SOMs serve as 
the index into the case-bases for retrieving cases resembling 
the situation of interest. As with anomaly detection, we use 
the minimum quantization error (MQE) as the similarity 
metric for this purpose. That is, like before, once trained on 
nominal data, the SOM maps new target data to the most 
similar weight vector wi of the output neurons Oi (i.e., the 
Best Matching Unit, BMU), using Euclidean Distance as the 
similarity metric.  

Recall, we can interpret the set of weight vectors associated 
with each Oi as a condensed representation of the space of 
states seen in the training data. Thus, the difference between 
the BMU’s weight vector and the target point of interest is 
the error, or MQE, which reflects the SOM’s ability to 
categorize new input data into one of these known states. A 
low MQE implies that the target sample has characteristics 
very similar to a sample seen during training. The lower the 
MQE, the greater the similarity between the target 
observations and the SOM of comparison. Thus, the MQE 
metric can be used to RETRIEVE similar prior reference to 
support CBR. Given a set of observations of interest, ADTM 
will retrieve the closest set of cases, either nominal or faulty, 
based on the MQE of the corresponding SOMs.  

A case will include other pertinent information such as an 
explanation of the operational mode and, where necessary, a 
recommended set of actions to address or mitigate the 
situation. Each case will also contain a label to say if it 
represents a nominal or a faulty condition.  

Once found, the system REUSES the matching cases. It 
presents to the user the information associated with the case, 
including information pertinent to diagnosing and fixing the 
problems. Sometimes a matched case will be similar enough 
to the target problem that its solution can be reused without 
modifications. In other cases, the information from the 
reference case will help the users develop a REVISED 
solution on their own.  

The revised solution, along with a new SOM trained on 
relevant data, becomes a new case for the model. This is the 
RETAIN phase of CBR. While human effort is still required 
to understand and solve truly novel situations, access to 
similar prior reference situations provided by the CBR 
approach will assist users in applying their analogical 
problem-solving skills to find a solution more effectively. 
This new knowledge then becomes a part of system memory 
and can be reused in the future using the RETRIEVE 
mechanism. 
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The distance of the target situation from the reference case 
will determine the extent to which the solution is transferable. 
ADTM will provide a similarity score for each retrieved case 
to help users judge its utility. 

As mentioned, each new problem-solving episode becomes a 
new case for the model. Adding a new case involves training 
a new SOM for the sensor data covering the duration of the 
episode and adding supporting details about diagnosis and 
mitigation. In case the new episode is marked as a variation 
of an existing case, the system will merge the two by 
retraining the associated SOM with the new data and 
updating the supporting information. Thus, case-based 
reasoning enables an easy extension of the model based on 
new observations. The initial case base for a system will 
consist of a small set of cases representing nominal 
operations as well as known anomalies. This will grow over 
time as experiences build up.  
 

5. EXPERIMENTS AND DISCUSSION 
We validated the performance of ADTM’s anomaly detection 
and localization capabilities on a CubeSat (named “LabSat”), 
originally designed after the Ionospheric-Thermospheric 
Scanning Photometer for Ion-Neutral Studies (IT SPINS) 
project to study the nocturnal ionosphere. We leave 
validation of our remediation assistance capabilities via CBR 
to future work. 

We divide the results of our experiment into the following 
three subsections: Data Collection, Anomaly Detection 
Analysis, and Anomaly Localization Analysis. 
 

Data Collection 
The LabSat was subdivided into three circuit boards. Board 1 
was designated for power generation and storage (solar array 
simulators and batteries), while Boards 2 and 3 had redundant 
regulators and loads consuming power from Board 1. 

The measurands for each board consisted of:  

1. An outgoing voltage (in Volts) sensor for every 
component. 

2. An outgoing current (in Amps) sensor for every 
component. 

3. Three-state control switches connected to power-
consuming loads on Boards 2 and 3. These loads were 
either powered by Solar Array 1 (SA1), Solar Array 2 
(SA2), Battery 1 (BAT1), or Battery 2 (BAT2) from 
Board 1, and they were thus connected either to Power 
Bus 1, Power Bus 2, or neither (i.e., they were shut off). 

Importantly, the LabSat connected to software that enabled 
us to insert a variety of hardware faults, which we used as test 
sets to validate ADTM’s performance. Table 1 lists three 
such fault cases and includes descriptions of the faults as well 

as which boards were affected. The last test is nominal data 
that we used as a baseline to evaluate the performance of our 
approach on the fault cases.  

We collected nominal data from a 15-minute run of the 
LabSat across all three boards, with telemetry collected once 
per second, and split the nominal data for each board into a 
training set and a test set. The former, as the name implies, 
was used to train a SOM on nominal behavior specific to that 
board (i.e., BOARD1-SOM, BOARD2-SOM, BOARD3-
SOM), while the latter was used to compare against the fault 
data results; thus, the nominal test set gave us indication of 
how ADTM treated nominal and anomalous data differently 
during online monitoring. 

Table 1. Description of the Test Sets for Boards 1, 2, 3 

Test Set  Description Boards Affected 

Solar 
Array 1, 
1 Cell 
Shorted  

Solar Array 1 has one 
photovoltaic cell shorted, 
reducing voltage from 
~13.1 V (nominal) to ~11 
V.  

Board 1. Any 
Board 2/3 
components 
connected to 
Solar Array 1 are 
affected by 
reduced power. 

CDH* 
Voltage 
Sensor 
Drifts 
High 

The voltage sensor 
outgoing the CDH Load 
monotonically drifts high 
from sensor degradation 
over time. This is not a 
fault in the CDH Load 
itself, but rather with its 
voltage sensor. 

Board 2 

5V 
Regulator 
1 - Failed  

There is a redundant pair 
of 5V Regulators on 
Board 3. In this test case, 
the first “5V Regulator 1” 
has faulted. 

Board 3   

Nominal  Data of nominal 
operation was collected 
for each board and held 
out from the training set. 

N/A 

*CDH: Communication and Data Handling Load 

We trained three separate SOMs, one per LabSat Board, and 
ran our anomaly detection and localization analysis on the 
test sets described in Table 1. Table 2 describes the number 
of samples used to train each SOM and the number of 
measurands within each sample point. Data from the LabSat 
was collected at a rate of one sample point per second. 

Table 2. Training Datasets used for LabSat SOMs 

Subsystem # Rows # Measurands 

Board 1 2304 20 
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Board 2 1154 20 

Board 3 2022 22 

 

Anomaly Detection Analysis 
Running our anomaly detection algorithm on each test set 
produced the results displayed in Table 3. It is of note that the 
percentages of False Positives and True Positive are with 
respect to the target fault of interest for each test set in Table 
1, but do not pertain to unknown anomalies that we also 
detected. 

Table 3. Percent Anomalies Detected 

Test Cases BOARD1-
SOM 
 

BOARD2-
SOM  

BOARD3-
SOM  

SA1-SHORT1 99.5% 98% 4% 
CDH-VDRIFT 0% 100% 3% 
5VREG-FAIL 3% 0% 100% 
NOMINAL 1% 1% 0% 

 
Of critical note is the finding that ADTM identified all known 
faults in the data (i.e., there are no False Negatives). 
However, we do note the presence of false positives (red) for 
BOARD1-SOM and BOARD3-SOM. Upon investigation, 
we discovered that these false positives were because the test 
data deviated significantly from the nominal data used for 
training in ways that are not faulty (i.e., such deviation was 
independent of the faults triggered in Table 1), yet still 
important. Thus, ADTM was successful in detecting all novel 
behavior patterns, though only a subset represents real faults.  

These results show that confounding variables influenced the 
MQE scores, and that our anomaly detection approach not 
only flagged known faults, but also flagged unknown novel 
behaviors unseen during training. This is not a weakness of 
our approach, but rather a strength, because it points to the 
ability of ADTM to identify multiple anomalies occurring at 
the same time. In other words, in addition to the target faults 
of interest described in Table 1, many of our test sets also 
contained activity that was previously unseen during training; 
these instances, in addition to the known faults, were 
successfully flagged as anomalous. 

 

Anomaly Localization Analysis 
For the datasets flagged as anomalous by each SOM, we used 
the Extra Tree Classifier (ETC) approach to identify the most 
salient measurands that contributed to each anomalous 
classification, ranked by importance. The feature and 
corresponding importance scores for the three test cases 
containing faults are listed in Tables 4-6, with the greater the 
score, the greater the importance. We selected the subset of 

measurands with a score of at least 10. The following analysis 
explores the ETC results in more detail for each test case. 

Solar Array 1 - One Cell Shorted Fault—Recall from Table 
1, this failure case involved Solar Array 1 (SA1) shorting 1 
cell, which resulted in a drop in voltage from ~13.V to ~11V. 
The BOARD1-SOM correctly flagged over 99% of the 
samples from the Board 1 sensors of the SA1-SHORT1 data 
set. As shown in Table 4, the ETC identified two voltage 
sensors as the measurands contributing the most to deviation 
in the test data. The first monitors the first Power Point 
Tracker that is directly downstream from the faulted solar 
array (PPT1V), while the second monitors the faulted solar 
array itself (SA1V). This makes perfect sense. One 
photovoltaic cell shorting causes the outgoing Solar Array 1 
Voltage to drop from 13.1 V (nominal) to 11 V. The voltage 
goes through PPT1 before traveling through the redundant set 
of batteries to Boards 2 and 3. Thus we would expect the 
voltage sensor monitoring PPT1 to experience an anomalous 
drop, just as the voltage sensor monitoring SA1 does.  

Table 4. Solar Array Short Fault Localization 

SOM Salient Feature Importance 
Score 

BOARD1-
SOM 

PPT1 V 37.7 

 SA1 V 26.9 
 Switch Battery1 to 

PPT2 
12.5 

BOARD2-
SOM 

UNREG COMM V 20.9 

 CDH Amps 20.7 
 UNREG COMM 

on Bus2 
13.7 

 REG COMM on 
Bus2 

10.6 

BOARD3-
SOM 

N/A N/A 

 
The ETC also identified “Switch Battery1 to PPT2” as 
contributing to the fault, though to a degree that was less than 
half that of “PPT1 V.” As the name suggests, the measurand 
“Switch Battery1 to PPT2” is the switch state connecting the 
first battery (Battery1) to the second Power Point Tracker 
(PPT2) that is directly downstream the second solar array 
(SA2). The measurand value is independent of the Solar 
Array fault and exists due to discrepancy between the switch 
state in the training data versus the test set. During training, 
the switch between Battery1 and PPT2 was off for the entire 
duration, while during this test run, it was on. This difference 
represents a novel nominal state in the test state that was also 
identified by the ETC as contributing to the anomaly. Again, 
this highlights the ability of our Anomaly Localization 
techniques to identify deviant measurands across multiple 
anomalies occurring simultaneously. 

BOARD2-SOM also identified anomalies in this test set, 
though the measurands it flagged as deviant were unrelated 
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to the fault triggered in the Solar Array. Unsurprisingly, this 
was because Board 2 loads were not connected to Solar Array 
1, which experienced a shorted cell. Instead, they drew their 
power from Battery 1, which was connected to Solar Array 2 
and in perfect health. 

What BOARD2-SOM detected instead was novel behavior 
seen in the SA1-SHORT1 test set that was not captured by 
the training set. In particular, it identified differences in the 
features UNREG COMM V, CDH Amps, UNREG COMM 
on Bus 2, and REG COMM on Bus 2. The former two 
measurands refer to the incoming voltage and current sensors 
of the Unregulated Communication Load (UCL) and the 
Communication and Data Handling Load (CDH) on Board 2 
respectively. The latter two measurands refer to the switch 
states connecting the UCL and the Regulated 
Communication Load (RCL) to Power Bus 2 (outgoing 
Battery 2), respectively. A brief explanation of the behavior 
of these measurands in the SA1-SHORT1 test data follows. 

The UCL Voltage sensor differs significantly between the 
SA1-SHORT1 test set and the training set, as the load is in 
“Station Beaconing” mode during training, but in “Station 
Contact” mode during the fault. In Station Contact mode, the 
UCL transmits a message for 100 milliseconds before 
shutting off, whereas in Station Contact mode it transmits a 
message for 100 milliseconds every 4 seconds.  

Similarly, the outgoing voltage sensor of the RCL (“REG 
COMM V”) in the test set is far lower than that of the training 
set. Finally, the switch states connecting the UCL and RCL 
to Power Bus 2 are different between the training and test 
sets. While the UCL is connected to Power Bus 2 in training, 
it is disconnected from Power Bus 2 during testing. 

Lastly, the ETC identifies CDH Amps as a significant 
contributor to this test case, though the CDH Amps 
measurand is similar in both the training and test cases. It is 
likely that BOARD2-SOM learned a positive correlation 
between Unregulated Communication Voltage (“UNREG 
COMM V”) and CDH Amps from the training set, as the 
Unregulated Communication Load was always in Beaconing 
Mode (so UNREG COMM V sensor was high) while CDH 
was powered on (so CDH Amps sensor was also high). Thus, 
when the Unregulated Communication Load switched to 
Station Contact Mode in the test case (and thus to a lower 
voltage), the ETC likely identified the inverse correlation 
between “UNREG COMM V” (which went to 0V during 
standby) and “CDH AMPS” (which remained high) as 
salient, since the relationship was never seen before.  

Had we had sufficient training data that covered both Station 
Beaconing and Station Contact modes, however, CDH Amps 
would likely not appear as a salient measurand. This points 
to the importance of obtaining training data that covers a wide 
breadth of operational states and retraining the SOMs on 
newly observed nominal behaviors so that it learns new 
nominal relationships between measurands and subsystem 
behaviors over time. 

CDH Voltage Sensor Drift Fault—Recall, this test data 
contained a failure in the voltage sensor monitoring the 
Communication and Data Handling (CDH) load on Board 2, 
which drifted monotonically high due to degradation over 
time. While the ETC correctly identifies the CDH Voltage 
sensor (CDH V) as one of the top salient measurands 
distinguishing the fault data, it ranks several confounding 
variables with higher importance scores, as shown in Table 
5. In particular, it identified “Switch Reg COMM on Bus 2” 
and “Switch Reg COMM on Bus 1” as the top two salient 
measurands distinguishing the anomalous test data from the 
training set. 

Table 5. CDH Voltage Sensor Drift Fault Localization 

SOM Salient Feature Importance 
Score 

SOM 1 N/A N/A 

SOM 2 Switch Reg COMM 
on Bus 2 

36.5 

 Switch Reg COMM 
on Bus 1 

20.0 

 Reg 3V2 Amps 15.9 

 CDH V 13.4 

SOM 3 N/A N/A 

 

Again, this demonstrates that the ETC has identified 
confounding variables between the test and training data, 
which highlights our ability to detect multiple anomalies 
occurring at the same time. In this case, the Regulated 
Communication Load was strictly connected to Power Bus 1 
during training and Power Bus 2 during testing. Because it is 
connected to Power Bus 2 during testing, the outgoing current 
sensor from the second 3.3V Regulator (i.e., “REG 3v2 
Amps”) on Board 2 (connected to Power Bus 2) also has 
higher current draw in the test case than in training. 
Presumably, if our training data spanned a wider breadth of 
nominal operating modes – in this case, the different 
permutations of switch states between the Regulated 
Communication load and the redundant power buses – the 
ETC would not have identified these switches as salient. 

5V Regulator1 Fault—Recall, this fault case involved the 
first regulator on Board 3 (Regulator1) failing, such that it no 
longer transmitted power. The ETC correctly identified the 
failed regulator’s voltage sensor (“Reg 5V1 V” in Table 6) as 
the most significant contributor of the anomaly. It also 
identified the voltage sensors monitoring the ADCS and 
CTIP loads on Board 3 as salient, which was as expected. 
Both these loads were receiving power through “Regulator 1” 
when it failed, at which point their voltage sensors dropped 
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to 0V; thus, it makes perfect sense that the ADCS and CTIP 
voltage sensors were identified by the ETC as deviant.  

Table 6. 5V Regulator Fault Localization 

SOM Salient Feature Importance 
Score 

SOM 1 N/A N/A 

SOM 2 N/A N/A 

SOM 3 Reg 5V1 V 38.6 

 ADCS V 35.4 

 CTIP V 17.1 

 

6. CONCLUSIONS AND FUTURE WORK 
Because we were able to inject known hardware faults into 
the LabSat, the data served as a testbed for validating the 
accuracy of ADTM’s anomaly detection and localization 
techniques. The LabSat experiment highlighted four 
important takeaways, which we have used to inform our 
future work. Principally, these are:  

1. ADTM identified all known faults in the LabSat test cases 
as well as novel, nominal behavior unseen during training. 
Thus, our results show that ADTM is effective at detecting 
both known and unknown anomalies, in addition to capturing 
multiple confounding anomalies occurring at the same time. 

2.  It is important to train a SOM on nominal data that covers 
a wide and sufficient breadth of nominal operative conditions 
in order to reduce false positives with respect to actual faults. 

3. Upon identifying previously unknown nominal behavior, 
it is important to retrain a SOM on the new behavior so that 
it learns to identify such instances as nominal in the future, 
thereby reducing false positives.  

4. It is possible to use supervised machine learning 
techniques to identify the most salient sensors contributing to 
deviant behavior flagged by a SOM, including from multiple 
anomalies occurring at the same time. 

In addition to these principal findings, we intend to extend 
ADTM capabilities in two significant ways in future research. 
The first is through remediation assistance via the Case-Base 
Reasoning (CBR) methodology we described in Section 4.3. 
When one or several SOMs flag data as anomalous, our CBR 
module will use the corresponding MQEs as indices to 
retrieve the closest reference cases.  

Two scenarios are possible when retrieving similar cases. 
One is that a situation similar to the target exists in the case-

base. The other is that the target situation is truly novel and 
significantly different from all the cases contained in the 
model. Our LabSat experiment indicates that the MQE is a 
useful metric for distinguishing between these two scenarios. 
When the target data is very similar to the training data, its 
MQE falls within the same range as the MQE for the training 
data. This is not the case when the target data deviates 
substantially from the training data.  

Generalizing this to CBR case retrieval, ADTM will first use 
the MQE measure to find the closest reference case. It will 
then compare the MQE from the target data to predefined 
upper and lower thresholds of the training data MQE for the 
reference case to test whether the two situations are similar. 
If the target MQEs fall outside the threshold range, this is a 
sign that there is a significant deviation between the two. This 
also implies that no case can be found that matches the MQE 
for this target case; i.e., we have encountered a novel 
anomaly. On the other hand, if the target MQEs fall within 
the threshold range of the reference SOM MQE, then the 
target and reference situations are similar enough for 
effective knowledge transfer. 

In addition to implementing ADTM remediation capabilities 
through CBR, we also intend to further ADTM’s diagnosis 
capabilities through a hierarchical-SOM architecture in 
which SOMs are trained on varying degrees of system 
granularity. We expect this to assist in localizing faults to 
particular subsystems and components within those 
subsystems. For instance, in addition to training SOMs on 
each of the three circuit boards making up the LabSat, we can 
imagine an architecture that also leverages separate SOMs 
trained on each of the loads and sub-subsystems within the 
three circuit boards. Identifying the salient features of these 
finer-grained SOMs would enable end-users to more rapidly 
prioritize a smaller set of sensors behaving anomalously, 
which can expedite remediation activities further.  

The most direct targets for transition of this proposed effort 
are the large number of various future manned and unmanned 
spacecraft that would significantly benefit from autonomous, 
intelligent health maintenance systems.  NASA’s Lunar 
Gateway is primary target of interest for the application of 
this technology.   
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