
Developing an Adaptive Opponent for Tactical Training

Jeremy Ludwig1 and Bart Presnell1

1 Stottler Henke Associates, Inc., San Mateo, CA, USA

Abstract. This paper describes an effort to create adaptive opponents for simu-
lation-based air combat, where the opponents behave realistically while at the
same time fulfilling instructional objectives. Three different models are devel-
oped to control the behavior of red pilots against (simulated) blue trainees in a
set of 2v2 scenarios. These models are then evaluated on their tactical and in-
structional performance, with the machine-learning model performing on par
with the two hand-constructed models. The contribution of this paper is to inves-
tigate technology and infrastructure enhancements that could be made to existing
systems used for simulation-based air combat training.

Keywords: Behavior Modeling; Simulation; Adaptive Training

1 Introduction

This paper describes an effort to create adaptive opponents for simulation-based train-
ing, where the opponents behave realistically while at the same time fulfilling instruc-
tional objectives. The domain for this work is air combat, where US Air Force pilots
train in a simulator against computer-generated enemies. The effort is one example of
a behavior model built under the research program described in [1]. The objective of
this program is creating smart and agile opponents that respond more realistically, are
less predictable, and take advantage of errors made by trainees while still providing
specific types of instructional opportunities.

The remainder of the paper includes an overview of the methods used to create and
evaluate the behavior models. Following this, the results section highlights the tactical
and instructional intelligence demonstrated in the model. Finally, the discussion section
reviews the implications of the results and presents future work.

1.1 Related Work

There is a substantial amount of related work toward creating intelligent, adaptive op-
ponents for games and simulations and in developing systems for autonomous un-
manned aerial vehicles. This paper will focus on a small subset of highly related work
modelling opponent pilots in the air combat domain.

One of the early, and still active, success stories in this domain is TacAir Soar [2].
This system used production rules created for the Soar architecture. TacAir Soar was
used for operational training, flying many different types of fixed-wing aircraft in sim-
ulations using appropriate doctrine and tactics. More recent work in this area includes
utilizing genetic algorithms [3] and neural networks [4] to best human opponents. De-
veloping a capable adversary in this domain is an issue that has been pursued for quite
some time and is still an open problem.

The work presented in [5] applies to finite state machines combined with dynamic
scripting to the problem of creating an opponent for air combat training. We followed
nearly the same behavior representation approach as [5]–combining hierarchical finite
state machines with dynamic scripting.

However, an example of a behavior modelling approach currently in use within the
US Air Force is the Next Generation Threat System (NGTS) [6]. NGTS is used across
the US government and DoD to develop behavior models that human pilots train
against. The contribution of this paper is to investigate future enhancements to systems
currently in use, such as the NGTS, that would result in improved training outcomes.

2 Methods

This section includes the methods used both to create and evaluate the behavior models.
First, we provide an overview of the SimBionic architecture and dynamic scripting.
Following this is a description `of the specific modeling approach that we took using
these tools. Finally, we present an overview of the evaluation approach.

2.1 Agent Architecture

This section describes the SimBionic agent architecture, which is followed by a de-
scription of the Dynamic Scripting reinforcement learning algorithm. The SimBionic
architecture, along with a Dynamic Scripting extension, are available as open source
on GitHub [7].

SimBionic. The goal of the SimBionic architecture [8] is to make it possible to specify
real-time intelligent software agents quickly, visually, and intuitively by drawing and
configuring behavioral transition networks (BTNs) as shown in Figure 1. Each BTN is
a network of nodes joined by connectors (links), similar to a flow chart or finite state
machine. Visual logic makes it easy to show, discuss, and verify the behaviors with
members of the development team, subject matter experts, and other stakeholders. The
SimBionic architecture provides three components. The SimBionic Visual IDE appli-
cation enables modelers to specify intelligent agent behaviors by creating and saving
BTNs that are read and executed by the SimBionic Run-time System. The run-time
software library connects to the simulation API to query for state information and exe-
cute actions in the simulation, as specified by the BTNs. The SimBionic Debugger ap-
plication helps developers test and debug behavior logic by stepping through the exe-
cution of the BTNs and inspecting the values of local and global variables.

Figure 1. This behavior will attempt to perform a stern intercept on an aircraft until specific

conditions are met.

As an example, while controlling an aircraft in the simulation, the Figure 1 BTN is
invoked as the initial behavior. Execution of this BTN starts in the green action node
(Log) and then transitions to the SternIntercept node—which is a reference to another
BTN. At this point, flow of control is passed to the SternIntercept BTN (Figure 2).
Execution of the SternIntercept BTN then starts in the green action node and will even-
tually call other BTNs (SternInterceptLowAA and SternInterceptHighAA). Mean-
while, the initial behavior is monitoring in the background for the conditional node
(isFuelLow, isReturnToBase, or isDone) to be true. As soon as one of these becomes
true, the SternIntercept BTN is interrupted and control is returned to the initial behavior,
which will transition to the red action node (Final).

Each node in a SimBionic BTN includes both a user-friendly description (e.g., “High
AA?”) as well as JavaScript or Java code that will be called when the node is executed,
as shown in the lower left of Figure 2. The overall behavior model includes multiple
levels: i) the high-level flow of control represented in the BTNs, ii) the lower-level
building blocks written in Java, and iii) the simulation API that carries out actions and
provides sensory data.

Figure 2. The SimBionic IDE showing the SternIntercept BTN.

A SimBionic entity is a thread of execution. The SimBionic engine can contain one or
more entities, each executing its own set of BTNs simultaneously. When using SimBi-
onic to develop agents for a game or simulation, different entities might correspond to
simulated characters or computer-generated forces, each BTN acting independently
(though they may communicate with each other to coordinate their actions).

Dynamic Scripting. Dynamic scripting [9] is an online reinforcement learning algo-
rithm developed specifically to control the behavior of adversaries in modern computer
games and simulations. Put simply, dynamic scripting attempts to learn a subset of IF-
THEN rules (called actions) that allows the entity to perform well. The subset, chosen
from the larger set, is the script, in dynamic scripting. Dynamic scripting makes a spe-
cific tradeoff for games and simulators, favoring speed of learning over context sensi-
tivity.

More concretely, actions contain i) a value, ii) an optional IF clause that describes
when an action can be applied based on the perceived game state, and iii) a user-defined
priority that captures domain knowledge about the relative importance of each action.
Action values are used to create scripts of length n prior to a scenario by selecting rules
in a value-proportionate manner (e.g., softmax) from the complete set of actions avail-
able to the agent. During a scenario, applicable actions are selected from the script in
priority order first, the action value second. Applicability is determined by the perceived
game state and the action’s IF clause. At the end of a scenario, action values are updated
using the dynamic scripting updating function combined with a domain-specific reward
function created by the behavior author. The reward is distributed primarily to the ac-
tions selected in the episode and then to actions in the script that were not selected, with
a smaller negative reward given to actions not included in the script.

There are two primary benefits of this learning approach in the context of creating
opponents in the air combat domain [5]. First, the algorithm can learn quickly and con-
tinuously—a few scenarios is enough to drive an obvious change in behavior. Second,
the algorithm learns within a well-bounded space. Instructor pilots develop the space
of possible actions, and the algorithm searches to find a set of actions from this space
that work well together. This leads to behavior that is adaptive from the trainee’s per-
spective while still being predictable from the instructor’s perspective.

2.2 Modeling Approach

We investigated three different models to control the behavior of red pilots in a set of
scenarios that pit two red aircraft against two blue (2v2) as shown in Figure 3. All three
models were built in the SimBionic modeling architecture. Following the discussion of
the three models is a description of some common functionality.
• SimBionic. A handcrafted behavior model using SimBionic’s hierarchical behav-

ior transition network representation.
• Rules. The second model is simply composed of a hand-selected set of IF-THEN

rules, modeled in a SimBionic BTN.
• Dynamic Scripting (DS). The third model uses reinforcement learning to learn

the behavior model from experience from among a larger set of IF-THEN rules.

Figure 3. Example 2v2 scenario.

SimBionic. For the 2v2 behavior model, we developed three specific SimBionic enti-
ties. The first and second entities each control one of the two aircraft. These two entities
run their own versions of the same set of hierarchical BTNs, similar to that shown in
Figure 1 and Figure 2. The third entity is a controller, which assigns targets to the red
aircraft. This entity uses a different set of BTNs. The controller BTN is the only explicit
instance of coordination that happens between the two aircraft—all other coordination
is implicit in either the BTNs or the low-level Java building blocks.

Rules. After developing the SimBionic 2v2 model using hierarchical BTNs, a second,
much simpler model to control the red aircraft was created. This model was composed
of six IF-THEN rules implemented in a single BTN in SimBionic. The Rules model
also reused the controller entity from the SimBionic model to assign targets to the two
red aircraft. This enabled us to take advantage of all of the integration work and building
blocks that had already been completed and quickly create the rule-based model. The
idea behind this second model was to explore the performance of an extremely simple
approach relative to the hierarchical model.

Dynamic Scripting. For the 2v2 Dynamic Scripting behavior model, thirteen possible
actions to select from were created. These included the six actions from the Rules model
and seven new actions. Since each DS action is an IF-THEN rule, we represented all
thirteen rules in a single SimBionic BTN. The result is a BTN that looks very much like
the Rules model, just with more nodes and transitions. The primary difference is the
introduction of a special type of dynamic scripting node that indicates dynamic script-
ing transition selection should be used rather than the standard SimBionic transitions.
When executing in a scenario, the first time a chooseDS node is reached, a script will
be generated based on action weights. Subsequent transition through the BTN will use
the same script. There will be a corresponding rewardDS node to apply the reward
function at the end of the scenario, which will update the weights and reset Dynamic
Scripting so that a new script is selected next time the chooseDS node is reached. With
this setup, each red aircraft learns its own script.

The rewards are given to the behaviors based on two events. The first event is the
occurrence of any frame in which a red entity controlled by a behavior model is threat-
ening a blue entity. For this event, a small reward is evenly shared between each red
entity that is targeting the threatened blue entity. The intention is to provide a reward
as entities move into position or distract the target. The second reward event occurs
when a red entity is removed from the simulation. This reward takes the form of a large
negative reward that is applied only to the red entity that was captured. This decision
was based on the assumption that individual behaviors are responsible for maneuvering
the entity into a dangerous position, regardless of how other entities are behaving.

Prior to evaluation, the dynamic scripting model was trained by running it against
twelve scenarios five times each, for a total of 60 training runs. The behavior model
was then frozen for evaluation. Learning was disabled during the evaluation so as to
generate more stable results.

Common Functionality. There is significant common functionality across all three
models. This includes being modeled in the SimBionic architecture, sharing the same
Controller BTN for target assignments, and sharing the same lower-level building
blocks developed in Java that execute actions such as turns or attempts to intercept
another aircraft.

These three models also share constrained variability through the use of these thresh-
olds in the SimBionic BTNs and Java building blocks. The thresholds allow behaviors
to vary their performance in subtle ways in each scenario. For example, rather than
always performing an action at 10 NM, a model using a threshold might perform the
action at 9.2 NM one time and 10.7 NM another time. This approach has two ad-
vantages. First, the exact behavior of the red aircraft is more difficult to predict. Second,
the behavior of the red aircraft is easy to change. Updating the default, min, and max
thresholds will affect how the model performs but requires no additional changes to the
model.

2.3 Evaluation Approach

To evaluate the tactical intelligence of the three behavior models (SimBionic, Rules,
and DS), we ran each model against a set of thirteen scenarios and then averaged the
quantitative results. The scenarios are not deterministic and returned slightly different
results on different runs, so each scenario was completed twice. We also recorded vid-
eos of the evaluation scenarios for qualitative assessment of tactical and instructional
intelligence by subject matter experts.

In these scenarios, the behavior models controlled the red aircraft, while the blue
aircraft were controlled by simplistic scripts. The quantitative goal was to maximize
the number of blue aircraft removed from the scenario (captured) while minimizing the
number of red aircraft lost. The qualitative goal was to perform realistically while fol-
lowing an instructor-developed plan that describes at a high level how the red aircraft
should act in these scenarios against the blue trainees.

3 Results

The results section highlights the tactical and instructional intelligence demonstrated
by the three different behavior models. Tactical intelligence focuses on successfully
completing the scenario against a simulated trainee. Instructional intelligence focuses
on aspects such as performing more realistically, taking better advantage of mistakes
made by the simulated trainee, and being less predictable, than current agent models.

The quantitative results in Table 1 show the aircraft “captured to lost” ratio across
the evaluation scenarios. Following the table are three charts showing the average cap-
tured and lost aircraft per scenario for each of the three models in each of the evaluation
scenarios (Figure 4, Figure 5, & Figure 6).

Table 1. Average model performance across two runs of all evaluation scenarios.

Model Average # Blue Air-
craft Captured [0-
2]

Average # Red Air-
craft Lost [0-2]

Captured / Lost Ra-
tio

SimBionic 1.54 0.15 10.3
Rules 1.46 0.12 12.2
DS 1.38 0.12 11.5

Figure 4. Performance of SimBionic model on evaluation scenarios. The x-axis is the scenario

and the y-axis is the number of aircraft captured (blue) and number of aircraft lost (orange).

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

3 3b 3c

3c c
hase 3d 3e 3f 4 4b 4c 4d 4e 4f

SimBionic

Captured Lost

Figure 5. Performance of Rules model on evaluation scenarios. The x-axis is the scenario and

the y-axis is the number of aircraft captured (blue) and number of aircraft lost (orange).

Figure 6. Performance of Dynamic Scripting model on evaluation scenarios. The x-axis is the

scenario and the y-axis is the number of aircraft captured (blue) and number of aircraft lost
(orange).

Qualitative examination was performed only on the SimBionic scenarios due to the
limited amount of subject matter expert time available. The subject matter experts
found that the SimBionic model generally behaved realistically and took advantage of
trainees’ mistakes—with a couple of exceptions. One exception had to do with how red
carried out a maneuver. In this case, the error was in the low-level Java code that carries
out the maneuver, not with the behavior model itself. This means that all three models

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

3 3b 3c

3c c
hase 3d 3e 3f 4 4b 4c 4d 4e 4f

Rules

Captured Lost

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3 3b 3c

3c c
hase 3d 3e 3f 4 4b 4c 4d 4e 4f

Dynamic Scripting

Captured Lost

would make the same mistake. The second exception had to do with teamwork, where
one red aircraft was not supporting the other correctly under certain circumstances. As
this error was embedded in the SimBionic model, the incorrect behavior would not
necessarily be present in the Rules or DS models.

4 Discussion

These quantitative results show that all of the models were fairly successful in capturing
opposing forces while not getting captured themselves. Using this as the primary met-
ric, the results demonstrate good performance for all three behavior models. What is
very surprising is that the simplest behavior model, Rules, displays the best perfor-
mance in terms of captured-to-lost ratio. The model created via machine learning, DS,
performs almost as well. This is not necessarily surprising since DS has access to all of
the IF-THEN statements in the Rules model, but it is a good outcome nonetheless. Sim-
Bionic performs reasonably well, too—it is just not quite as good as these other models
at maximizing the captured-to-lost ratio. It is also interesting to note that the different
models have different strengths and weaknesses—e.g., SimBionic was at a stalemate in
4e, where both Rules and DS were able to come out ahead in this scenario.

Instructional intelligence is evaluated relative to the requirements set by the instruc-
tor pilots with respect to improved red behavior models: perform realistically, take ad-
vantage of mistakes made by trainees, and be less predictable. First, our belief is that
the SimBionic model will behave more realistically than the Rules or DS models. Based
on personal observation as modelers, we can see that the Rules and DS models behave
differently than the more highly constrained SimBionic model. The realism of Rules
and DS models has not been independently examined. Second, all three models seem
to take advantage of blue mistakes while protecting themselves, given the captured-to-
lost ratio. Third, the constrained variability discussed in Common Functionality pro-
vides significant variation in aircraft behavior across scenario runs—though this was
not directly noticeable to the subject matter experts reviewing model performance.

5 Conclusion

The overall objective of this work is to advance the intersection of cognitive modeling
and machine learning in order to develop behavior modeling technology and supporting
infrastructure for the US Air Force. Working towards the overall objective, this paper
describes the development and evaluation of three different behavior models from both
a tactical and instructional perspective. All three models performed well from both per-
spectives, with the machine learning model performing on par with the other two mod-
els after relatively little training.

In future work, we plan to combine the SimBionic and Dynamic Scripting ap-
proaches, adding dynamic scripting nodes at various points within the hierarchical Sim-
Bionic BTNs. We believe this will best support realistic behavior and adherence to an
instructional plan, while at the same time applying machine learning to adapt to the
trainees’ performance.

Acknowledgements

This article is based upon work supported by the United States Air Force Research
Laboratory, Warfighter Readiness Research Division 711 HPW/RHA, under Contract
FA8650-16-C-6698. This article is cleared for public release on 14 Dec 2018, Case
88ABW-2018-6265.

Distribution Statement A: Approved for Public Release, Distribution Unlimited.

References

[1] J. Freeman, E. Watz, and W. Bennett, “Adaptive Agents for Adaptive Tactical
Training: The State of the Art and Emerging Requirements,” to be presented at the
HCI INTERNATIONAL 2019, Orlando, FL, US, 2019.

[2] R. M. Jones, J. E. Laird, P. E. Nielsen, K. J. Coulter, P. Kenny, and F. V. Koss,
“Automated Intelligent Pilots for Combat Flight Simulation,” AI Mag., vol. 20, no.
1, pp. 27–27, Mar. 1999.

[3] N. Ernest, D. Carroll, C. Schumacher, M. Clark, K. Cohen, and G. Lee, “Genetic
Fuzzy based Artificial Intelligence for Unmanned Combat Aerial Vehicle Control
in Simulated Air Combat Missions,” J Def Manag, vol. 6, no. 144.

[4] T. Teng, A. Tan, Y. Tan, and A. Yeo, “Self-organizing neural networks for learn-
ing air combat maneuvers,” in The 2012 International Joint Conference on Neural
Networks (IJCNN), 2012, pp. 1–8.

[5] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and H. J. van den Herik, “Rapid
Adaptation of Air Combat Behaviour,” in ECAI, 2016.

[6] “NEXT GENERATION THREAT SYSTEM (NGTS),” 10-Dec-2018. [Online].
Available: http://www.navair.navy.mil/nawctsd/pdf/2018-NGTS.pdf.

[7] “SimBionic,” 04-Jun-2018. [Online]. Available: https://github.com/StottlerHen-
keAssociates/SimBionic. [Accessed: 11-Dec-2018].

[8] D. Fu and R. Houlette, “Putting AI in entertainment: an AI authoring tool for sim-
ulation and games,” IEEE Intell. Syst., vol. 17, no. 4, pp. 81–84, Jul. 2002.

[9] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma, “Adaptive game
AI with dynamic scripting,” Mach. Learn., vol. 63, no. 3, pp. 217–248, Jun. 2006.

