
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

CBR Insight:
Measure and Visualize Source Code Quality

Jeremy Ludwig & Devin Cline
Stottler Henke Associates, Inc.

San Mateo, CA, US
ludwig, dcline @ stottlerhenke.com

Abstract—A critical aspect of software development is creating

high-quality source code that is reliable, maintainable, and has
limited technical debt. Software development teams generally
employ a variety of design techniques, processes, and tools to
continually work towards quality code while balancing the overall
time and budget demands of the project. The goal of CBR Insight
(CBRI) is to provide an objective and understandable measure of
software quality that can help guide decisions and direct limited
resources during software acquisition, development, and
sustainment. CBRI supports the ability of technical and non-
technical decision makers to verify that a project’s software
implementation follows through on promises around developing
and sustaining reliable and maintainable software while managing
technical debt.

Keywords— Software product quality, technical debt, reliability,
maintainability, architecture, metrics, static code analysis

I. INTRODUCTION
Creating and maintaining high-quality software is especially

important for critical systems such as those made for NASA and
the DoD, and for software product lines where long-lived,
reusable modules are intended to be shared by multiple systems.
The goal of CBR Insight (CBRI) is to provide an objective and
understandable measure of software quality that can help guide
decisions during software acquisition, development, and
sustainment.

CBRI performs four distinct tasks in fulfilling this goal.
First, a small set of source code metrics highly related to
software reliability, maintainability, and preventable technical
debt are calculated. Second, realistic targets are developed for
these metrics based on similar, successful, ‘peer’ projects. Third,
an aggregated score is generated by comparing the calculated
metrics to the target values. Fourth, the results are presented to
decision makers in an accessible dashboard overview. The
remainder of this abstract includes an overview of related work,
a closer look at CBRI, and a brief discussion of ongoing work.

II. BACKGROUND AND RELATED WORK
CBRI calculates a small, essential set of static software code

metrics linked to the software product quality characteristics of
reliability and maintainability [1], [2] and to the most commonly
identified sources of technical debt [3]. Architectural decisions,
overly complex code, and lack of code documentation are the
top three avoidable sources of technical debt in practice. CBRI

uses a plugin to Understand [4] to calculate metrics in each of
three given areas. While CBRI focuses on presenting an
overview to decision makers, software developers can use
Understand to calculate the same metrics and address identified
deficiencies.

There is an abundance of related work in software quality,
technical debt, and automated code review that identifies
specific source code metrics, describes how the measurements
of these metrics are aggregated, and how the aggregations are
used to assess characteristics of software quality and technical
debt. Summarizing this work is outside the scope of this abstract,
see [5], [6] as a starting point.

III. CBR INSIGHT
The CBR Insight dashboard (Figure 1) focuses on measuring

and visualizing software code quality across multiple projects in
three important areas: architecture, complexity, and clarity.

CBRI calculates static source code metrics for each of these
three areas. A brief description is given for non-standard
metrics. See the citations for more information. The architecture
metrics are Core Size and Propagation Cost [7]. Files in the Core
architecture group generally contain more defects and cost more
to maintain, so a smaller core size is better. The two complexity
metrics are Duplicate Lines of Code and Overly Complex Files.
An overly complex file is one that exceeds 4 of 5 thresholds from
a set of standard software metrics [1] including LOC, WMC-
Unweighted, WMC-McCabe, RFC, and CBO. The Code-To-
Comment ratio is used as an initial measure of clarity. This
metric has been well studied as part of earlier work on quality

Figure 1. CBR Insight dashboard view.

models [8]. See [9] for a more detailed discussion of the specific
architecture, complexity, and clarity metrics selected for use in
CBRI.

Generating a target range for a metric involves identifying
peer projects on Github that are similar to the project of interest,
calculating all of the metrics for each of the peer projects, and
then calculating the interquartile range of each metric across the
peer projects.

An overall score is calculated for each project, along with
scores of the architecture, complexity, and clarity aspects. These
scores are calculated by comparing the calculated metric values
of the project of interest against the generated target range. The
overall scores are assigned to letter grades A thru F for
visualization in the dashboard.

The Dashboard is a starting point for the user to drill down
into the details of each project. The Project View (Figure 2)
provides a description of the underlying metrics used to generate
the scores for the project and visualizes the calculations over
time. The visualizations include color-coded target ranges that
were determined by analyzing successful peer projects as well
as a tree-map of file size and complexity organized by the Core
Size architecture set. Every section and metric contain
accessible descriptions to assist the user in understanding the
scores and measurements.

IV. CONCLUSION AND FUTURE WORK
Software code quality and technical debt have significant

impact on a software product’s reliability and maintainability.
CBRI supports the ability of technical and non-technical
decision makers to verify that a project’s software
implementation follows through on promises around developing
and sustaining reliable and maintainable software while
managing technical debt.

There is a long history of software engineering research in
the area of software product quality and numerous existing tools
aimed at performing automated code quality assessment. What

makes CBR Insight a complementary addition to existing tools
is: (i) the calculation of a small, essential set of metrics
associated with maintainability, reliability, and technical debt,
(ii) using peer projects to set the targets associated with each
metric and (iii) presenting the information in a format preferred
by decision makers. CBRI components are being released at
https://github.com/StottlerHenkeAssociates as they are
completed.

Ongoing work on CBRI is currently focused on a number of
different issues. Some of these issues are in the inner workings
of CBRI, investigating improvements to the library of peer
projects and the score aggregation methods. Other issues include
changes to the user interface: updating the graphical layout,
displaying information on peer projects, and visualizing changes
in the source code relative to a baseline measurement. The last
issue is identifying additional metrics that gauge the clarity of
software as it relates to reliability and maintainability [10].

ACKNOWLEDGMENT
This material is based upon work supported by the United

States Air Force Research Laboratory under Contract No.
FA8650-16-M-6732. The views, opinions, and/or findings
contained in this article/presentation are those of the
author/presenter and should not be interpreted as representing
the official views or policies, either expressed or implied, of the
AFRL. DISTRIBUTION A. Approved for public release:
distribution unlimited.

REFERENCES
[1] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical

Approach, Third Edition, 3rd ed. Boca Raton, FL, USA: CRC Press, Inc.,
2014.

[2] Organización Internacional de Normalización, ISO-IEC 25010: 2011
Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality
models. Geneva: ISO, 2011.

[3] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
It? Manage It? Ignore It? Software Practitioners and Technical Debt,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, New York, NY, USA, 2015, pp. 50–60.

[4] “SciTools.com.” [Online]. Available: https://scitools.com/. [Accessed:
24-Dec-2018].

[5] R. Ferenc, P. Hegedűs, and T. Gyimóthy, “Software Product Quality
Models,” in Evolving Software Systems, T. Mens, A. Serebrenik, and A.
Cleve, Eds. Springer Berlin Heidelberg, 2014, pp. 65–100.

[6] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the Principal of an
Application’s Technical Debt,” IEEE Softw., vol. 29, no. 6, pp. 34–42,
Nov. 2012.

[7] C. Baldwin, A. MacCormack, and J. Rusnak, “Hidden Structure: Using
Network Methods to Map System Architecture,” 2014.

[8] D. Coleman, B. Lowther, and P. Oman, “The application of software
maintainability models in industrial software systems,” J. Syst. Softw.,
vol. 29, no. 1, pp. 3–16, Apr. 1995.

[9] J. Ludwig, S. Xu, and F. Webber, “Compiling static software metrics for
reliability and maintainability from GitHub repositories,” in 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2017, pp. 5–9.

[10] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. Shi, “Why is It
Important to Measure Maintainability, and What Are the Best Ways to
Do It?,” in Proceedings of the 39th International Conference on Software
Engineering Companion, Piscataway, NJ, USA, 2017, pp. 377–378.

Figure 2. The architecture section of the Project View.

