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Abstract. The aim of this paper is to contribute to machine-learning technology 
that expands real-time and offline Integrated System Health Management capa-
bilities for future deep-space exploration efforts. To this end, we have developed 
Anomaly Detection via Topological feature-Map (ADTM), which leverages a 
Self-Organizing Map (SOM)-based architecture to produce high-resolution clus-
ters of nominal system behavior. What distinguishes ADTM from more common 
clustering techniques (e.g. k-means) is that it maps high-dimensional input vec-
tors to a 2D grid while preserving the topology of the original dataset. The result 
is a ‘semantic map’ that serves as a powerful tool for uncovering latent relation-
ships between features of the incoming data points. We successfully modeled and 
analyzed datasets from a NASA Ames Research Center Graywater Recycling 
System which documents a real hardware system fault. Our results show that 
ADTM effectively detects both known and unknown anomalies and identifies the 
correlated measurands from models trained using just nominal data. 

Keywords: Self-Organizing Map, Anomaly Detection & Localization, Inte-
grated System Health Management 

1 Introduction 

Integrated System Health Management (ISHM) technologies are mission-critical for 
space exploration. Space habitats are made up of a complex web of subsystems, and the 
rising demand for rapid fault detection and response in deep-space habitats calls for 
autonomous monitoring software that can run on board. In particular, communication 
delays between onboard crews and Earthbound experts (lasting up to 44 minutes) could 
make the difference between a successful and failed mission, risking the loss of both 
equipment and crew [1]. Expansion of both machine learning and data mining tech-
niques in this field is therefore of the utmost importance to ensuring mission safety. 

In this paper we discuss the application of a semi-supervised approach to 
anomaly detection and localization called Anomaly Detection via Topological feature-
Map (ADTM), which combines a Self-Organizing Map (SOM) for anomaly detection 
with a Random Forest of Decision Trees to identify the most salient measurands con-
tributing to data flagged as anomalous. Our research has largely been inspired by a 
successful body of work leveraging SOMs for anomaly detection within the aeronautics 
domain [2]. Our contribution is the application of this approach to the space domain. 
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To the best of our knowledge, the use of SOMs in conjunction with decision trees for 
system health monitoring has never been applied to the space domain before.  

The remainder of this paper is organized as follows. Section 2 reviews related 
research employing machine learning and statistical techniques for anomaly detection. 
Section 3 provides the background for Self-Organizing Maps.  Section 4 provides the 
technical details and methods of our ADTM model. Section 5 describes the experi-
ment we ran on NASA ARC subsystem data to test the feasibility of ADTM within 
the space ISHM domain. Section 6 concludes our work with a summary of key re-
search findings and plans for future work.  

2 Related Work 

The focus of this work was on unsupervised anomaly detection for discrete sequences 
of subsystem data using SOM-based models trained on nominal subsystem behavior. 
Similar approaches to anomaly detection have been applied in existing research. Prin-
cipal Component Analysis has been a widely used algorithm for anomaly detection 
across a wide breadth of applications, including diagnosing offshore wind turbines [3], 
cyber networks [4], and space telemetry [5]. Furthermore, Gaddam used a supervised 
approach to anomaly detection by combining K-Means clustering with ID3 decision 
tree classification [6]. The classification decisions across the clusters and decision trees 
were combined for a final decision on class membership. The main drawback of such 
an approach in the space domain is the limited availability of labeled fault data needed 
for training and validation. 

NASA Ames Research Center (ARC) uses k-means and density-based clus-
tering techniques for system monitoring in its IMS and ODVEC software systems [7]. 
Similarly, Gao, Yang, and Xing used a K-Nearest-Neighbor (kNN) approach for 
anomaly detection of an in-orbit satellite using telemetry data [8]. SOMs have been 
used for fault detection and diagnosis in several industries. Datta, Mabroidis and Ho-
sek combine SOMs with Quality Thresholding (QT) to refine the resolution of clus-
ters learned by SOMs within the semi-conductor industry [9]. Similarly, Tian, Aza-
rian, and Pecht train a SOM on nominal cooling fan bearing data but use a kNN ap-
proach in place of the Minimum Quantization Error (MQE) to assign test data anom-
aly scores based on their distance to centroids learned by the kNN model [10]. Cot-
trell and Gaubert apply anomaly scores to aircraft engine test data using the MQE ap-
proach that we have used in this paper (see Section 4) and leverage the visualization 
capabilities of SOMs to visualize the transition states of engines from run-to-failure 
datasets [2].  

ADTM contributes to this existing bed of clustering research by combining a 
Self-Organizing Map in combination with Extra Tree Classifier for both detecting and 
localizing faults, which has rarely (if at all) been used in the ISHM space domain. 
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3 Self-Organizing Map Background 

Also known as a Kohonen map, a Self-Organizing Map (SOM) is a two-layer artifi-
cial neural network (ANN) that uses unsupervised learning to produce a low-dimen-
sional representation of the training samples [11]. The goal is to transform incoming 
inputs to a 1- or 2-dimensional map in a topically ordered fashion such that points that 
are close together in the higher-dimensional input space are also close together in the 
lower-dimensional output space.  This mapping allows us to detect patterns of normal 
or anomalous behavior in a system, as different types of behavior map to different 
output units, called “neurons.”  

Specifically, the N-dimensional input data is fed into the SOM in the first 
layer and fully connected to a lattice of (l x p) output neurons Oi in the second layer 
[10]. Each neuron Oi  is associated with a N-dimensional weight vector wi. We repre-
sent Oi  by a two-dimensional coordinate of its position in the (l x p) grid, e.g., Oi = 
(xi, yi). The values of l and p are parameters that are tuned during model validation. 
Based on the literature [10], we chose l=p= √(5√𝑁), though we intend to further 
tune these parameters in future work. Unlike k-means, the clusters learned during 
SOM training are topologically ordered through a competitive learning rule.  

The topological ordering happens with the following training process: each 
input vector m Î M is compared with the weight vector wi associated with each neu-
ron Oi. The closest Oc is chosen as the winner, or ‘Best Matching Unit’ (BMU), where 
‘close’ is defined by a distance function between the input vector m and the closest wc 
associated with Oc. The smallest distance is called the Minimum Quantization Error 
(MQE). Each BMU in the output layer is related to an entire neighborhood of neurons 
through a ‘neighborhood function’ h(c,k) that computes the relation between the 
BMU Oc and neuron Ok. The weight vectors within a neighborhood are updated in 
proportion to their distance to the BMU in the 2D output lattice. Because entire neigh-
borhoods of related neurons get updated in the direction of the input data that is clos-
est to them, the topology of the N-dimensional input space is preserved in the 2-di-
mensional output space. 

Our research used open-source Python libraries for data processing and 
building a baseline SOM model. Though there are several SOM-based open source li-
braries available, we chose Somoclu [12] because it leverages a highly parallel imple-
mentation in the C programming language. Without performing cross-validation for 
hyperparameter tuning, our SOM-based anomaly detectors still showed promising re-
sults in the experiment detailed in Section 5.  This suggests a significant opportunity 
for additional performance and efficiency gains through fine-tuning our baseline algo-
rithms in future work. 

4 Methods 

At a high level, our methods use a SOM trained on nominal subsystem behavior to 
identify anomalous data, followed by a Random Forrest to identify the salient measur-
ands implicated in the flagged anomaly. ADTM is implemented with the following 
procedure (each step is detailed in the sections that follow): 
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1. Given nominal data and fault data sets for testing, divide the nominal data into a 
training and a test set.  

2. Normalize all the data with decimal scaling, using the training data as the scaling 
reference. 

3. Train one SOM per subsystem using nominal training data. 
4. For all data sets (training sets, nominal test sets, fault test sets), calculate the MQE 

for each sample point. 
5. Set the kth and (1- kth) percentiles of the MQE scores of the training data as the nom-

inal MQE thresholds for flagging anomalies, where 0 < 𝑘 < 1. In our experiments 
k=0.99.  

6. For each data point in each test set, flag the point as anomalous if its MQE is < lower 
nominal MQE threshold or > the upper nominal MQE threshold.  

7. Find the most salient measurands contributing to data flagged as anomalous with a 
supervised feature extractor, ordered by importance.  

Steps 1 – 2 are detailed in Section 4.1. Step 3 uses the SOM training process de-
scribed in Section 3. Steps 4 – 6 are detailed in Section 4.2, while Step 7 is detailed in 
Section 4.3.  

4.1 Data Processing 

Because the SOMs require numerical data, we converted categorical variables (e.g., 
“ON/OFF”) to quantitative variables (e.g., 1/0). We also dropped the columns related 
to the timestamp of data collection, as we were not concerned with multi-scale time-
series analysis. Such analysis is a research focus of future work, however, specifically 
for the purpose of conducting cross-subsystem analysis given datasets measured in 
different timescales. Additionally, we normalized the data to prevent measurands with 
larger ranges from out-weighing measurands with smaller ranges. We used decimal 
scaling to scale the values so that all values fell within the range -1 to 1 [13]. Normal-
ization was done on the training sets for each subsystem, and the test sets were scaled 
relative to this normalization. 

4.2 Anomaly Detection via MQE 

Once trained on nominal data, the SOM maps new data seen during testing to the 
most similar weight vector wc of the output neurons Oi, using Euclidean Distance as 
the similarity metric. A low MQE implies that the new sample closely aligns with a 
previously seen sample from the training data and is therefore nominal, whereas a 
higher MQE connotes that the point is anomalous, either because it contains a true 
fault or because it captures novel nominal behavior unseen during training. We de-
fined a range of nominal MQE scores and classified all samples as anomalous during 
testing if they fell outside that range. The range was chosen by re-running the training 
data through an already-trained SOM and setting the 1-percentile value and the 99-
percentile value of the resulting MQEs as the lower and upper bounds respectively. 
Admittedly, these thresholds were chosen rather arbitrarily from our observations of 
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the available data. We intend to include a more principled approach to threshold tun-
ing in future work and anticipate doing so will improve the generality of our results. 

4.3 Anomaly Localization via Supervised Feature Extraction 

In addition to identifying regions of anomaly, it would be helpful to localize the anom-
alies to a small subset of the measurands that explain observed behavior deviation and 
best distinguish between the two regions (anomalous vs. non-anomalous). For this, we 
rely on the insight that the two regions can be treated as two classes and supervised 
classification methods can be used to identify the features that distinguish them. For 
this analysis, we are not concerned about the accuracy of anomaly identification, i.e., 
the external consistency of anomaly detection with respect to ground truth. All we are 
concerned with is determining the features that accurately separate two given segments 
of data (i.e., internal consistency). The data points labeled as anomalies are grouped 
into one class, and the weight-vectors learned by the SOMs during training form the 
data for the second class. This highlights one of the benefits of the SOM-based ap-
proach: the weight vectors of the SOM are effectively a reduced representation of the 
training data and lead to efficient storage for future analysis.  
  A number of supervised feature extraction approaches are available, though 
we chose Extra Tree Classifier [14], which is a variant of the Random Forest ap-
proach [15]. Our experiment in Section 5 demonstrates the utility of this approach to 
anomaly localization, though we intend to experiment with other techniques such as 
Recursive Feature Elimination (RFE) [16] in future work. Our anomaly localization 
goal was to identify subsets of measurands that contributed the most to deviation in 
anomalous data. For this we employed a Random Forest (RF) to classify nominal and 
anomalous data points and output the measurands that resulted in the greatest reduc-
tion in Gini Impurity scores across all decision trees employed [15]. We used the de-
fault parameters that came from a Python machine-learning package, in which the 
number of trees was set to 10. We intend to tune this parameter (e.g., employing 100s 
of trees) to further improve our anomaly localization capabilities in future work. 

The weights associated with the SOM output neurons are known as “code-
book vectors,” as they represent prototypical nominal activity learned from the train-
ing data. Thus, we labeled these codebook vectors as “nominal” for our Extra Tree 
Classifier model. Similarly, we labeled the data samples from our test sets that were 
flagged as anomalous as the class “anomaly.” Finally, we trained a RF on the labeled 
data and output the list of measurands that resulted in the best splits between the two 
classes, ranked by their (normalized) reductions in GI scores across all trees. For this 
paper, we arbitrarily chose the subset of measurands with a feature importance score 
of at least 10 to characterize the anomalies from each test set, though this threshold is 
an additional hyperparameter that we will tune in future work.  

5 Experiments and Discussion 

We divide the results of our experiment into the following three subsections: Data Col-
lection, Anomaly Detection Analysis, Anomaly Localization Analysis. 
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5.1 Data Collection 

We acquired data of a Graywater Recycling System from NASA Ames Research Cen-
ter installed at Stanford University. This data documented a real system failure that 
propagated across two interconnected subsystems. The Forward Osmosis (FO) mem-
brane became fouled with a bacterial sludge, and the system shut down due to a low 
OA tank float alarm. The data we received decomposed the Graywater Recycling Sys-
tem into two subsystems, “Subsystem 1” and “Subsystem 2.” For each subsystem, we 
received two days’ worth of nominal data and four days of faulty data. We divided the 
nominal data into a training set and a nominal test set for each subsystem, the latter of 
which was used to compare against the fault test sets. The shapes of the datasets used 
for training and testing are described in Table 1. Although both Subsystem 1 and Sub-
system 2 were running for the same length of time during the October experiments, 
Subsystem 1 has significantly more data points than Subsystem 2 due to differences in 
the sampling rate for each subsystem. 

Table 1. Datasets used for training and testing SOMs for Subsystems 1 & 2 

Subsystem Train data  
(#rows, # features) 

Test data (#rows, # features) 

Subsys1 SOM (47031, 32) fault: (274100,32) 
nominal: (23643, 32) 

Subsys2 SOM (789, 7) fault: (4595, 7) 
nominal: (394, 7) 

 
Beyond detecting the fault, our algorithm was also able to output the specific sensors 
that contributed most to the anomaly, as shown in Subsection 5.3.  

5.2 Anomaly Detection Analysis 

For each test set, our SOMs flagged a sample point as anomalous based on its 
MQE score, using the 99th percentile of the training MQEs as a threshold. The results 
are displayed in Table 2. We see that the SOMs flagged >99% and 84% in the fault 
test sets of Subsystem 1 and Subsystem 2 respectively. By comparison, the Subsystem 
1 SOM flagged ~12% of the nominal test set as anomalous, while the Subsystem 2 
SOM detected no anomalies in the nominal Subsystem 2 test set. 

Table 2. Percentage Anomalies detected in Graywater Recycling System Data with 99% Confi-
dence Interval 

Subsystem Test Dataset Percentage Anomalies Detected 
Subsystem 1 A. nominal test set 

B. fault test set 
A. 12.2%  
B. 99.86%  

Subsystem 2 A. nominal test set 
B. fault test set 

A. 0%  
B. 84%  
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Subsystem 1 SOM MQE Results  

Nominal Test Set  
The Subsystem 1 SOM detected a relatively high percentage of anomalies in the nom-
inal test set (~12%). This was due to anomalous behavior in the tail-end of the test set. 
Observe the plot comparing the MQE scores on the Subsystem 1 nominal test set 
(blue line) with that of the Subsystem 1 training set (orange line) in Figure 1. The 
MQE scores of the nominal test set spike around ~21000 data points at the end of the 
run. We observed that this was due to many sensors in Subsystem 1 simultaneously 
exhibiting low or stopped activity, likely due to a “shut down” procedure. Though this 
behavior is not necessarily faulty, it was not captured by the training data so repre-
sents an anomaly that we would expect our SOM to flag, as it did. 

 
Fig. 1. Graywater Recycling Subsystem 1 Nominal Test MQE (blue) vs Train MQE (orange) 
Plot. Spike in nominal test MQE occurs at end of run due to shut down procedure.  

Fault Test Set  
Observe from Figure 2 that the MQE scores across the Subsystem 1 fault test set 
(blue) are significantly greater than the maximum MQE score for the Subsystem 1 
training set (orange), indicating that the SOM trained on Subsystem 1 nominal data 
detects significant deviation in the faulty test set. 
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Fig. 2. Graywater Recycling Subsystem 1 Fault Test MQE (blue) vs Train MQE (orange) Plot. 
Fault MQE is substantially larger than nominal train MQE for entirety of run. 

 

Subsystem 2 SOM MQE Results 
The SOM trained on Subsystem 2 data did not detect any anomalies in the Subsystem 
2 nominal test set. Observe in Figure 3A that this is because the MQE scores of the 
nominal test set closely align with the MQE scores of the training set (~0) —that is, 
they fall within the 99th-percentile of nominal MQE scores. By comparison, observe 
the significant deviation between the MQE scores of the Subsystem 2 fault set (blue) 
and those of the Subsystem 2 training set (orange) in Figure 3B. We see behavior sim-
ilar to a stair-step function in the interval marked by [A]. In between [A] and [B], the 
MQE briefly drops to within nominal range before spiking again in [B]. It then oscil-
lates between nominal in intervals [C] and [E] (compare with the nominal training set 
MQE scores, in orange) and high in intervals [B] and [D]. 
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Fig. 3A. Graywater Recycling Subsystem 2 Nominal Test MQE (blue) vs Train MQE (orange) 
Plot. Both nominal test and train MQE’s are ~0, as expected. 

 
Fig. 3B. Graywater Recycling Subsystem 2 Fault Test MQE (blue) vs Train MQE (orange) Plot. 
Test MQE deviates significantly in intervals [A], [B], and [D].  

We observed that the Subsystem 2 MQE plot closely aligns with the behavior 
of the CONDUCTIVITY SCALED OA measurand plotted in Figure 4, comparing the 
sensor values from the Subsystem 2 fault test set (in red) with those from the Subsystem 
2 training set (in black). Compare Figures 3B and 4 and notice how the changes in the 
MQE scores in Figure 3B across intervals [A – E] correlate with the changes in behavior 
of the CONDUCTIVITY SCALED OA measurand in Figure 4 across the same inter-
vals.  
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Fig. 4. Graywater Recycling Subsystem 2 CONDUCTIVITY SCALED OA: red (test), black 
(train). Test data deviates significantly from training in intervals [A], [B], and [D]. 

In particular, the CONDUCITIVITY SCALED OA measurand in Figure 4 ex-
periences dramatic deviation from the nominal training data (in black) in a stepwise 
fashion throughout interval [A], while MQE scores in Figure 3B deviate from nominal 
range in a similar way. It then oscillates between a low reading during the intervals [B] 
and [D], and nominal readings in the intervals [C] and [E]. Similarly, the MQE scores 
in Figure 3B deviate from nominal range in intervals [B] and [D] and return to within 
nominal range in intervals [C] and [E].  

 
This demonstrates the SOMs ability to not only detect deviations in the fault 

data, but also to capture the relative degree of deviation exhibited in a fault. That is, 
the greater the deviation from nominal behavior seen in training, the greater the MQE 
score will be. This is a significant innovation for an effective ISHM tool, as it distin-
guishes between severe (and potentially fatal) faults and more mild anomalies, allow-
ing end-users to prioritize their overhauling and response activities accordingly. 

5.3 Anomaly Localization Analysis 

Our ExtraTreeClassifier (ETC) algorithm identified the sensors in Table 3 as contrib-
uting the most to the anomalies detected in each subsystem’s fault test set. We only 
listed the measurands with a feature importance score of at least 10. We validated our 
results with a subject matter expert (SME) who worked at Kennedy Space Center for 
32 years, including on the actual International Space Station (and other spacecraft) 
systems and consumables while they were on the ground. 

Table 3. Salient Features of Flagged Anomalies from ETC for Graywater Recycling Subsystems  

Subsystem Test Data Salient Measurands Identified 
Subsystem 1 fault RO PUMP SPEED: 68.6 
Subsystem 2 fault  CONDUCTIVITY SCALED OA: 94.0 

Subsystem 1 Validation  
Our SME confirmed that the RO PUMP SPEED is one of the most important measur-
ands to detect for a clogged FO Membrane fault, as the pump is what moves fluid 
from the FO Membrane through the OA Tank to the RO Membrane. When the FO 
Membrane is clogged by sludge, the excess build-up prevents fluid from circulating 
properly through the pump, so deviation from nominal pump behavior is expected and 
should be flagged. Such underactivity is clearly displayed in Figure 5, in which the 
RO PUMP SPEED from the fault test set (green) is plotted against that from the train 
set (black). The TURN SYSTEM ON/OFF INDICATOR is also plotted for the test 
set (red). Notice that the RO PUMP SPEED deviates from nominal each time the sys-
tem is turned on. 
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Fig. 5. Graywater Recycling Subsystem 1 RO PUMP SPEED SET SCALED: green (test), purple 
(train). TURN SYSTEM ON/OFF INDICTOR: red (test). 

Subsystem 2 Validation  
The CONDUCTIVITY SCALED OA measurand measures the electrical conductivity 
of the fluid moving through the recycling system. During a clog, the water contains 
greater mineral and salt deposits, which affects the conductivity of the fluid. Our SME 
confirmed that we would expect to see deviation in the CONDUCTIVITY SCALED 
OA measurand for the OA system, since it receives fluid directly from the clogged FO 
Membrane implicated in the fault. Furthermore, refer back to Figure 4 which displays 
the significant deviation in CONDUCTIVITY SCALED OA in the test set from train-
ing, and to Figure 3B which shows the corresponding MQE scores for the Subsystem 
2 fault test set. The correlation between these two plots indicates that the 
CONDUCTIVITY SCALED OA was a large contributor to the deviation in the fault 
data. The fact that our ETC algorithm correctly identified it as the top salient feature 
proves the effectiveness of our fault localization approach. 

6 Conclusions and Future Work 

Our research demonstrates the feasibility of applying an unsupervised, SOM-based 
anomaly detection approach to the Integrated System Health Management (ISHM) do-
main for space subsystems and lays the foundation for behavior diagnosis through our 
anomaly localization techniques that isolate measurands most correlated with flagged 
anomalies. We were able to demonstrate these results on a NASA ARC Graywater Re-
cycling System dataset implicated by a known fault. Moreover, our research makes use 
of Python packages that use highly parallel processing techniques to produce computa-
tionally efficient results.  

As this work was a relatively small feasibility study to investigate the utility 
of SOM-based analysis for space subsystem health monitoring, we have relegated 
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several important research questions to future work, which we mention here briefly. 
In addition to taking a more principled approach to hyperparameter tuning, e.g. 
through cross-validation or Bayesian optimization, we will build upon our existing 
methods through incorporating SOM-based prognostics capabilities based on the 
work of [17] and implementing multi-timescale analysis in order to cross-correlate 
anomalies across subsystems from data collected across different timescales.  

Furthermore, we intend to investigate methods for exploiting the visualization 
capabilities of SOMs as in [2] for the purpose of fault localization and characteriza-
tion. For instance, displaying the component planes of sensors highly correlated with 
data implicated in a fault may assist human operators in more quickly diagnosing and 
responding to flagged anomalies. We will continue discussions with NASA engineers 
to better understand the desirability and effectiveness of such visualizations.  

While the NASA data we received did not contain confounding anomalies, nor 
severely unbalanced classes (e.g. 99% nominal samples versus 1% anomalous sam-
ples), effectively handling such cases is important for generalizing ADTM to new 
subsystems, and we have included such analysis as part of ongoing work. Finally, we 
intend to compare the results of our techniques to other unsupervised approaches, 
such as k-means and PCA, in order to further establish the utility of our approach to 
real applications. 

7 References 

1. Crusan J (2016) Habitation Module, NASA Advisory Council, Human Exploration and Op-
erations Committee. 3.  

2. Cottrell M, Gaubert P, Eloy C et al. (2009) Fault Prediction in Aircraft Engines Using Self-
Organizing Maps. Advances in Self-Organizing Maps 37-44. doi: 10.1007/978-3-642-
02397-2_5 

3. Bennouna O, Heraud N, Leonowicz Z (2012) Condition monitoring &amp; fault diagnosis 
system for Offshore Wind Turbines. 2012 11th International Conference on Environment 
and Electrical Engineering. doi: 10.1109/eeeic.2012.6221389 

4. Pascoal C, de Oliveira M, Valadas R et al. (2012) Robust feature selection and robust PCA 
for internet traffic anomaly detection. 2012 Proceedings IEEE INFOCOM. doi: 
10.1109/infcom.2012.6195548 

5.  Nassar B, Hussein W, Mokhtar M (2019) Space Telemetry Anomaly Detection Based on 
Statistical PCA Algorithm. In: Zenodo. http://doi.org/10.5281/zenodo.1109667.  

6. Gaddam S, Phoha V, Balagani K (2007) K-Means+ID3: A Novel Method for Supervised 
Anomaly Detection by Cascading K-Means Clustering and ID3 Decision Tree Learning 
Methods. IEEE Transactions on Knowledge and Data Engineering 19:345-354. doi: 
10.1109/tkde.2007.44 

7. Iverson D, Martin R, Schwabacher M et al. (2009) General Purpose Data-Driven System 
Monitoring for Space Operations. AIAA Infotech@Aerospace Conference. doi: 
10.2514/6.2009-1909 

8.  Gao Y, Yang T, Xu M, Xing N (2012) An Unsupervised Anomaly Detection Approach for 
Spacecraft Based on Normal Behavior Clustering. 2012 Fifth International Conference on 
Intelligent Computation Technology and Automation. doi: 10.1109/icicta.2012.126 



13 

9. Datta A, Mavroidis C, Hosek M (2007) A Role of Unsupervised Clustering for Intelligent 
Fault Diagnosis. Volume 9: Mechanical Systems and Control, Parts A, B, and C. doi: 
10.1115/imece2007-43492 

10. Tian J, Azarian M, Pecht M (2014) Anomaly Detection Using Self-Organizing Maps-Based 
K-Nearest Neighbor Algorithm. European Conference of the Prognostics and Health Man-
agement Society 5 

11. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biologi-
cal Cybernetics 43:59-69. doi: 10.1007/bf00337288 

12. Wittek P, Gao S, Lim I, Zhao L (2017) somoclu: An Efficient Parallel Library for Self-
Organizing Maps. Journal of Statistical Software. doi: 10.18637/jss.v078.i09 

13. Saranya C, Manikandan G (2013) A Study on Normalization Techniques for Privacy Pre-
serving Data Mining. International Journal of Engineering and Technology 5:2701-2704. 

14. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Machine Learning 63:3-
42. doi:10.1007/s10994-006-6226-1 

15. Breiman L (2001) Machine Learning 45:5-32. doi: 10.1023/a:1010933404324 
16. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification 

using support vector machines. Machine Learning 46:389-422. doi: 
10.1023/a:1012487302797 

17. Rai A, Upadhyay S (2017) Intelligent bearing performance degradation assessment and re-
maining useful life prediction based on self-organising map and support vector regression. 
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical En-
gineering Science 232:1118-1132. doi: 10.1177/0954406217700180 


