

Reduced Project Duration via Intelligent Scheduling for
Submarine Production and Maintenance

Jordan Ciricillo
General Dynamics

Electric Boat
jciricil@gdeb.com

Jorge Payne
General Dynamics

Electric Boat
jpayne@gdeb.com

Robert Richards
Stottler Henke
Associates, Inc.

richards@shai.com

Submarine production has benefited significantly from more intelligently allocating resources
and managing other constraints, thereby increasing efficiency and reducing overall project
duration. Intelligent scheduling is being leveraged by General Dynamics Electric Boat (EB) for
the scheduling of various aspects of submarine construction, to increase the speed of
production. Scheduling is an NP-complete problem that is the size of the solution space grows
exponential as the size of the project grows linearly and therefore problems of any reasonable
size cannot be solved simply mathematically. Unfortunately, most commercial project
management software does not benefit from intelligent scheduling technology. Most
‘solutions’ such as resource leveling greatly simplify the problem and thus result in far
suboptimal results. Intelligent scheduling includes a strategy that leverages scheduling
heuristics learned from many of the world’s best human schedulers, including those involved
in submarine scheduling, in order to solve complex scheduling challenges in reasonable
amounts of time.

The goal of scheduling is to optimize the synchronization of resources and other constraints to
minimize the duration of the project. For submarine production and maintenance, resources
include human resources, equipment resources, and physical-space resources. This paper
reviews some of the literature on this topic showing different techniques and results showing
the major difference in schedule duration due to the scheduling engine. Real-world experience
from EB is provided to further illustrate the real-world impact, and the lessons learned. Thus,
without adding one extra resource, submarines are being produced by EB more rapidly just by
utilizing better scheduling technology.

INTRODUCTION

Scheduling, at its most basic, is the process of assigning tasks to resources over time,
with the goal of optimizing the result according to one or more objectives [1].
Scheduling is heavily used in ship and submarine production to minimize the time and
cost associated with the completion or production of small to large, simple to complex
projects. The Aurora scheduling framework is one example of a general-purpose
intelligent scheduler that has been successfully applied to a variety of domains [2], [3],
including submarine production. Intelligent scheduling combines graph analysis
techniques with heuristic scheduling techniques to quickly produce an effective
schedule based on a defined set of tasks and constraints [4]. This typically includes the
following:

Temporal: Tasks must be scheduled between the project start and end dates; each task
has duration and an optional start date and an optional end date.

• Calendar: Tasks can only be scheduled during working shifts; tasks cannot be
scheduled on holidays.

• Ordering: Tasks can optionally be assigned to follow either immediately
after/before another task or sometime after/before another task; optionally
with a specific offset time in between.

• Resource: Each task can require that resources be available for the task to be
scheduled.

The framework distills the various operations involved in creating a schedule that
respects all of these constraints into reconfigurable modules that can be exchanged,
substituted, adapted, and extended. This framework is used as a foundation to create
domain-specific scheduling tools that respect the constraints specific to domains.
Additionally, heuristics are tuned on a domain-specific basis to ensure a high-quality
schedule for a given domain.

The scheduling framework consists of two primary components: the engine and the
user interface. Both components may be customized to create a domain-specific
scheduling tool.

This paper describes lessons learned from working on some of the world’s most
complex scheduling challenges, specifically submarine production.

HEURISTICS: IMPORTANCE OF

Scheduling is an NP-complete problem, that is the size of the solution space grows
exponential time and therefore problems of any reasonable size cannot be solved
simply mathematically. Most ‘solutions’ such as resource leveling greatly simplify the
problem and thus result in far suboptimal results. Stottler Henke has employed a
strategy that includes leveraging scheduling heuristics learned from many of the world’s
best human schedulers in order to solve complex scheduling challenges in reasonable
amounts of time.

Consider the following extremely simple example (which is therefore easier to use to
illustrate this point) where:

• Three activities, called Activity 1, 2, and 3, from three different orders are all
competing for time on similar machines in a particular work center.

• The priority is highest (or the due date is soonest) for Activity 1 and lowest for
Activity 3.

• Two different machines exist, A which is expensive and precise and B, which
costs less and has higher throughput.

• Machine A is required for Activity 3, but it can also process activities 1 and 2,
though it is not efficient to do so.

Let’s look at a solution from a simple scheduler: Activity 1 is chosen first for assignment,
since it has the highest priority, and it so happens that at the moment Activity 1 can
begin, only Machine A is available, so Machine A is assigned to Activity 1. Activity 2 is
assigned to Machine B, which has become available soon after Machine A. Activity 2 is
soon completed, owing to Machine B’s fast production rate. When Activity 3 is finally
examined, its required machine, Machine A, is busy, and worse, busy on an activity that
it wasn’t essential for. Meanwhile, Machine B is idle.

Obviously, this is a suboptimal solution since a different assignment would have
prevented Machine B from being idle and prevented expensive Machine A from being
assigned to a task that didn’t need it. Of course, a more complex scheduler could “look
ahead” to see if the cheaper machine might be soon available, but for any such
workaround there’s a corresponding example that still causes problems. And each of
these rules has to be anticipated and created by the scheduling system software
developer.

Perhaps a scheduling system could be written that systematically tried every possible
solution and selected the best, and therefore optimal, one. In the example above, the
number of possible solutions is 2 choices for Activity 1 times 2 choices for Activity 2
times 2 choices for Activity 3 = only 4 possible solutions. However, consider an activity
list consisting of only 30 simple resource assignments where (for simplicity's sake) only
one resource is required for each activity. Assume on average 4 meaningfully distinct
choices (e.g. different machines) for each activity. This means that there are 30 distinct
decisions with 4 choices each, so the number of solutions is 4 x 4 x 4 x 4 =

430 = over a million trillion possible solutions,

which are clearly impractical to systematically search. This calculation was based on an
extreme over simplification, the more realistic, and complicated planning problem is
much more difficult. This is the essence of NP-Complete problems. The widely
recognized and clearly applicable NP-Completeness Theorem states that to guarantee
an optimal solution to an NP-Complete problem requires exponential time (e.g. MN
where M is the average number of options per choice and N is the number choices)
which is clearly impractical in this case, since N is typically in the thousands. An optimal
solution can simply not be guaranteed for this application.

Therefore, to determine near-optimal solutions in reasonable timeframes requires
good heuristics learned from actual human experts on a large number of situations. We
have developed both general heuristics for producing good solutions and the
techniques and architecture to incorporate domain specific knowledge and heuristics
into the planning system. Our expertise includes substantial experience eliciting the
required knowledge and cognitive processes from expert planners, then mimicking
those processes in software to create advanced intelligent planning and scheduling
systems. To wit, Aurora mimics the decision-making process of expert schedulers.

FLEXIBLE / RECONFIGURABLE ARCHITECTURE

To achieve maximum flexibility, we designed Aurora to have a number of components
that could be plugged in and matched to gain varied results. The scheduling system
permits arbitrary flexibility by allowing a developer to specify what code libraries to use
for different parts of scheduling. Each of the pluggable components must extend the
corresponding general base class that defines the entry-point methods. This allows the
objects that are integral to Aurora to interact with them successfully. The libraries may
make use of any of the Aurora objects (such as activities and resources) that pass
through the interface. These objects provide support for additional attribute caching,
permitting domains to make use of custom properties in the scheduling heuristics. The
primary pluggable components include a preprocessor; a scheduling queue prioritizer;
the actual scheduler, which usually applies several scheduling methods; a conflict

solution manager; and a postprocessor. See Figure 1 for a more detailed breakdown of
configurable operations.

From this reconfigurable Aurora architecture, we have been able to build quite varied
complex and successful scheduling systems; accomplishments range from scheduling
the downlinks of US Air Force satellites [5] [7] & scheduling related to space debris
tracking [6], to scheduling medical residents during their education at Harvard’s
Medical School, to scheduling the final assembly of the Boeing 787 jetliner and various
other aircraft for Boeing, as well as similar operations for Bombardier and Learjet, to
combining intelligent scheduling with Critical Chain Project Management (CCPM), to
scheduling the manufacturing facilities of pharmaceutical production.

Further details regarding some of these accomplishments and lessons learned from the
experience are provided in the sections below.

Figure 1. Aurora’s reconfigurable scheduling system process breakdown.

GENERAL DYNAMICS ELECTRIC BOAT

Aurora is being leveraged by General Dynamics Electric Boat (EB) for the scheduling of
various aspects of submarine construction, to increase the speed of production. To help
maximize efficiency, customizations have been provided to further benefit EB and to
provide greater efficiency to the users of Aurora, that is, the user interface has been
adapted to make the EB specific use cases even more streamlined.

Electric Boat needed a project management and scheduling tool that could not only
support the large models and complex constraints and resource requirements found in
submarine construction, but additionally wanted the option of performing of Critical
Chain Project Management (CCPM). Aurora’s critical chain capability was originally
developed for Boeing for aircraft manufacturing which faces many similar scheduling
complexities found in submarine production. Due to the complex project management
and scheduling challenges found at Boeing, the resulting product CCPM implemented
in Aurora has resulted in Aurora being the world’s most capable critical chain software
solution.

Here are some of the powerful and many times unique capabilities of Aurora that
Electric Boat leverages:

§ Multiple-pass intelligent resource-constrained scheduling – This intelligent
resource leveling tool results in shorter project schedules than the single-pass
resource leveling option provided in Microsoft Project and Primavera P6.

§ Mixed-mode scheduling – Aurora provides both forward and backward
scheduling, available on a task-by-task basis.

§ Schedule Rationale – For each task, Aurora provides the rationale/explanation
on why it was scheduled where it was scheduled, so it is easy to determine what
changes could be made for a task to occur earlier.

§ Interface with other scheduling tools – Since the benefits of scheduling are only
a mouse click away, Aurora is designed to interface with Microsoft Project,
Primavera P6, Artemis, TeamCenter and others. You do not have to change the
way you work to receive the benefits of Aurora’s scheduling engine.

§ 64-bit version can handle projects into the hundreds of thousands of tasks.

§ Ability to run how the client wants to run. Aurora can be run as a web-based
application or a standalone application under Windows, Mac and Linux.

§ Supports more types of constraints beyond finish-to-start, start-to-start, finish-
to-finish & start-to-finish, including:

§ physical space constraints, including taking into account the creation and
elimination of the space during the project,

§ ergonomic constraints,

§ shift-based constraints,

§ resource Links — graphically depict when resource availability is driving
the start date.

§ Supports complex human classifications

§ E.g., occupation plus various skills and or certifications, and Aurora
optimizes taking these into consideration.

§ The ability to leverage knowledge about resource constrained task placement
during execution. That is, during execution tasks many times start and complete
at different times than calculated during scheduling, therefore resources may
become available for a task that was originally scheduled later but could be done
now, Aurora understands the details of the schedule and finds these
opportunities, thus shortenkng the execution and utilizing resources that
otherwise would lie idle. Thus, Aurora determines in real time what is best to
work on to minimize project execution time.

§ When performing Critical Chain:

§ Ability to take variability of tasks in a chain into account in buffer
consumption. That is, if a chain consists of a series of low variability tasks
at the beginning then a few high variability tasks at the end of the chain,

standard buffer consumption reports could give an overly optimistic view
of the situation.

§ Ability to handle short-duration tasks, and update buffer reports on any
timeframe (e.g., once every hour).

Thanks to Aurora’s modeling capabilities, GDEB now has a tool that allows them to see
the level of detail necessary, so the model of reality reacts correctly to the actual reality,
resulting in a level of trust, so GDEB is providing the best path forward. An example of
the need for modeling human resources with details beyond just an occupation, such
as occupation plus a set of specializations and/or certifications, includes specializations
that certain welders have. For example, there may be a resource set of welders, all of
whom can perform Shielded Metal Arc Welding, then there may be subsets that can
also perform Gas Tungsten Arc Welding, there can also be different levels such as
apprentice or master. One welder may fall into many different subsets and to make a
different resource set by hand for each and maintain this is overly complicated. It is
better to have a dataset with the welders and the skills and let Aurora manage the
details and allocate the welders optimally.

One of the unique and powerful capabilities in Aurora is the explanation facility. Aurora
provides an explanation capability that shows the rationale for why every task is
scheduled where it is, that is, each task includes the reasons why it is scheduled at its
current time. This is a powerful capability that provides transparency into why the
schedule is scheduled the way it is and builds trust by the users. Figure 2 shows a
sample explanation. What is usually seen is that the start date may be affected by a
start-no-earlier than constraint, then the start date may be later due to one or more
predecessors not completing until later, and then finally the actual scheduled start date
may be further delayed due to a resource not becoming available until after all the
predecessors have completed.

Figure 2. Automatically generated explanation

EB has some of the most sophisticated fabrication capabilities in the world, however,
to increase efficiency sometimes it is best to outsource/farm out less specialized work.
Aurora already provided many of the graphical and tabular reports to help the user

determine what is best to outsource. Aurora has been modified to provide a convenient
interface for visualizing which tasks can be outsourced and providing a one-click option
to outsource a task that adjusts the actual model appropriately, see Figure 3.

Figure 3. Farmout /Outsource interface

Aurora for EB has been enhanced to provide the ability to handle less than perfect data
sources, such as having an override for the status of work-in-progress tasks, so
schedulers can easily override data from external sources to match reality when those
external sources have not yet been fully updated. For example, the latest data may
include information about open tasks that actually have zero (0) duration remaining.
This may occur if an operation which has an initial estimate of 10 hours, experiences
unforeseen circumstances that cause the operation to actually need more than 10
hours to complete. However, the current external system that data is read from simply
calculates the remaining duration from the original duration minus the hours worked.
Once the hours exceed the original duration, Aurora will see the remaining duration as
zero (0). Therefore, a dialog is provided, see Figure 4, that shows all the open operations
and their currently calculated remaining durations. The user has the option to change
any of the remaining durations or to mark an operation complete. This information can
also be saved out separately and later read back in if desired.

Figure 4. Remaining duration override interface

Overall EB mostly needed enhancements related to ways to increase the efficiency of
the user experience. That is, certain data that is read into Aurora from external systems
is not updated in a way that Aurora needs for various reasons. For example, when an
operation is outsourced in the external system it means the actually outsource process
steps will be commenced. This is not appropriate for situations where long-term

scheduling is occurring, and outsourcing is used to meet deadlines that may occur
months or years in the future. The ability to easily outsource items to test long-term
schedules is useful and necessary, but it is not desired to start the outsourcing process
since more changes may occur during the interim and the actual outsourcing specifics
may change.

Concurrent and Non-concurrent Constraints

Many domains benefit from the concept non-concurrent constraints, due to the fact
that workspace is limited and there are many situations where tasks should not be
performed too close to each other at the same time. Figure 8 shows non-concurrent
constraint for tasks A, B and Figure 9 shows concurrent constraints for task B, A, & C.

Figure 8. Non-concurrent tasks

Figure 9. Concurrent tasks

A variation of the non-concurrent constraint is the ability to mark activities as being
‘hazardous’ to other activities. The result of such a hazardous marking means that
Aurora will never schedule the hazardous activities to occur simultaneously with any of
the activities it is hazardous to. Graphical enhancements now allow for hazard activities
to be denoted in the PERT Chart, with special arrows emanating from the activity
causing the hazard and pointing to the activities affected. Figure 10 illustrates
hazardous constraints.

Figure 10. Hazardous constraints shown with red arrows

INTELLIGENT SCHEDULING BENEFITS

The use of Aurora for scheduling has typically meant that 10%+ more tasks can be
accomplished with the same resources in the same amount of time (or the same tasks
accomplished in 10%+ less time) when compared with other scheduling methods.

One real-world example considers the analysis of a refinery turnaround project. Note
that no Microsoft Project results are provided because the MS Project software could
not successfully resource-level this project.

The project network consists of over 2,500 activities. A view of the network is shown
in Figure 11. Note the red lines link tasks with Finish to Start constraints, this network
also has some start-to-start constraints that are shown with yellow lines, some may be
seen in the upper-left portion of the network shown in Figure 11.

Figure. 11. Turnaround Project Network

The results of the analyses are shown in Figure 12.

Figure 12. Scheduling Results – Refinery Project

The difference in absolute terms is over 10 days. There are a few ways to compare these
results; the simplest is to simply compare overall durations, using Aurora’s intelligent
scheduling results as the basis: Primavera P6 resource-leveling is over 19% longer than
intelligent scheduling. Using the Primavera P6 resource-leveling as the bases: Intelligent
scheduling is over 16% shorter than Primavera P6 resource-leveling.

Another valuable perspective lies in comparing the resource-constrained result with the

Critical Path, that is, the situation assuming unlimited resources. Why is this perspective
valuable? Because the Critical Path is the best-case scenario, and the valid schedule
when considering resources must always be longer than the Critical Path, so the length
longer than the Critical Path is the only portion of the total project duration that the
resource-leveling or intelligent scheduling can affect.

The Critical Path for the refinery turnaround project is 46 days.

Primavera P6 resource-leveling results longer than Critical Path: 21.125 days

Percent longer than Critical Path: 45.9 %

Aurora results longer than Critical Path: 10.27 days

Percent longer than Critical Path: 22 %

The percent difference between days more than Critical Path for Primavera P6 versus
Aurora is over 100%.

These results demonstrate the significant benefit of leveraging Aurora’s intelligent
scheduling. Recall that everything besides the method for scheduling is the same in
both cases. Leveraging Aurora saved over 10.5 days, and all of the associated costs with
all the resources that are needed, as well as the lost revenue from the refinery being
unavailable.

Of course, the cost savings and other benefits of leveraging Aurora are huge for the
initial plan, but even more potential benefit comes in the execution phase of the project,
where unexpected circumstances need to be dealt with. By leveraging intelligent
scheduling, updating the schedule can be done quickly, and the updated schedule will
be shorter than if one used resource-leveling only. Therefore, every time a schedule
update is performed, the overall benefit of leveraging Aurora’s intelligent scheduling
increases.

CONCLUSIONS

General Dynamics Electric Boat’s submarine production has benefited significantly
from intelligently scheduling and modeling to the detail necessary so that the
schedule itself reacts correctly to real-world changes during execution, thereby
increasing efficiency and reducing overall project duration. Intelligent scheduling
includes a strategy that leverages scheduling heuristics learned from many of the
world’s best human schedulers, including those involved in submarine scheduling, in
order to solve complex scheduling challenges in reasonable amounts of time.

The capabilities that have benefited GDEB includes:

• Large multi-project support, able to handle 100,000+ tasks per project.

• Multiple-pass intelligent resource-constrained scheduling, resulting in shorter
projects and greater transparency.

• Mixed-mode scheduling, supporting both forward and backward scheduling,
available on a task-by-task basis.

• Schedule explanations for each task providing greater understanding and
transparency.

• Scheduling and re-scheduling occur wall clock time fast, so many what-ifs /
scenarios can be performed rapidly.

• Support for various constraint types, which allow for the correct modeling of
GDEB realities.

So now the user has the ability to model their situation to the level of detail required,
can find optimal schedules, and finally perform the scheduling in such a short amount
of time that various other what-if scenarios can be performed as desired.

REFERENCES

[1] M. L. Pinedo, Scheduling. Cham: Springer International Publishing, 2016.

[2] A. Kalton, “Applying an Intelligent Reconfigurable Scheduling System to Large-Scale
Production Scheduling,” presented at the International Conference on Automated
Planning & Scheduling (ICAPS) 2006, Ambleside, The English Lake District, U.K., 2006.

[3] R. Richards, “Critical Chain: Short-Duration Tasks & Intelligent Scheduling in e.g.,
Medical, Manufacturing & Maintenance,” presented at the 2010 Continuous Process
Improvement (CPI) Symposium, Cal State University, Channel Islands, 2010.

[4] Kalton, A., R. Richards. (2008) Advanced Scheduling Technology for Shorter Resource
Constrained Project Durations. AACE International’s 52nd Annual Meeting & ICEC’s 6th
World Congress on Cost Engineering, Project Management and Quantity Surveying.
Toronto, Ontario, Canada. June 29 – July 2, 2008.

[5] Mohammed, J., Stottler, R., “Rapid Scheduling of Multi-tracking Sensors for a
Responsive Satellite Surveillance Network,” Proceedings of the Infotech@Aerospace
2010 Conference, Vol. 1, AIAA, Reston, VA, 2010.

[6] Stottler, R., Thompson, R., “Globally Optimized Scheduling for Space Object Tracking,”
Proceedings of the Infotech@Aerospace 2011 Conference, Vol. 1, AIAA, Reston, VA,
2011.

[7] D. Stottler and K. Mahan, “Automatic, Rapid Replanning of Satellite Operations for
Space Situational Awareness (SSA),” presented at the Advanced Maui Optical and
Space Surveillance Technologies Conference, 2015.

