
Static Software Metrics for Reliability and Maintainability

 Jeremy Ludwig, Steven Xu
Stottler Henke Associates, Inc.

San Mateo, CA

Frederick Webber
Air Force Research Laboratory

711th HPW/RHAS
WPAFB, OH

ABSTRACT
This paper identifies a small, essential set of static software code
metrics linked to the software product quality characteristics of
reliability and maintainability and to the most commonly
identified sources of technical debt. An open-source plug-in is
created for the Understand code analysis tool that calculates and
visualizes these metrics. The plug-in was developed as a first step
in an ongoing project aimed at applying case-based reasoning to
the issue of software product quality.1

CCS CONCEPTS
• Software and its engineering~Software creation and
management

 KEYWORDS
Software product quality, technical debt, reliability,
maintainability, architecture, metrics, static code analysis

1 INTRODUCTION
There is a consistent push to improve software product quality,
especially for components that are designed to be heavily re-used
and extended, e.g. as a shared module of a software product line
with an expected long life.

The first objective of this abstract is to identify a small,
essential set of static software code metrics linked to the software
product quality characteristics of reliability and maintainability [5,
13] and to the most commonly identified sources of technical debt
[4]. While some technical debt is unavoidable [9], a large survey
of software engineers and architects across multiple organizations
provides a practical view of the causes and sources of avoidable
technical debt [4]. Their results indicate that architectural
decisions, overly complex code, and lack of code documentation
are the top three avoidable sources of technical debt in practice.
Specifically, this abstract identifies a small set of static source

1Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

TechDebt 2018, May 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5713-5/18/05.
https://doi.org/10.1145/3194164.3194184

code metrics that are related to the three given areas of technical
debt and have a strong empirical or applied relationship with
reliability and maintainability.

The second objective of this paper is to describe the open
source plug-in that was created for the Understand code
visualization and static analysis tool, which calculates and
visualizes these metrics in an interactive report.

There is an abundance of related work in software quality,
technical debt, and automated code review that identifies specific
source code metrics, describes how the measurements of these
metrics are aggregated, and how the aggregations are used to
assess characteristics of software quality and technical debt.
Summarizing this work is outside the scope of this abstract, see
[3, 6] as a starting point.

In the remainder of this abstract, the Methods section describes
the work performed on metric identification, calculation, and
visualization. Following this, the Conclusion sections summarizes
the results and introduces future work.

2 METHODS
This section first discusses the static source code metrics that were
selected to measure software product quality in each of the three
areas of avoidable technical debt. Following this, the plug-in
created for the Understand code analysis tool is briefly described.

2.1 Architectural Metrics
While there are numerous possible measures of software
architecture [8, 16, 18], the propagation cost and core size metrics
as defined by [1] were specified by the research agenda.
Propagation cost is a system-wide metric that describes the
proportion of software files that are directly or indirectly linked to
each other. The core size metrics involves classifying every
component (class or file) into one of five architecture groups
based on the number of direct and indirect links of the
components: core, shared, control, peripheral, and isolate. The
core group represents the largest set of components that are
interdependently linked to each other. A primary contribution of
the plug-in is to calculate these two metrics and produce the
Design Structure Matrix (DSM) graphs.

The utility of the propagation cost and core size measures of
architectural complexity has been demonstrated in a number of
studies [10, 11, 17]. These measures have been shown to relate
significantly to defect density, programmer productivity, and
programmer retention. Core files have been found to contain more
defects and cost more to maintain [11].

53

2018 ACM/IEEE International Conference on Technical Debt

TechDebt 2018, May 2018, Gothenburg, Sweden J. Ludwig et al.

2.2 Complexity Metrics
A small set of complexity, size, and coupling metrics were
selected based on evidence supporting correlation with, or
prediction of, the software characteristics of reliability and
maintainability. Given the vast available literature on software
metrics and an equally large variety of metrics, a reasonable
starting point is systematic literature reviews. [7] reviews 99
primary studies and compares their work to several other surveys
and systematic literature reviews (e.g., [15] [14]). The results
indicate that the link from metric to reliability and maintainability
across studies is strongest for: LOC, WMC-Unweighted/WMC-
McCabe, RFC, and CBO. Standard definitions for these metrics
can be found in [5], which generally match the descriptions for
how the calculations are performed by Understand [12].

2.3 Comment Metrics
The Code-To-Comment ratio is used as an initial measure of code
commenting. This metric has been well studied as part of earlier
work on quality models [2]. Anecdotally, it is also one of the
metrics most-used by developers utilizing the Understand
software. The plug-in relies on existing functionality within
Understand to calculate this metric.

2.4 Reporting Results
An interactive HTML report is generated as shown in Figure 1.
The report includes all the generated metrics on the left and the
various architecture groupings in a Design Structure Matrix graph
in the center, as described in [1].

3 CONCLUSION
Software code quality and technical debt have significant impact
on a software product’s reliability and maintainability. This paper
identifies a small, essential, set of static software code metrics
linked to reliability and maintainability and to the most commonly
identified sources of technical debt. This paper also describes an
open source plug-in that was created for the Understand code
analysis tool, which calculates these metrics and produces an
interactive report (github.com/StottlerHenkeAssociates/Software-
Architecture-Evaluation). While the plug-in is useful as-is, it was

developed as a first step in an ongoing project aimed at applying
case-based reasoning to the issue of software product quality. The
next step in this project aims to use the described plug-in as part
of a research effort to define and validate the aggregation of these
metrics as part of a software product quality model.

ACKNOWLEDGMENTS
This material is based upon work supported by the United States
Air Force Research Laboratory under Contract No. FA8650-16-
M-6732. The views, opinions, and/or findings contained in this
article/presentation are those of the author/presenter and should
not be interpreted as representing the official views or policies,
either expressed or implied, of the AFRL. DISTRIBUTION A.
Approved for public release: distribution unlimited (case 88ABW-
2017-2167).

REFERENCES
[1] Baldwin, C. et al. 2014. Hidden Structure: Using Network Methods to Map

System Architecture.
[2] Coleman, D. et al. 1995. The application of software maintainability models in

industrial software systems. Journal of Systems and Software. 29, 1 (Apr. 1995),
3–16. DOI:https://doi.org/10.1016/0164-1212(94)00125-7.

[3] Curtis, B. et al. 2012. Estimating the Principal of an Application’s Technical
Debt. IEEE Software. 29, 6 (Nov. 2012), 34–42.
DOI:https://doi.org/10.1109/MS.2012.156.

[4] Ernst, N.A. et al. 2015. Measure It? Manage It? Ignore It? Software
Practitioners and Technical Debt. Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering (New York, NY, USA, 2015), 50–60.

[5] Fenton, N. and Bieman, J. 2014. Software Metrics: A Rigorous and Practical
Approach, Third Edition. CRC Press, Inc.

[6] Ferenc, R. et al. 2014. Software Product Quality Models. Evolving Software
Systems. T. Mens et al., eds. Springer Berlin Heidelberg. 65–100.

[7] Jabangwe, R. et al. 2014. Empirical evidence on the link between object-
oriented measures and external quality attributes: a systematic literature review.
Empirical Software Engineering. 20, 3 (Mar. 2014), 640–693.
DOI:https://doi.org/10.1007/s10664-013-9291-7.

[8] Kazman, R. et al. 2015. A Case Study in Locating the Architectural Roots of
Technical Debt. Proceedings of the 37th International Conference on Software
Engineering - Volume 2 (Piscataway, NJ, USA, 2015), 179–188.

[9] Kruchten, P. et al. 2012. Technical Debt: From Metaphor to Theory and
Practice. IEEE Software. 29, 6 (Nov. 2012), 18–21.
DOI:https://doi.org/10.1109/MS.2012.167.

[10] MacCormack, A. et al. 2006. Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code.
Management Science. 52, 7 (Jul. 2006), 1015–1030.
DOI:https://doi.org/10.1287/mnsc.1060.0552.

[11] MacCormack, A. and Sturtevant, D.J. 2016. Technical debt and system
architecture: The impact of coupling on defect-related activity. Journal of
Systems and Software. 120, (Oct. 2016), 170–182.
DOI:https://doi.org/10.1016/j.jss.2016.06.007.

[12] Metrics | SciTools.com: https://scitools.com/feature/metrics/. Accessed: 2017-
03-07.

[13] Organización Internacional de Normalización 2011. ISO-IEC 25010: 2011
Systems and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - System and software quality models. ISO.

[14] Radjenović, D. et al. 2013. Software fault prediction metrics: A systematic
literature review. Information and Software Technology. 55, 8 (Aug. 2013),
1397–1418. DOI:https://doi.org/10.1016/j.infsof.2013.02.009.

[15] Riaz, M. et al. 2009. A Systematic Review of Software Maintainability
Prediction and Metrics. Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement (Washington, DC, USA,
2009), 367–377.

[16] Stevanetic, S. and Zdun, U. 2015. Software Metrics for Measuring the
Understandability of Architectural Structures: A Systematic Mapping Study.
Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering (New York, NY, USA, 2015), 21:1–21:14.

[17] Sturtevant, D.J. 2013. System design and the cost of architectural complexity.
Massachusetts Institute of Technology.

[18] Xiao, L. et al. 2016. Identifying and Quantifying Architectural Debt.
Proceedings of the 38th International Conference on Software Engineering
(New York, NY, USA, 2016), 488–498.

Figure 1. Interactive report generated for a repository.

54

