Workload Assessment using Speech-Related Neck Surface Electromyography H-WORKLOAD 2018

Aaron Novstrup
Stottler Henke Associates
anovstrup@stottlerhenke.com

Terrance Goan
Stottler Henke Associates
goan@stottlerhenke.com

Dr. James Heaton

Mass. General Voice Center

James.Heaton@mgh.harvard.edu

The Problem

- Robust real-time workload monitoring is difficult!
- Existing psychophysiological signals have limited utility:
 - Multiple measures are sensitive but divergent [Matthews et al., 2015]
 - Limited specificity
 - Limited diagnosticity

fnsEMG: A Solution?

Existing sEMG sensor designs

Notional sensor design

fnsEMG: A Solution?

 Face/neck surface electromyography (fnsEMG) can recognize and classify emotional responses.

[Van Boxtel, 2010; Cheng & Liu, 2008; Tassinary & Cacioppo, 1992; Van Boxtel et al., 1983]

fnsEMG: A Solution?

 Face/neck surface electromyography (fnsEMG) can recognize and classify emotional responses.

[Van Boxtel, 2010; Cheng & Liu, 2008; Tassinary & Cacioppo, 1992; Van Boxtel et al., 1983]

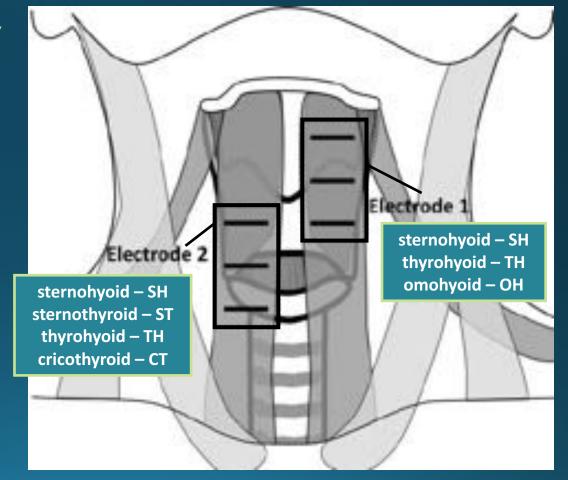
• It can also quantify neuromuscular activity related to the *vocalization and* articulation of speech.

[Meltzner et al., 2018; Meltzner et al., 2017; Denby et al., 2010; Jou et al., 2006]

Intermuscular Beta Coherence

 Coherence is a frequency domain measure of the linear dependency or strength of coupling between two signals/processes.

$$|R_{xy}(\lambda)|^2 = \frac{|f_{xy}(\lambda)|^2}{f_{xx}(\lambda)f_{yy}(\lambda)}$$

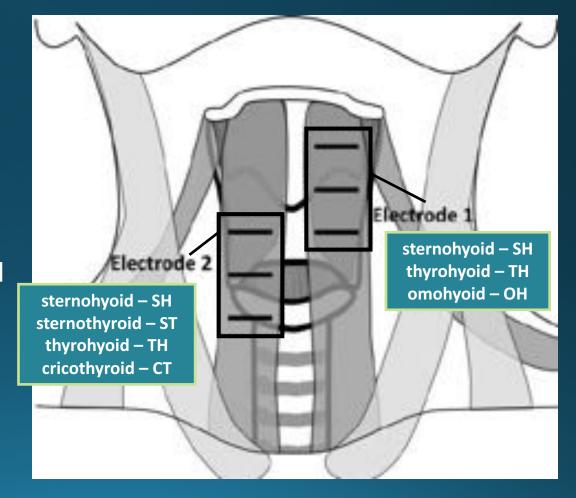

• Intermuscular beta-band coherence (15-35 Hz) is known to decrease during divided attention or reduced movement precision. [Kristeva-Feige et al., 2002]

Neck Intermuscular Beta Coherence

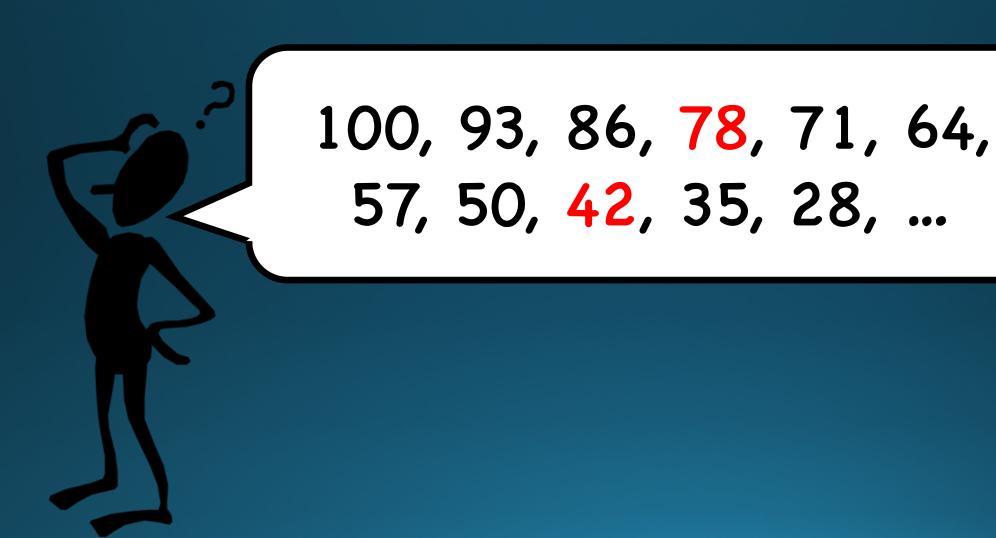
• NIBcoh can distinguish healthy vs. strained voice production. [Stepp, Hillman, & Heaton, 2010 & 2011]

• It has also been shown to decrease during speech when attention is diverted to a primary non-speech task.

[Stepp, Hillman, & Heaton, 2011]

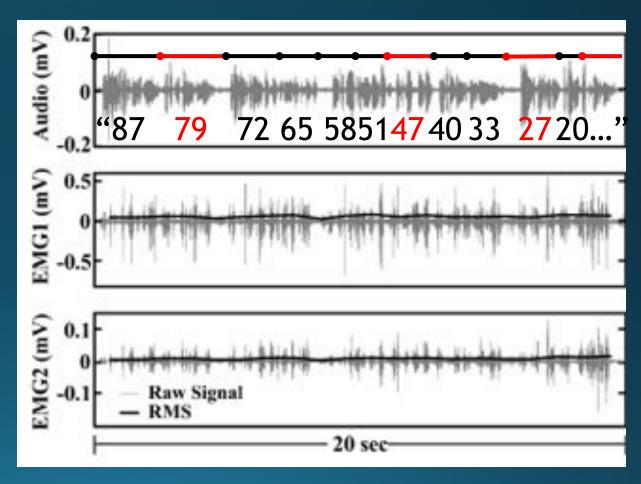


Hypotheses


- NIBcoh decreases under divided attention.
 - Confirm this finding of [Stepp et al., 2011], under a more conservative statistical model
 - Examine the impact of full-wave rectification on the EMG-EMG coherence analysis, responding to concerns raised by [Neto & Christou, 2010] regarding this common practice
- NIBcoh is correlated with task performance in a timepressured mental arithmetic task with verbal responses.

NIBcoh Dataset

- Dataset from [Stepp et al., 2011]
- Neck surface electromyography (sEMG) was recorded over ventral neck strap muscles in 10 vocally healthy individuals during:
 - o normal speech
 - static non-speech maneuvers
 - singing
 - "clear" speech (intentionally produced to maximize intelligibility)
 - hyperfunctional speech (mimicking a strained/stressed quality)
 - o divided-attention speech (under heightened cognitive load by rapidly counting backwards from 100 by 7s)



A "divided-attention" task

Data Analysis

- [Stepp et al., 2011] treated tasks as the unit of analysis (e.g., measuring coherence and sEMG RMS across entire recordings).
- We manually annotated the sEMG dataset for error commission (from speech recordings), and examined change in sEMG related to errors and response time.
 - Variables analyzed included NIBcoh, sEMG magnitude, and gradient, as well as acoustic features: average/peak amplitude, spectral roll-off, cepstral peak prominence, and sound intensity

Example of raw and RMS sEMG signals during 20 sec of reading from a participant with high beta coherence (0.63).

Replication Study

 Compared EMG-EMG coherence across 6 conditions from [Stepp et al., 2011] with repeated measures ANOVA

 Unrectified vs. Full-wave Rectified (see [Neto & Christou, 2010])

Beta band (15-35 Hz) vs. 100-150 Hz band

Replication Study: Results

Coherence measure	Size of effect (generalized η^2)	p-value
Full-wave rectified		
Beta band	0.120	0.0715
100–150 Hz	0.0892	0.0905
Unrectified		
Beta band	0.176	0.0194^\dagger
100–150 Hz	0.0651	0.146

Do Signals Covary with Errors?

• Unit of analysis: individual response (e.g., "86")

Standardized EMG/acoustic variables

Compared mean values for correct vs. incorrect responses

$$\bullet \ H_0 : \mu_C = \mu_{\neg C}$$

Do Signals Covary with Errors?

Measure	Estimated difference	t-statistic	p-value
NIBcoh	0.505	2.81	< 0.006
NIBcoh-rect	0.078	0.548	0.585
EMG magnitude (site 1)	0.432	-2.22	0.028
EMG magnitude (site 2)	0.532	-2.50	0.014
EMG gradient (site 1)	0.120	-0.772	0.44
EMG gradient (site2)	0.064	-0.414	0.68
mean acoustic amplitude	0.852	-2.35	0.020
peak acoustic amplitude	2.52	-2.96	< 0.004
sound intensity	0.345	-1.97	0.051
spectral roll-off	0.276	1.21	0.230
cepstral peak prominence	0.258	-1.67	0.097

Do Signals Covary with Response Time?

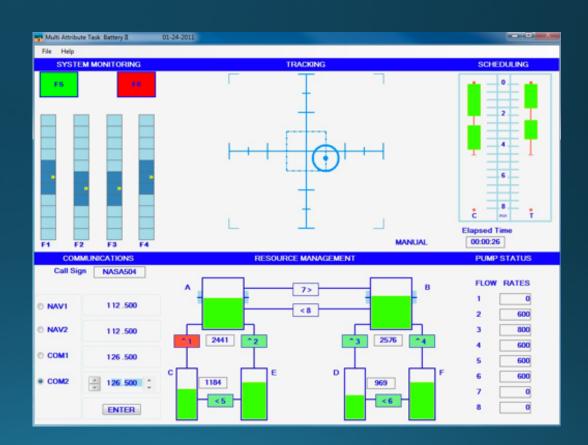
• Unit of analysis: individual response (e.g., "86")

Standardized EMG/acoustic variables

Computed correlation with response time

$$\bullet \ H_0 : \rho_{r,v} = 0$$

Do Signals Covary with Response Time?

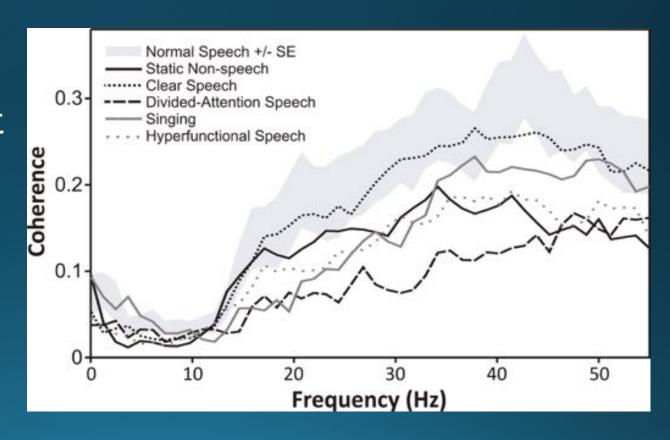

Measure	Pearson's r	t-statistic	p-value
NIBcoh	-0.196	-2.22	0.028
NIBcoh-rect	-0.078	-0.868	0.387
EMG magnitude (site 1)	-0.176	-1.98	0.050
EMG magnitude (site 2)	0.008	0.084	0.933
EMG gradient (site 1)	0.076	0.849	0.397
EMG gradient (site 2)	0.111	1.24	0.218
mean acoustic amplitude	-0.139	-1.56	0.122
peak acoustic amplitude	0.185	2.08	0.040
sound intensity	-0.223	-2.54	0.012
spectral roll-off	-0.005	-0.053	0.958
cepstral peak prominence	-0.219	-2.49	0.014

Caveats and Limitations

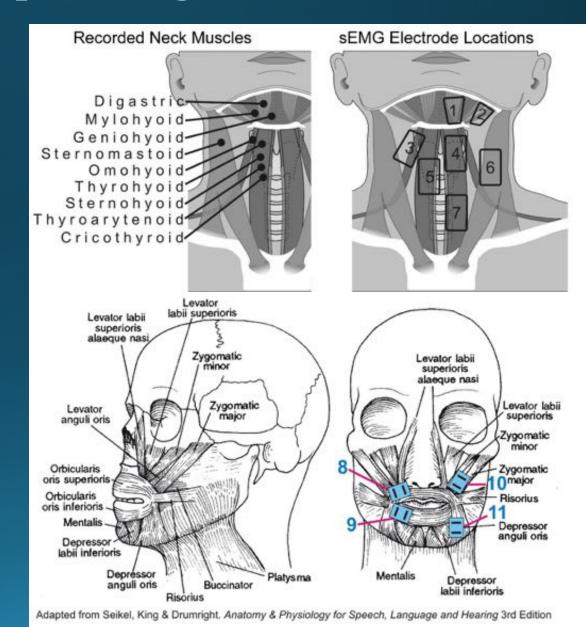
- Exploratory reanalysis of dataset not collected to assess sensitivity of NIBcoh to cognitive demands
 - Task demands were not experimentally manipulated
- Small sample size (n=10)
- Single task
- Sensitivity to outliers
- Unexplained correlations among variables

What Next?

- Collect EMG from multiple face/neck muscles
- Compare with conventional workload indicators
- Manipulate task complexity and "automation reliability" in Multi-Attribute Task Battery (MATB)
- Manipulate perceived risk


Discussion and Q&A

Thank You!

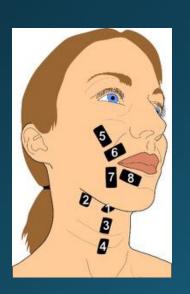

Phase I Dataset

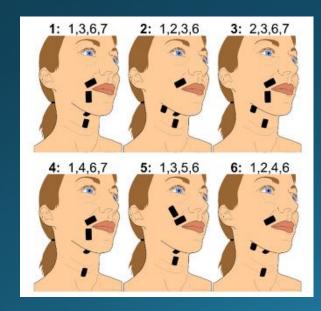
- Intermuscular sEMG beta-band coherence (15-35 Hz) is known to decrease during divided attention or reduced movement precision (Kristeva-Feige et al., 2002)
 - o sEMG coherence was significantly reduced in the heightened cognitive load speaking task and hyperfunctional speech

$$\left| R_{xy} \right|^2 = \frac{\left| \text{cov}_{xy}(f) \right|^2}{\text{cov}_{xx}(f) \text{cov}_{yy}(f)}$$

- Muscles controlling speech articulation and facial expressions are relatively superficial and therefore accessible for non-invasive sEMG
 - We have used a set of up to 11 surface recording locations, providing robust speechrelated signals
 - sEMG activity is similarly strong whether speech is spoken normally or only "mouthed" (e.g. no voice)

Project Goal

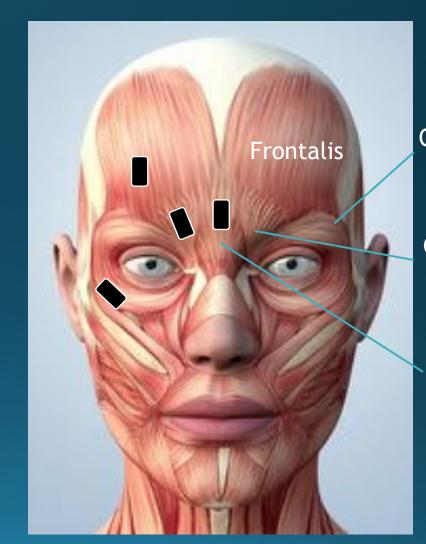

Develop a robust, reliable, and highly sensitive model capable of assessing the level of workload strain and of detecting/predicting overload in real time in the context of human-automation interaction, enabling:


- Adaptive automation
- Cognitive countermeasures
- User interface affordances

Planned Innovations

- Demonstrate utility of face/neck sEMG for workload assessment
- Show improved specificity of sEMG relative to alternate measures
- Develop a minimally obtrusive set of face/neck sEMG sensors and sensing locations for the workload assessment application
- Identify a complement of unobtrusive sensors and measures that, together with sEMG, allows for robust and reliable assessment of workload strain.

- Our prior work has shown that sEMG information is sufficient for accurate automatic speech recognition using as few as 4 sensor locations
 - Information redundancy allows limited channel failure



This photograph is confidential. Do not disseminate.

We will add particular forehead and periocular sensor locations to capture eye blink and facial expressions

- Orbicularis oculi (orbital portion)
 - Eye closing muscles
 - Blink rate is correlated with stress/anxiety
- Frontalis, corrugator supercilii, and procerus
 - Surprise, scowling and frowning muscles
 - Active during negative emotional state
 - Active during surprise from unexpected outcomes
 - Amount of activity shown to relate to video game playing skill level (Weinreich, Strobach & Schubert, 2015)

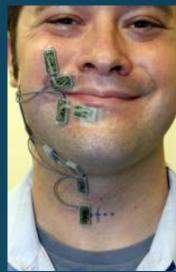
Orbicularis oculi

Corrugator supercilii

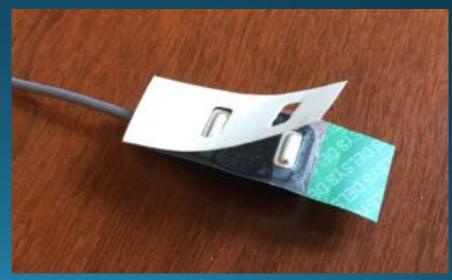
Procerus

Muscular System of the Head by Roger Harris

- Recording locations can be unilateral because head/neck muscle contraction are typically symmetrical (at least for speech)
- Some bilateral recording locations will allow us to measure intermuscular coherence
 - Coherence in the beta band (15-35 Hz) is known to decrease under stressed or divided-attention conditions (Stepp, Hillman & Heaton, 2011)
 - Beta coherence is believed to originate from the motor cortex, and is influenced by cognitive state


sEMG Sensor Technology

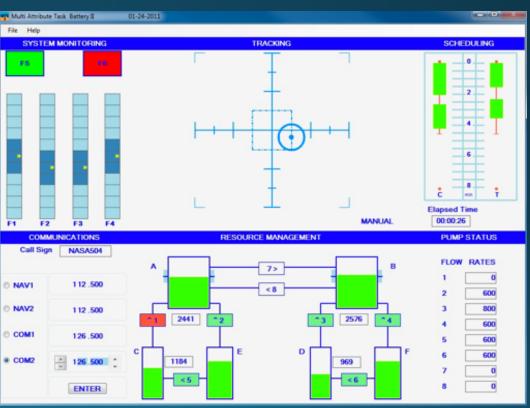

- Custom "mini" sensors were created by Delsys Inc. for our neck/face recording needs, which are now part of their product line
 - Designed to record from the relatively small muscles of articulation and facial expression
 - Light-weight and non-encumbering
 - Wireless communication to signal processing hardware



This photograph is confidential. Do not disseminate.

sEMG Sensor Application

- Sensor placement is relatively easy and typically lasts for hours
 - Clean, shaven skin is ideal
 - Beards preclude perioral placement
 - Skin exfoliation through tape "peeling" provides strongest signals
 - Clear desk tape works well
 - Sensors attach through disposable double-stick interface strips
 - No conductive gel or paste needed


sEMG Recording

- sEMG sensors communicate wirelessly 40 meters
- Multi-function design embeds Triaxial Accelerometry in standard-size sensors
- Up to 16 EMG channels and 48 accelerometer channels
- 8 hours of operation in full transmission mode (2 hour recharge time)
- 16-bit resolution, 1926 Hz EMG sampling rate
- USB Connection to PC (laptop or desktop)
- Real-time feedback of signal strength & battery status

Experimental Testbed / Tasks

Discussion

- Key challenges/opportunities from your perspective?
- Tasks / data sets
- Initial demonstration ideas and expectations
- Relationships to ongoing work
- Phase II proposal/award process