
Assessing Workload in Human-Machine Teams from 
Psychophysiological Data with Sparse Ground Truth 

David Dearing*, Aaron Novstrup, and Terrance Goan 

 
Stottler Henke Associates, Inc. 
1107 NE 45th Street, Suite 310 

Seattle, WA, USA 
{ddearing, anovstrup, goan}@stottlerhenke.com 

Abstract. Data-driven approaches to human workload assessment generally 
attempt to induce models from a collection of available data and a 
corresponding ground truth comprising self-reported measures of actual 
workload. However, it is often not feasible to elicit self-assessed workload 
ratings with great frequency. As part of an ongoing effort to improve the 
effectiveness of human-machine teams through real-time human workload 
monitoring, we explore the utility of transfer learning in situations where there 
is sparse subject-specific ground truth from which to develop accurate 
predictive models of workload. Our approach induces a workload model from 
the psychophysiological data collected from subjects operating a remotely 
piloted aircraft simulation program. Psychophysiological measures were 
collected from wearable sensors, and workload was self-assessed using the 
NASA Task Load Index. Our results provide evidence that models learned from 
psychophysiological data collected from other subjects outperform models 
trained on a limited amount of data for a given subject.   
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1   Introduction 

Effective human workload assessment techniques have long been sought after by 
researchers in hopes of preventing fatigue, stress, and other negative influences on 
performance.  One particular application of such techniques is to diagnose 
performance successes and failures in human-machine teams to help identify effective 
training and design interventions.  A wide range of research suggests that problems in 
such teams are greatly exacerbated by the harmful effects that high cognitive demands 
can have on human operator performance [1,2,3]. 

Traditional approaches to producing an index of workload have typically been 
theory-driven, following a top-down approach that begins with a hypothesis based on 
existing knowledge and then moves towards the measurement and quantification of 
the factors believed to influence workload [4,5,6].  Recently, however, there has been 
an increased focus on data-driven approaches [7,8,9,10].  Unlike theory-driven 



approaches, these data-driven approaches can induce a workload model bottom-up 
from data acquired through subjective self-report measures and other measurable 
factors.  In particular, there has been a rise in the use of psychophysiological data to 
generate these data-driven models, in part because such measures can be captured 
unobtrusively with wearable sensors and, thus, fully integrated into real-world work 
environments [11,12,13,14].  However, these data-driven approaches still rely on self-
assessed workload ratings to serve as the labeled ground truth for training a machine 
learning classifier.  Because these self-reports often require the full cognitive attention 
of the user, it is often infeasible to elicit these self-assessed ratings with great 
frequency (i.e., while performing attention-demanding tasks such as driving or 
flying). 

In such situations, where there is sparse subject-specific ground truth data from 
which to develop accurate predictive models of workload, a more effective alternative 
might be to utilize models produced from the labeled data collected from other 
subjects.  This technique, called transfer learning, has been used in other applications 
where it is expensive or impossible to collect the needed training data and rebuild the 
models [15].  Although the psychophysiological data from other subjects may not be 
completely consistent with a new subject’s profile, it may still contain useful 
information, as people may exhibit similar responses to the same task [16]. 

Our research focuses on improving the effectiveness of human-machine teams 
through real-time human workload monitoring captured by wearable sensors.  In this 
paper, we report on our initial efforts to evaluate the utility of transfer learning in 
situations where there is sparse ground truth for a given subject (i.e., labeled 
psychophysiological data) from which to develop accurate predictive models of 
workload.  More specifically, we describe our progress in the context of an ongoing 
effort to develop an extensible modeling framework and software system for real-time 
human state assessment in human-machine teaming environments. 

2   Design and Methodology 

Our research centers on the hypothesis that in situations where there is sparse data 
for a particular human operator, we might learn better predictive models by utilizing 
not only the psychophysiological data for that operator, but also including the 
measures collected from a whole community of operators.  In particular, we are 
interested in the value of transfer learning when there is a limited amount of data from 
which to train a predictive model for a given operator (e.g., when a new operator joins 
a human-machine team).  We tested our hypothesis with a comparative evaluation 
using the approach described in the following.  

2.1   Dataset 

We utilized an existing dataset consisting of psychophysiological measures 
collected as part of a formal study conducted by the Air Force Research Laboratory 
(AFRL) Human Universal Measurement and Assessment Network (HUMAN) 



Laboratory.  In this study, a total of 13 participants were instrumented with wearable 
sensors to collect physiological data consisting of respiration measures, 
electrocardiography (ECG) measures, and electroencephalography (EEG) measures 
(see [17] for details).  Each participant was monitored while operating a remotely 
piloted aircraft simulation program and workload was self-assessed using the NASA 
Task Load Index (NASA-TLX) [18].  Over the course of ten days, each participant 
experienced two training sessions and eight data collection sessions.  Each session 
included two seven-minute trials of a target tracking task that played out along 
distinct scripted timelines during which the subject manually tracked either one or 
two targets (among other independent variables to vary the task demand).  When each 
trial of the tracking task ended, participants were asked to fill out a new NASA-TLX 
questionnaire.  The NASA-TLX scale, which is built upon six factors and their 
individual weights, has been widely used by human factors researchers over the last 
four decades.  Each 7-minute trial of a subject’s session is labeled with a single, 
constant composite NASA-TLX measure of perceived workload.  The physiological 
measures were collected constantly throughout each trial.   

2.2   Workload Model Training 

As part of an ongoing effort to improve the effectiveness of human-machine teams 
through real-time human workload monitoring, Stottler Henke is developing an 
extensible modeling framework and software system for real-time human state 
assessment in human-machine teaming environments.  The system, called Illuminate, 
employs machine learning techniques to induce a workload model from 
psychophysiological data and can—in real-time—update its internal model as new 
labeled data is made available.  This enables us to evaluate adaptive models that 
incrementally incorporate subject-specific data as it is collected (e.g., after each 
session), thereby addressing complications typically associated with the analysis of 
biometric data, including: the non-stationarity of psychophysiological data [19] and 
the initial sparsity (or lack) of subject-specific data. 

Data Preparation.  Prior to model training, we first normalize the measures on a per-
subject basis and designate each trial as either a high or low workload based on the 
normalized composite NASA-TLX measure (high workload being greater than the 
50th percentile).  Psychophysiological measures are aligned by their individual 
timestamps and down-sampled to a frequency of 2 Hz with a five-second rolling 
average, so as to synchronize the measurements collected by the various sensors.  
 



Model Training and Evaluation.  Our system uses machine learning classification 
techniques to induce a workload model for each individual subject and uses that 
model to assess a subject’s workload at a given moment in time.  For these 
experiments, we utilize the Weka implementation of a multinomial logistic regression 
model with a ridge estimator [20,21].  For the purposes of our comparative 
evaluation, we trained models for each subject using three configurations: 

• Community model: We use a leave-one-out approach in which one subject at a 
time is taken to be the “current” subject and the data for the other subjects 
provides the basis for training the other-subject community model.  

• Adaptive single-subject model: For each “current” subject, a single-subject 
model is trained on the data for all previous sessions.  That is, when 
evaluating data for the nth session, the corresponding model has been trained 
on all data for the current subject’s first n-1 sessions. 

• Adaptive transfer model: As with the adaptive single-subject model, the 
model for each “current” subject is updated between each session so that it 
has been trained on data for all previous sessions.  It uses model stacking to 
combine the corresponding single-subject model with the community model 
by including the output of the community model as an additional input to the 
single-subject model. 

These configurations are meant to simulate a human-machine team scenario in 
which the system initially has a sparse amount of human operator-specific data from 
which to develop predictive models of workload (i.e., for a new human operator).  As 
the operator completes additional sessions and provides workload feedback (e.g., 
NASA-TLX measure of perceived workload), the system updates its internal model 
for subsequent workload assessment.  Note that each model is evaluated only on data 
for sessions 2 – 8—there is no single-subject model for the first session. 

3   Results and Discussion 

Here we describe the results of our comparative evaluation of the three configurations 
for model training and evaluation that are described in Section 2.3.  Because the 
underlying models are logistic regression models with probabilistic output (as 
opposed to binary output), when evaluating the models on a given trial we average the 
workload assessment scores over all instances for that trial.  To measure the 
performance of each model, we calculate the sensitivity and specificity metrics.  
Sensitivity provides an estimate of how good the model is at predicting a high level of 
workload, whereas specificity estimates how good the model is at predicting a low 
level of workload.  We plot these measures on a Receiver Operating Characteristic 
(ROC) curve, a graphical representation wherein the points of the curve are obtained 
by moving the classification threshold from favoring a correct assessment of low 
workload to favoring a correct assessment of high workload.  Each chart also 
indicates the point with the “optimal” threshold, maximizing Youden’s J statistic [22]. 



 
Figure 1. ROC curve comparing each model configurations, averaged across all 13 subjects. 

For each of the three evaluation configurations, the chart in Figure 1 shows the ROC 
curve averaged across all subjects and sessions.  Figure 1 shows that the community 
model outperforms not only the adaptive single-subject model, but also the adaptive 
transfer model.  This provides evidence toward confirming our hypothesis that 
psychophysiological data collected from other subjects can be used to train a 
predictive workload model.  However, the fact that the community model 
outperformed the transfer model that combines psychophysiological data for the 
current subject with the results of the community model was surprising. 

 
Figure 2. ROC curves comparing each of the three model configurations, averaged across all 
13 subjects for (a) the first four sessions and (b) the final three sessions. 
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To better understand how the adaptive single-subject and transfer models performed 
over time (e.g., with additional training data from later sessions), we partitioned the 
evaluation data to compare the results of the first four sessions (sessions 2 – 5) with 
the results of the final three sessions (sessions 6 – 8), which resulted in partitions with 
roughly balanced class labels.  As the ROC curves in Figure 2 illustrate, the adaptive 
transfer model actually outperforms the community model for sessions 6 – 8 (i.e., 
when there are four or more sessions of labeled training data available for each 
subject).  Comparing the optimal points on each curve, we can see that the community 
model’s performance drops during the later sessions (from a J of 0.643 to 0.266), 
whereas the performance of the transfer model improves in the later sessions (from a J 
of 0.418 to 0.456). 

4   Conclusion and Future Work 

In this paper, we have described a comparative evaluation to test our hypothesis that 
transfer learning is useful in situations where there is insufficient subject-specific data 
to develop accurate predictive models of human workload.  Our results provide 
evidence that models learned from psychophysiological data collected from other 
subjects outperform models trained on a limited amount of data for a given subject.  
More specifically, with little or no data, a community model trained on all other-
subject data performed best.  Once a sparse amount of subject-specific data was 
available, a model induced from the output of the community model and the subject-
specific psychophysiological measures generally outperformed the community model 
alone. 

There remain several items to be answered by future work as well as by our own 
ongoing research.  First, this evaluation does not answer the question as to at what 
point a single-subject model (i.e., induced only from a subject’s own data) 
outperforms the community model or combined transfer model.  Future work is 
needed to inspect which features contribute most to the performance of each model 
and how those features change across the three configurations.  We are also left 
questioning why the community model performs worse for the later sessions.  Does 
the community model have trouble due to the non-stationarity of psychophysiological 
data (whereas the other models adapt as new subject-specific data is collected)?  Or, 
alternatively, is this an artifact of this particular dataset?  Additional studies that 
collect data over more trials would be necessary to answer these questions.   

Another topic for future research would be to vary the dividing line between what 
constitutes a high and low workload.  Our evaluation uses the median of the 
normalized composite NASA-TLX measure as a simple and straightforward dividing 
line between high and low workload.  Depending on the task and application domain, 
it may be more appropriate to raise (or lower) that threshold.  Alternatively, to 
account for potential learning effects across sessions, a per-subject adaptive threshold 
may yield better results.  The results of our comparative evaluation highlight the 
threshold for each model that produces the best balance of sensitivity and specificity.  



However, depending on the target application, it may be more appropriate to favor 
specificity or sensitivity so as to more accurately predict a high or low workload, 
respectively. 

Lastly, a more accurate model might be produced by first identifying a relevant subset 
of other subjects within the community data.  In particular, if individual differences 
are high (as is often the case with psychophysiological data), a more accurate model 
might be induced based only on data collected from people who appear to have 
similar physiological responses.  This is something we plan to explore in our ongoing 
work to improve the effectiveness of human-machine teams through real-time human 
workload monitoring. 
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