
 978-1-5386-2014-4/18/$31.00 ©2018 IEEE
 1

Managed Intelligent Deconfliction and Scheduling for
Satellite Communication

Richard Stottler
Stottler Henke Associates, Inc,

1650 S. Amphlett Blvd., Suite 300
San Mateo, CA 94404

650-931-2700

Robert Richards
Stottler Henke Associates, Inc,

1650 S. Amphlett Blvd., Suite 300
San Mateo, CA 94404

650-931-2700

Abstract— The Air Force Satellite Control Network (AFSCN)
coordinates hundreds of satellite communication requests from
various users every day. Building a conflict-free schedule from
a large set of satellite communication requests is a difficult
problem. Human schedulers are very adept at generating high-
quality solutions, usually allowing all requests to be serviced.
However, this process is time-intensive and requires highly
trained, experienced individuals. That is, the teams of highly
trained and experienced schedulers must manually check every
schedule request received. Approximately half of all requests
require adjustment to remove conflicts.

The US Air Force (USAF) had an interest in further automating
this process. Stottler Henke worked with the USAF to develop
the Managed Intelligent Deconfliction and Scheduling (MIDAS)
solution, an artificial intelligence (AI) tool for automatically
scheduling satellite contacts, by incorporating the experience,
insights, and expertise of human schedulers.

MIDAS can now automate virtually all the scheduling of the
satellite communication requests for the AFSCN, allowing
schedulers to apply their expertise where it is really needed.
MIDAS accomplishes this with a two-stage process that first
shuffles tasks within their defined constraints before carefully
applying a user-definable set of business rules that allow certain
constraints to be relaxed when necessary. The system provides
a familiar, user-friendly interface modeled on legacy Electronic
Schedule Dissemination (ESD) systems to facilitate comparison
and to allow users to switch from one interface to the other with
relative ease. It runs on inexpensive consumer hardware and
communicates with legacy systems via a well-defined plain-text
file format: raw scheduling requests are imported to MIDAS,
and scheduling results can be exported back to legacy tools.

MIDAS now provides Air Force planning at a level not
previously possible. A viable schedule can be assembled in a
matter of minutes in order to assess the impact of possible
outages, events, expansion of equipment, etc., that is, MIDAS
provides the ability to perform “what-if” scenarios to assess the
impact of a potential event or mission change. With only a few
minutes of processing, MIDAS is able to deconflict all or
virtually all communications requests for a given day. MIDAS
has eliminated much of the repetitive work involved in
scheduling and allows schedulers to focus on other important
problems.

This paper provides a history of MIDAS, an overview of its
architecture and the many benefits MIDAS provides; in
addition to its general applicability to non-USAF satellite
communications scheduling.

TABLE OF CONTENTS
1. INTRODUCTION .. 1	
2. TWO-STEP SOLUTION 3	
3. BUSINESS RULES DECONFLICTION
OVERVIEW ... 4	
4. BUSINESS RULES .. 4	
5. BUSINESS RULES USE PROCESS 5	
6. RESULTS ... 6	
7. CONCLUSION ... 6	
8. REFERENCES ... 7	
9. BIOGRAPHY ... 7	

1. INTRODUCTION

The Air Force commands and controls a variety of satellites
through a global network of antennas and ground support
equipment. Each constellation of satellites (e.g. the GPS
satellites) is commanded from one satellite operations center
(SOC), see Figure 1. Each constellation’s controlling
organization makes satellite communication support requests
for the antennas and other ground support equipment
(including limited bandwidth for each multi-antenna site as a
whole) independently of the others to a central scheduling
organization which must deconflict the competing requests.
The most obvious constraint on this process is that there must
be line of sight between the antenna and the satellite. For
satellite communications, the bottleneck resource is the
limited number of ground stations.

2

Figure 1. Satellites, Ground Station & SOC

Satellite schedulers working for the Air Force Satellite
Control Network (AFSCN) are responsible for scheduling
hundreds of millions of dollars' worth of ground satellite
equipment, squeezing out the highest communication
capability possible while protecting the billions of dollars'
worth of on-orbit satellites that are crucial for our nation's
defense. The schedulers try to meet the original requests as
closely as possible. In a typical single day, there are normally
more than 600 support requests and usually more than half
are in conflict with each other. Many of the conflicts are
seemingly unsolvable, e.g. if there is only one antenna at a
site and two requests for that antenna at the same time, the
conflict is seemingly unsolvable. Yet this organization
produces a conflict-free schedule daily, while meeting all
requests. Meeting all (or as many as possible) support
requests as closely as possible is the main objective.

The AFSCN does coordinate the circa 600 hundred satellite
communication requests from various users every day.
Building a conflict-free schedule from a large set of satellite
communication requests is a difficult problem. Fortunately,
human schedulers can be very adept at generating high-
quality solutions, usually allowing all requests to be serviced
(although not as fully as originally requested). However, this
process is time-intensive and requires highly trained,
experienced individuals, and the demands placed on them
only increases as demand intensifies over time.

This situation provided an opportunity for an automated
scheduling tool to take some of the burden off these
schedulers. Additionally, such a tool can provide the
currently unavailable possibility of running “what-if”
scenarios to assess the impact of a potential event or mission
change rapidly enough to be useful. For example, when a
vehicle emergency is declared for even one of these satellites,

schedulers must quickly reshuffle the communications plan
to maximally support both the distressed vehicle and the
high-priority tactical missions it supports. Balancing these
priorities effectively is known in the industry as
"deconfliction."

Stottler Henke in conjunction with the US Air Force has
developed MIDAS (Managed Intelligent Deconfliction and
Scheduling) -- a tool for rapidly scheduling and deconflicting
AFSCN satellite communication requests. MIDAS is based
on Aurora, Stottler Henke's intelligent resource scheduling
platform.

Aurora is designed for modification / adaptation to vastly
different domains, one aspect of this is the flexibility of the
user interface, see Figure 2.

Figure 2. Aurora’s Adaptable User Interface

MIDAS leveraged this aspect of Aurora to create a modified
user experience. For example, Figure 3 shows one version of
the interface adapted for satellite scheduling.

Before MIDAS, deconfliction could only be as fast and as
good as the expert humans working at AFSCN, which was
normally eight or more, now it can be done in less than hour,
and usually in less than 15 minutes.

Prior to MIDAS the human schedulers manually checked
every schedule request received, with the result being that
approximately half of all requests required adjustment to
remove conflicts. MIDAS now automates all or a vast
majority of this. MIDAS accomplishes this with a two-stage
process that first shuffles tasks within their defined
constraints before carefully applying a user-definable set of

3

business rules that allow certain constraints to be relaxed
when necessary.

Figure 3. Aurora User Interface Adapted for satellite
scheduling

MIDAS provides a familiar, user-friendly interface modeled
on legacy Electronic Schedule Dissemination (ESD) systems
to facilitate comparison and to allow users to switch from one
interface to the other with relative ease. It runs on inexpensive
consumer hardware and communicates with legacy systems
via a well-defined plain-text file format: raw scheduling
requests are imported to MIDAS, and scheduling results can
be exported back to legacy tools. MIDAS is useful for rapidly
deconflicting real-world scheduling requests as well as,
applications to planning (what-if scenarios) and training.

Again, the Air Force needed an automatic, intelligent
software system that could quickly schedule and deconflict
the communications requests from separate satellite
operations centers (SOCs). Without MIDAS, the scheduling
and deconfliction process requires excessive manpower from
highly trained and highly skilled operators, each requiring
almost a full year of training with a high washout rate. There
was no way to quickly assess the impact of outages, vehicle
emergencies, attacks, or possible changes to the
communications systems. These very difficult, complex, and
challenging problems inherently lead to inconsistencies in the
schedules previously produced.

2. TWO-STEP SOLUTION
The solution is a two-step process:

1. Bottleneck scheduling,
2. Business rules deconfliction.

MIDAS includes a single-pass scheduling algorithm, called
bottleneck scheduling that minimizes inter-support conflicts
while obeying all user-specified constraints.

The chronological order in which tasks are considered for
scheduling is the schedule processing order. Attaining a good
schedule processing order for tasks is critical to building a
near-optimal schedule during bottleneck scheduling. A
human expert uses heuristics when deciding the order in
which to review tasks. Some schedulers, for example, tend to

look at Low-Earth-Orbit (LEO) contacts before High-Earth
Orbit (HEO) or Geosynchronous (GEO) contacts. MIDAS
mimics this behavior. The reasoning behind this decision is
that LEO satellites have comparatively short visibility
windows, significantly limiting the temporal flexibility of
their contacts. By getting them out of the way early, a
scheduler ensures that the contact gets the resources it needs
while leaving the more flexible tasks for later, when the
resources have already been partially allocated. If one waited
until the end of scheduling to allocate these inflexible tasks,
one would be left with very few (or no) alternatives if the
required location is taken. Another way to say this is that, by
scheduling inflexible tasks first, we keep the maximum
amount of flexibility in the schedule at each step.

Bottleneck scheduling includes bottleneck avoidance using a
similar heuristic, attempting to schedule the least flexible
tasks before the most flexible tasks. Flexibility is defined
using several dimensions: temporal flexibility (like the LEO-
before-HEO approach), the degree of contention for
resources in that time window, and the current state of tasks
that have already been scheduled. These three considerations
are automatically entailed in the predicted usage calculations
for finding bottlenecks. The bottleneck avoidance algorithm
involves a Preprocessor to derive a global perspective by
determining which resources are bottlenecks (most overly
contended-for) and at which times. This is explained more
fully in [1] but very briefly, this involves “spreading” each
request pseudo-probabilistically across all resources that it
might use. (E.g. if a support request needs one of two
antennas it is pseudo allocated 50% to each one and similarly
the request’s needed minutes are spread across the full
possible time window). The Prioritizer uses this information
to put requests that need the most overly-contended-for
resources at the most overly contended for times at the front
of the queue to be scheduled first. Then MIDAS uses the
bottleneck information to make resource and time window
selections to avoid the worst bottlenecks by making the
assignment which most reduces the bottleneck problem. That
is, in making this local decision it considers the global
perspective.

Bottleneck avoidance solves about half of the conflicts but
the remaining ones are typically unsolvable without relaxing
some aspect of the requests.

The second step of the process, business rules deconfliction,
iteratively examines each remaining conflict, and makes
suggested changes to one or more support requests. For
example, a specific support may request 10 minutes of
preparation time before the support will actually commence.
The scheduler may know that this constellation’s manager
will accept 5 minutes, if there is no other choice. The
suggested change to that manager is to reduce his preparation
time to 5 minutes. Other changes relate to moving the support
out of its requested time window or to a different site or
replacing ground support equipment with alternatives or even
dropping certain hardware requirements all together. Some of

4

these changes are more suggestable if the other satellite in the
conflict is from the same constellation. The scheduler
annotates the schedule with symbols and notes for the
suggested change, appending his initials. With dozens of
constellations, and each constellation having dozens of these
rules of thumb, there are hundreds of undocumented rules
that the expert schedulers used to resolve effectively all the
remaining conflicts. Within each set of rules, there are
preferences for which to use before others. Combinations and
domino effects (e.g. solving a conflict by creating another,
then solving that one) had to also be considered. This
knowledge was elicited and implemented in constellation-
specific, user-editable rule bases which were incorporated
into Aurora’s Postprocessor. The application of each rule also
made the necessary note annotations and appended the
software’s initials. More details are found in the sections
below.

3. BUSINESS RULES DECONFLICTION
OVERVIEW

Schedulers frequently (tens to hundreds of times a day)
encounter situations where conflicts cannot be solved without
modifying the constraints of the original request – they must
“bend the rules.” These modifications must be reviewed and
accepted by the user (satellite operations center) before they
can be included in the final schedule, so it is important that
the scheduler have a high degree of certainty that their
suggestions will be accepted. This fact lead to the concept of
business rules deconfliction – archetypal strategies that
describe the different ways in which constraints can be
modified – and how they can be orchestrated to solve even
complex collisions between requests. There are a limited set
of business rules. For example:

1. A support may be given less setup time than the user
has requested.

2. The support can be moved temporally to another
side

3. The support can be moved to another station
altogether.

Long supports can (and often must) be broken up and handed
off from one station to another. Each of these business rules
takes a variety of parameters that describe when and how
much the strategy can be applied based on the type of support,
the user, and who they are in conflict with. Many conflicts
can be solved by simply iterating through all conflicted
supports and applying business rules in order until a solution
is found. However, applying the rules in combination (e.g.,
combining a less severe rule with a more severe rule, rather
than applying the severe rule alone) will often yield more
acceptable results. And in some cases, a solution can only be
reached by considering cascading combinations of business
rules. Fortunately, only certain rules make sense in
combination, so it is possible to consider the impact and
application of each pair.

4. BUSINESS RULES
Knowledge elicitation (KE) was utilized to capture expert
schedulers’ experiential knowledge in order to develop the
business rules, for example, which constraints can be relaxed
in what situations and to what extent. The KE led to the
capture of these rules in a concrete, user-definable format –
as a set of “business rules.” This solution kept the power in
the hands of scheduling system administrators. The decisions
of which constraints to relax are delicate ones, and the correct
action in a given situation may alter over time as mission
objectives or other factors change, so making the rules
explicit and controllable has proven to be highly desirable
and useful.

It was clear that what business rules should be applied and in
what order varied among different groups of satellites, based
on whether they were operated by the same organization or
were essentially identical amongst themselves. So, for
convenience the business rules are stored in order of most
preferred to least preferred within the group (often called
family) of satellites they correspond to. The groups range in
size from 1 to several dozen.

Business rules are applied after bottleneck scheduling is
complete and only to the extent necessary to solve the conflict
(e.g., if a prepass can be shortened to a minimum of 5 minutes
but only needs to be shortened to 7minutes to resolve the
conflicts, it will shortened to 7 minutes). There are several
ways to apply deconfliction strategies. The user has the
option to apply business rules to a single task or to all
conflicted tasks in the current time period. Rules are ordered
such that those that cause the least “damage” are attempted
first. Shortening a task’s prepass is often one of the first steps
a scheduler will take and with fairly accurate foreknowledge
of what will and will not be an acceptable concession from
the user. Because of this “shorten prepass” is among the first
business rules attempted for many families.

Listed below is a sampling of the single business rule
deconfliction strategies that MIDAS currently supports.

Shorten Prepass
• to a minimum of (minimum_duration) if

(condition)
o minimum_inter_family_duration =

minimum duration if turning around
from an Inter-Range Operating
Number (IRON) in another family

o minimum_intra_family_duration =
minimum duration if turning around
from an IRON in the same family

o minimum_ats_duration = minimum
turn around for an automated track
support

o hard_minimum = absolute minimum
that will not be violated

o condition = which minimum applies

5

 Negative Turnaround
• allow a negative turnaround with a task in the

set (irons)
o irons = family of IRONs with which

this task can have a negative-
turnaround

 Relax Schedule Constraints

• Remove NO# constraint x
• Relax NO(n) constraint to a minimum of

NO(m)
o n = 2..∞
o m = 1..n-1

• The NO(n) constraint requests that n supports
in a row should not be at the same station

 Redundant Equipment
• Remove (secondary_equipment) if

(primary_equipment) is available
o secondary_equipment = 1 or more

equipment type
o primary_equipment = 1 or more

equipment type
 Handoff

• Handoff task from (source_stations) to
(target_stations) with minimum block size
(minimum_block) and (overlap_duration)
overlap

o source_stations = allowed stations for
the prior portion of the task

o target_stations = allowed stations for
the subsequent portion of the task

o minimum_block = the minimum
duration of each resultant task after
splitting

o overlap_duration = the desired
amount of overlap between the prior
and subsequent task

 Move Out of Window
• Allow task to move (start_change) min earlier

than the beginning of its requested window
o start_change = maximum number of

min before the window start
• Allow task to move (end_change) min later

than the end of its requested window
o end_change = maximum number of

min after the window end
• Allow task to move +/- (change) min out of its

requested window
o change = maximum number of min

outside of the requested window
Shorten Task Duration

• Shorten task duration up to
(minimum_duration)

o minimum_duration = [### min OR

###% of original]
• Shorten task duration by moving start time

(maximum_start_change) later
o maximum_start_change = the number

of min forward that the start can be
moved

• Shorten task duration by moving end time
(maximum_end_change) earlier

o maximum_end_change = the number
of min backward that the end can be
moved

When applying business rules automatically to all conflicted
tasks in the currently visible region, rather than applying all
business rules to one task before moving on to the next task,
we use an iterative algorithm to avoid highly damaging one
task when a lower damage change to another task may have
resolved the conflict. The algorithm, therefore,

• traverses all conflicted tasks, applying the lowest
damage business rule first; then

• traverses a second time, applying the second lowest
damage business rules until all conflicts are resolved
or until we have tried all rules to all conflicted tasks.

There are situations when multiple business rules need to be
applied to a single task. A single business rule may not be
enough to resolve a conflict or by applying several business
rules in concert to a small degree, we may be able to achieve
a more desirable result than by only applying a single
business rule to a greater extent.

In general, two business rules are combined by applying the
first rule to some maximal extent defined by the business rule,
applying the second rule, and then relaxing the first rule. In
practice, it is not possible to generalize the algorithm for
combining any two business rules, and only certain
combinations make sense. For this reason, we determined a
manageable fixed set of combinations that are supported.
Rule combinations are generally attempted after each of their
component rules have been attempted singly.

5. BUSINESS RULES USE PROCESS
Once the business rules have been defined for each family
they can be employed in multiple ways and an initial
deconfliction process has been developed that uses them in
several ways. As mentioned previously, the first step is to
apply bottleneck scheduling to solve conflicts by shuffling
the scheduling within the parameters of each support request.
Then, usually the next step is to automatically try to solve
conflicts by applying a single business rule to each task,
separately. Next, multiple business rules are applied to each
task and each conflicting pair of tasks to solve each conflict
while still relaxing the constraints for the least number of
tasks possible and using the least damaging combination of
rules for each task.

Even after following the above process, a fair number of

6

conflicts usually remain. For hard-to-solve conflicts, human
schedulers were observed “preparing” a location in advance
of a move to solve a difficult conflict. For example, it may be
the case that the conflict between two tasks cannot be
resolved because although either or both of the tasks can be
moved (within its constraints or using a business rule), all the
possible destination locations are full. In this case a human
scheduler will often work on one of these possible destination
areas and move the supports that are there (either within their
constraints or using business rules) to make room for one of
the tasks in the original hard-to-solve conflict. So, the
scheduler moves the other tasks first, then moves the support
into the hole they created. This is exactly equivalent to doing
the same operations in the opposite order – first solving the
original conflict by moving one of the tasks to a new location
where there is no room for it and then resolving the new
conflicts that were created.

When viewed from this perspective, a domino phenomenon
can be seen, resolving one conflict by creating another and
then solving it. Said another way, moving one support forces
another support to be moved. The above is a description of a
single level of domino, but any number is possible and going
to two, three, or four levels of dominoes is fairly common.
When using the domino method, the newly created conflicts,
may be solvable with moves that are allowed by the
constraints of the support, so that these should be tried first.
But it is also often the case that solving the subsequent
conflicts requires the use of business rules also. Typically,
using the domino method with a depth setting of 2, 3, or 4 is
the last step in the automated deconfliction process. Then, if
there are any remaining conflicts, human schedulers resolve
them.

A final very useful feature is termed by the users as “self-
heal.” Sometimes the reason for applying a business rule has
changed. E.g., it may be the case that to resolve a conflict,
one of the supports involved in the conflict was moved
outside of what would be allowed by its parameters so a
business rule was invoked. If later the other support involved
in the original conflict is deleted or moved for other reasons
such that the moved support could be moved back to being
within its original parameters, then this automatically occurs.
(I.e., if the reason for applying a business rule changes and is
no longer valid, the effect of the business rule is reversed.)

The process of automatically employing business rules in
addition to mimicking the human deconfliction process, must
also follow the human annotation process, since it is intended
to perform within the current work flow. This fulfills two
functions.

1. Verify that the change is approved by the satellite
operations center (SOC) before it appears in a
published schedule.

2. Provide an audit trail of who made changes outside
of the normal parameters. In the case of the
automatic application of a business rule, the

software did.

6. RESULTS
The business rules were entered for the entire set of about 2
dozen families and applied to the deconfliction task for
several different 24-hour schedules. Typically, circa 600
supports needed to be scheduled each day. Although there
were fairly wide variations, about half of the supports started
out in conflict. From this starting point of about 50%
deconflicted, bottleneck scheduling typically solved half of
the conflicts leaving 25% to be deconflicted by the business
rule deconfliction processes described herein.

• Applying single instances of business rules solved
another 10% to arrive at an approximately 85%
deconflicted schedule.

• Applying multiple business rules (but no dominos)
generally brought that up to 90%.

• Applying the domino method using a depth of 4
brought that total up still further to around 97%.

MIDAS has proven useful for other analysis. For example,
there was a seemingly compelling cost-saving case for
shutting down two sites. To justify keeping them open,
MIDAS was used to quickly schedule the previous month's
worth of requests and show the severe mission impacts that
would result from these closures.

During real or training emergencies, MIDAS allows much
quicker impact determination and new optimized schedule
creation.

More abstractly, MIDAS has been an impressive application
demonstrating how we can replicate human thought
processes in a very difficult domain.

Many of the intelligent scheduling algorithms developed as
part of the MIDAS effort have been incorporated back into
our commercially available Aurora intelligent scheduling
tool, used by Boeing, Pfizer, General Dynamics Electric
Boat, NYU, and others. For example, NASA KSC leverages
Aurora to make scheduling and processing of space vehicles
more efficient; from multi-year projects down to the final
launch.

7. CONCLUSION
Before the MIDAS, deconfliction could only be as fast and
as good as the expert humans working at AFSCN. Satellite
Control Network scheduling largely consists of resolving
disputes between competing support requests (and other tasks
such as maintenance). About half of the conflicts can be
solved by shuffling the requested supports within the
constraints supplied with the requests. The other half require
some degree of relaxation of the constraints. Using a
representation of parameterized business rules, families of
satellites, and a preference listing of the rules and parameters
for each family allows the MIDAS software to automatically

7

resolve the large majority of remaining conflicts. This greatly
saves the labor required for deconfliction and allows more
accurate study of future loading (and associated required
resources) and more accurate response to what-if questions
relating to the impact of failed resources and required
emergency supports.

Over a thirty-year period, dozens of organizations have
worked on this specific problem and the Air Force had
previously invested tens of millions of dollars to develop
various solutions, but all of them were considered
operationally unacceptable (primarily because the relaxation
rules had never been elicited before). MIDAS has solved this
problem while demonstrating a 20-fold improvement in the
time required to deconflict a 24-hour schedule; while now
allowing for rapid re-scheduling under emergency conditions
and the evaluation of multiple scenarios in a timeframe that
makes the results useable.

8. REFERENCES

[1] Stottler, Dick and K. Mahan, “Automatic, Rapid
Replanning of Satellite Operations for Space Situational
Awareness (SSA),” presented at the Advanced Maui Optical
and Space Surveillance Technologies Conference, 2015.

[2] Stottler, R., Mahan, K., and Jensen, R., “Bottleneck
Avoidance Techniques for Automated Satellite
Communication Scheduling,” Proceedings of the
Infotech@Aerospace 2011 Conference, Vol.1, AIAA,
Reston, VA, 2011.

9. BIOGRAPHY

Richard Stottler co-founded Stottler
Henke in 1988 as a software company
dedicated to providing practical
solutions to difficult problems by
skillfully drawing upon a large
repertoire of artificial intelligence
technologies. Under Dick's leadership,

Stottler Henke has grown steadily and profitably into a 40-
person research and software development company with
distinctive expertise in intelligent tutoring systems, intelligent
simulation, automated planning and scheduling, and
intelligent knowledge management. Dick provides technical
leadership in the design and development of intelligent
tutoring systems, intelligent planning and scheduling
systems, and automated design systems. He combines a
strong applied research record in artificial intelligence with
practical experience in rapid and efficient knowledge
engineering. He has led the development of intelligent
tutoring systems that encode the expertise of instructors to

provide practice-based learning and automated evaluation of
student performance in subject areas spanning navy tactics;
army tactics, command, and control; sonar data analysis;
astronaut training; helicopter cockpit operations; and
battlefield emergency medicine. He also led the development
of intelligent planning systems for NASA space shuttle
missions and aircraft assembly and automated scheduling for
the International Space Station. He also led the development
of intelligent systems that encode and apply human expertise
and experience to automate the design of manufacturing
processes and aircraft systems to lower manufacturing costs,
increase product quality, or achieve demanding performance
criteria. Dick has written or presented more than two dozen
papers and articles for publications such as the proceedings
of the International Joint Conference on Artificial
Intelligence (IJCAI). He received his BS in engineering from
Cornell University and his MS in computer science (artificial
intelligence) from Stanford University.

Robert Richards received a Ph.D. in
Mechanical Engineering from
Stanford University. Dr. Richards is
managing and has managed multiple
projects for both commercial and
government clients, including various
intelligent scheduling
implementations. Dr. Richards is the

Principal Scientist and Manager of Stottler Henke’s Pfizer
project for scheduling pharmaceutical packaging plants,
the end product is Aurora-ProPlan. Dr. Richards also
leads the intelligent scheduling project for General
Dynamics Electric Boat for improving the throughput of
submarine production. Dr. Richards has also worked on
and continues to work on various projects spanning a wide
range of research and application area interests,
including: training system development; applying
automation and artificial intelligence techniques; and
decision support tool development for life-critical
situations. Dr. Richards has publications in all of these
domains.

