
Explaining Complex Scheduling Decisions
Jeremy Ludwig, Annaka Kalton, & Richard Stottler

Stottler Henke Associates, Inc.
San Mateo, CA, USA

ludwig; kalton; stottler @ stottlerhenke.com

ABSTRACT
The work presented in this paper describes the explanation
facility of an intelligent scheduling software framework that
has been customized and deployed in a variety of domains.
The customizability of the framework allows the software to
develop a valid schedule that reflects each domain’s specific
preferences and constraints. In all domains, the software
quickly solves a complex scheduling problem (generally in
less than five minutes) and produces a schedule that is
significantly better than those reached by previous methods.
The primary contribution of this paper is to describe the
explanation facility used by schedulers across a variety of
real-world domains to answer the ever-present question: why
was a task was scheduled here and not there? The
transparency to see why inspires greater confidence in the
results and facilitates understanding of how constraints affect
the schedule, enabling the user to further improve the
schedule by assessing specific constraints. This paper also
outlines future work that will improve upon the existing
explanations.

Author Keywords
scheduling framework; heuristics; explanations

ACM Classification Keywords
 • Human-centered computing~Interactive systems and
tools.

INTRODUCTION
Scheduling, at its most basic, is the process of assigning tasks
to resources over time, with the goal of optimizing the result
according to one or more objectives [5]. Scheduling is
heavily used in aerospace, manufacturing, defense, and
service industries to minimize the time and cost associated
with the completion or production of large and complex
projects.

The Aurora scheduling framework is one example of a
general-purpose scheduler that has been successfully
applied in a variety of domains, including all of those listed
above [3,4,6]. Aurora combines graph analysis with
heuristic scheduling techniques to quickly produce an
effective schedule based on a defined set of tasks and
constraints. Tasks are the actions that need to be completed,
e.g. InstallCockpitDoor. Constraints define limits on when
a task could be completed. While constraints vary across
domains, they generally include:

• Temporal: Tasks must be scheduled between the
project start and end dates. Each task has a duration
and an optional start date and optional end date. For
example, InstallCockpitDoor must be completed by
5:00 PM on March 1, 2018.

• Ordering: Tasks can optionally be assigned to follow
either immediately after/before another task or
sometime after/before another task; optionally with a
specific lag time in between. For example,
PaintCockpitDoor must happen sometime before
InstallCockpitDoor with a lag of at least 48 hours in
between to allow the paint to cure.

• Resource: Each task can require that resources be
available for the task to be scheduled. A task might
require a specific resource (e.g. CockpitArea) or might
select from a pool of resources (e.g. three mechanics
from the Mechanics pool).

• Calendar: Tasks can only be scheduled during working
shifts; tasks cannot be scheduled on holidays. Resources
may also have calendar constraints as well. For example,
individual Mechanics work one of two shifts M-F while
the CockpitArea is generally available at any time.

The framework distills the various operations involved in
creating a schedule that respects all of these constraints into
reconfigurable modules that can be exchanged, substituted,
adapted, and extended. This framework acts as a foundation
for creating scheduling tools that respect domain-specific
constraints and use heuristics tuned to each domain to ensure
a high-quality schedule.

The remainder of this paper will describe related work,
followed by an overview of the explanation facility. The
explanation facility relies on the scheduling engine to
generate explanations and the user interface to visualize
these explanations. The goal of the combined system is to
help users understand the decisions that were made during
the process of creating large and complex schedules.
Following this is a discussion of explanations in Aurora and
next steps for improving the explanation facility.

Related Work
There is a body of prior work outside of Aurora towards
creating a general-purpose scheduling framework that forms
the basis of domain-specific scheduling tools. The OZONE
Scheduling Framework [7] is one example. [1] describes the
validation of the OZONE concept through its application to
a diverse set of real-world problems, such as transportation
logistics and resource-constrained project scheduling. [2]
presents a design for a general scheduling framework for © 2018. Copyright for the individual papers remains with the authors.

Copying permitted for private and academic purposes.
ExSS '18, March 11, Tokyo, Japan.

manufacturing. [5] presents an overview of several modern
general-purpose scheduling systems such as the SAP
Production Planning and Detailed Scheduling System,
ASPROVA Advanced Planning and Scheduling, Preactor
Planning and Scheduling Systems, and ORTEM Agile
Manufacturing Suite. Each of these modern systems has a
distinct feature set while sharing some aspects in common
with Aurora and each other.

The primary contribution of this paper is to describe the
explanation generation facility in the Aurora framework,
how the resulting explanations are used by schedulers to
understand the decisions that drive complex schedules, and
to outline future work that would improve the utility of the
explanations.

EXPLANATION FACILITY
The scheduling framework consists of two primary
components: the engine and the user interface. The
scheduling engine is responsible for creating an explanation
for each task, describing why the task was placed in its
particular position (which includes both time and resources)
as the schedule is created. The user interface is responsible
for presenting the explanation to the user (Figure 1) and
helping them understand why a task was scheduled here and
not there. This information helps direct the user’s attention
to the driving constraints and supports carrying out what-if
analysis on how changing these specific constraints might
improve the schedule.

For example, perhaps the user would like to see the
InstallCockpitDoor task happen earlier in the schedule to
avoid conflicting with the InstallCockpit task. The
explanation shows that PaintCockpitDoor is driving the date
of InstallCockpit. Digging deeper, the driver for
PaintCockpitDoor is the delivery date of the door itself. The
scheduler can perform a what-if analysis by changing the
availability date of the part and rescheduling. If this has the
desired effect, the next step is talking to the supplier to see if
the date can be moved up.

Generation
Explanations are created by the scheduling engine as it works
to generate a schedule. In order to understand the
explanation, it is helpful to provide a brief overview of the
scheduling engine first, followed by how explanations are
created in this process.

Scheduling Engine
The scheduling engine runs through three distinct phases:
initialization, scheduling, and finalization.

Initialization Phase
First, Aurora applies the Preprocessor to the tasks to prepare
for scheduling. Examples of preprocessor tasks are setting
the schedule direction for the tasks and marking resource
constrained tasks for special handling. Second, the
Prioritizer is applied to determine the order of the tasks in
the scheduling queue. The Prioritizer may be re-applied
within the scheduling loop.

Scheduling Phase
First, the Scheduler calls constraint propagation on the
highest priority schedulable element to be sure that all its
requirements and restrictions are up to date. Second, the
Scheduler assigns the task to a time window and resources
such that all constraints are satisfied. It also returns a list of
the conflicts resulting from the given assignment, if any.
Third, the Scheduler calls constraint propagation on the task
(again) to update all the neighbors so that they are
appropriately restricted by the newly scheduled element.
This process may result in additional conflicts; if so, these
are added to the list of conflicts from scheduling. Fourth, the
Scheduler asks the Conflict Manager to resolve those
conflicts. This process is repeated until every task in the
scheduling queue is scheduled.

Finalization Phase
When the queue is empty, Aurora goes through a final
conflict management step, this time at the global level.
Aurora calls the Postprocessor on the schedule, so that any
additional analysis may be done before Aurora returns the
schedule results.

Generating Explanations
Explanations are generated for each task and are constructed
from decisions made in each of the scheduling phases. The
cumulative decisions work together to narrow the window in
which the task can be scheduled by adjusting its early start
and late end dates. The scheduling order determines when a
task is given a chance to schedule relative to the other tasks,
where it will be placed in the first available time slot in which
all of its constraints can be satisfied. An explanation is
composed of multiple text descriptions that describe the
decisions made and why they were made leading up to the
assignment of a task to a particular time and set of resources.

In the initialization phase, The Prioritizer assigns the
schedule order as shown in Figure 1, which is an integral part
in understanding why scheduling decisions are made. Initial
constraints are also applied to each task by the Preprocessor

Figure 1. A scheduling explanation for a task in Aurora. Task and resource names are obfuscated to protect client data.

in this phase. For example, one constraint is that a task’s late
end date (the date it must be finished by) can be no later than
the project end date. This constraint narrows the schedule
window and is recorded in the explanation. Preprocessor
results are seen in lines 1 and 2 in the explanation field of
Figure 1.

The scheduling phase adds to the explanation in two ways.
First, constraint propagation is applied before any tasks are
scheduled and again after each task is scheduled. The
temporal, calendar, and resource constraints (and their
interactions) will further narrow the early start dates and/or
late end dates of each task. Any time the scheduling window
is narrowed an explanation is recorded, as seen in lines 3-5
in the explanation field. Second, when a task reaches the
front of the scheduling queue it will be placed at the first
available time that meets all of the constraints. If this time
does not match the early start date, then the constraints
responsible for the delay are recorded in the explanation.
Lines 6 and 7 in the explanation field were generated when
the task was actually scheduled.

Finally, in the finalization phase the Postprocessor may
move scheduled tasks and record the reason in the
explanation. This supports domain-specific finalization of
schedules. The example in Figure 1 does not include any
explanation information from this phase.

Visualization
The user interface is responsible for presenting the
explanation to the user in an understandable form. As shown
in Figure 1, the scheduling explanation is part of the
Scheduling Results display. The explanation portion of the
result lists the constraints that have driven the scheduling of

this particular task, along with its schedule order. Where
other tasks are referenced, hyperlinks provide browsing
support so that the user may follow the cascade of inter-
related explanations through the dependent series.

The explanations displayed in the UI are a filtered view of
all of the individual decisions contained in the explanation.
As generated, the explanation would be a complex tree of
decisions – not a simple list. The explanation presented to the
user only includes the most specific path through the tree
leading up to the task being scheduled. This represents the
decisions that led to the final schedule but does not show all
of the other possibilities that were examined.

Additionally, there are cases where the same constraint
would be responsible for a number of changes. For example,
TaskP precedes TaskQ. Every time the early start of TaskP
gets changed, TaskQ gets changed as well. In this case, only
the most recent change to TaskQ caused by TaskP is
presented to the user.

The collapsing of constraints produces an unintuitive result
(although still very useful) for scheduled tasks with resource
constraints. The primary issue is cascading unavailability of
resources. For example, first ZoneA is unavailable. Then a
Crane is unavailable. Finally, Labor is unavailable. In this
case, only Labor will be shown in the explanation, as it is the
most recent cause of delay. This can be confusing to the user
if they only look at the Labor requirement because it may
appear that Labor had availability earlier; the user misses the
fact that either ZoneA or the Crane was also needed but not
available. The alternative of adding a line for each of the
possible resources responsible for the schedule delay over

Figure 2. A plot of tasks scheduled before the explained task. The x-axis is time; the y-axis are resource constraints. The plot
starts on 01/06/2018, which is the first time the task could be scheduled due to constraint propagation as shown in Figure 1.
LWUA is the constraining resource, pushing out the start of the task to 01/16/2018. A mechanic from the pool of MECH is also
required, but as seen in the image this is not a constraining resource.

time generally results in too much information and relatively
little utility for the user.

Instead, the schedule order and explanation are paired with
graphic visualization to help the user understand the
scheduling decisions. The graph shown in Figure 2 provides
the context in which the scheduling decision is made. The x-
axis is time and the y-axis represents the possible resources
that would be needed by this task. The graph starts on the
first available date that the task could be scheduled. Only the
tasks that were scheduled before this task (based on schedule
order) are plotted on the resources they use and the time they
use them. This graph allows the user to visually confirm the
task’s final scheduling decision given the preceding
decisions.

DISCUSSION
Much of this paper so far has focused on what an explanation
in the Aurora scheduling framework is and how users
interact with it. In order to discuss the utility of explanations,
we need to examine why a scheduler wants an explanation to
begin with. Generally, the users of Aurora are intimately
familiar with the schedule they are creating. Whether it is
running a machine shop, assembling an airplane, or
managing a pharmaceutical packing line, a user is attuned to
their schedule and have an intuitive sense of what the
schedule should look like. When all is working correctly,
explanations are rarely examined by the user.

However, when the schedule does not look ‘as expected’ is
exactly when explanations are brought into play. The
explanation facility fills one of two roles in this case. If it
demonstrates that the correct scheduling decision was made,
it builds trust in the overall system. On the other hand, if it
demonstrates that the right decision was not made, the
explanation facility usually points to problems in the domain
specific Prioritizer or, more often, reveals an error in the
scheduling model itself (tasks, resources, and constraints).
For both of these reasons, we have found that scheduling
explanations are an invaluable part of the Aurora framework.

Additionally, the explanation provides another perspective
into the schedule, facilitating understanding. For example, if
many tasks of interest have an explanation that shows the
same resource causing the delay, the user would review the
histogram for that resource. At this point, the user would
discover that while the resource is never overloaded
according to the schedule, based on the user’s experience it
is likely that during execution there will be times when that
resource will be not as available as modeled (due to
unplanned maintenance or PTO). The user then might run
some scenarios to determine the effect of higher than normal
absences or downtime on this critical resource. With the
results of these scenarios, changes to the scheduling model
or resource pool may be made.

FUTURE WORK
While the current explanation facility has demonstrated its
utility for numerous deployments, there is still room for

improvement. First, as pointed out constraint collapsing for
scheduled tasks with resource constraints produces
confusing results, such as showing that Labor is causing the
delay because it was the most recent unavailable resource. It
would be more informative and more accurate to report the
multiple resource delays in a way that doesn’t overwhelm the
user. For example, collapsing all the resource delays into a
single line where each resource or set of resources is included
only once might provide a better at-a-glance summary.
Second, it would be a significant improvement to have a one-
click button that produces a graph like the one in Figure 2 for
a given scheduling explanation. Currently it is tedious to
configure such a graph manually; it also requires significant
knowledge on how to use the Aurora filtering mechanisms.
Third, it would be helpful to improve the visual
representation of the explanation. A small improvement
would be to number the lines and use icons and colors to note
which part of the scheduling process generated each
explanation line (Preprocessor, Constraint Propagation,
Forward/Backward Scheduler, PostProcessor). A larger
improvement might visualize the explanation list as a
horizontal timeline, with markers for the changes that adjust
the early start and late end dates. We plan to address all three
changes as part of future work.

REFERENCES
1. Marcel Antoine Becker. 1998. Reconfigurable

Architectures for Mixed-initiative Planning and
Scheduling. Carnegie Mellon University, Pittsburgh, PA,
USA.

2. Jose M. Framinan and Rubén Ruiz. 2010. Architecture of
manufacturing scheduling systems: Literature review and
an integrated proposal. European Journal of Operational
Research 205, 2: 237–246.
https://doi.org/10.1016/j.ejor.2009.09.026

3. Annaka Kalton. 2006. Applying an Intelligent
Reconfigurable Scheduling System to Large-Scale
Production Scheduling. In International Conference on
Automated Planning & Scheduling (ICAPS) 2006.

4. J. Ludwig, R. Richards, A. Kalton, and D. Stottler. 2017.
Applying a heuristic-based scheduling framework in
manufacturing, service, and communication domains. In
2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), 1–4.
https://doi.org/10.1109/SMC.2017.8122568

5. Michael L. Pinedo. 2016. Scheduling. Springer
International Publishing, Cham.
https://doi.org/10.1007/978-3-319-26580-3

6. Robert Richards. 2010. Critical Chain: Short-Duration
Tasks & Intelligent Scheduling in e.g., Medical,
Manufacturing & Maintenance. In 2010 Continuous
Process Improvement (CPI) Symposium.

7. S.F. Smith, O. Lassila, and M. Becker. 1996.
Configurable, Mixed-Initiative Systems for Planning and
Scheduling. In Advanced Planning Technology, A. Tate
(ed.). AAAI Press, Menlo Park, CA.

