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Abstract— This paper identifies a small, essential set of static 

software code metrics linked to the software product quality 

characteristics of reliability and maintainability and to the most 

commonly identified sources of technical debt.  A plug-in is 

created for the Understand code visualization and static analysis 

tool that calculates and aggregates the metrics. The plug-in 

produces a high-level interactive html report as well as 

developer-level information needed to address quality issues 

using Understand. A script makes use of Git, Understand, and 

the plug-in to compile results for a list of GitHub repositories 

into a single file. The primary contribution of this work is to 

describe an open-source plug-in to measure and visualize 

architectural complexity based on the propagation cost and core 

size metrics, which are not currently found in other tools. The 

plug-in should be useful to researchers and practitioners 

interested in these two metrics and as an expedient starting point 

to experimentation with metric collection and aggregation for 

groups of GitHub repositories. The plug-in was developed as a 

first step in an ongoing project aimed at applying case-based 

reasoning to the issue of software product quality. 

Keywords— software product quality, technical debt, reliability, 

maintainability, architecture, metrics, static code analysis 

I. INTRODUCTION 

There is a consistent push to improve software quality, 
especially for components that are designed to be heavily re-
used and extended, e.g., as part of a software product line. 
Software quality models are a way of articulating what is 
meant by ‘software quality.’ These models define the desired 
characteristics and sub-characteristics of software and the 
relationship between these characteristics and measurable 
properties of the software [1]. The ISO-IEC 25010: 2011 [2] 
quality model defines eight desired characteristics of software 
product quality. An objective of this paper is to identify a 
small, essential set of static software code metrics linked to 
these product quality characteristics. While all the 
characteristics are important, the paper focuses specifically on 
Reliability and Maintainability, as the bulk of existing research 
linking software quality to static code analysis uses these 
characteristics [3].  

Technical debt is a measure of how much work would be 
needed to move from the current code to higher-quality code 
[4]. The source of technical debt during development and 
sustainment stems primarily from making design, 
implementation, documentation, and testing decisions that are 
focused on short-term value [5]. As technical debt increases, 

changes to the software become more difficult, error-prone, 
and time-consuming, and this threatens the reliability and 
maintainability characteristics of the software. 

This is an especially important take-away for software 
product lines, where long-lived, reusable modules are intended 
to be shared by multiple systems. Each module will want to 
invest in high software quality (low technical debt) initially and 
maintain this investment in quality over time as it is extended 
and updated. That is, as part of planned re-usability, each 
module commits to making a long-term investment to software 
quality. The likely alternative is that the software quality will 
gradually degrade, until the problems become overwhelming 
[6].   

There are several practical software quality models and 
tools that have been recently developed and that generally 
include an automated measurement of technical debt [7]. 
However, by default, the measured technical debt may not be 
an accurate measure of product quality issues [8]. While some 
technical debt is unavoidable [9], a large survey of software 
engineers and architects across multiple organizations provides 
a practical view of the causes and sources of avoidable 
technical debt [5]. Their results indicate that architectural 
decisions, overly complex code, and lack of code 
documentation are the top three avoidable sources of technical 
debt in practice. 

In the remainder of this paper, the Related Work section 
briefly covers existing tools in this area. Following this, the 
Methods section describes the work performed on metric 
identification, metric calculation, and compilation of results for 
GitHub repositories. The Results section illustrates use cases 
for managers, developers, and GitHub compilation. Finally, the 
Discussion and Conclusion sections evaluate and summarize 
the results. 

A. Related Work 

 Related software quality and automated code review tools 

are based on a software quality model that identifies specific 

source code metrics, and describes how the measurements of 

these metrics are aggregated, and how the aggregations are 

used to assess characteristics of software quality and technical 

debt [10]. Some examples of state-of-the-art models (and 

tools) discussed are Software Quality Enhancement 

(SQUALE), Quamoco Benchmark for Software Quality, 

Columbus Quality Model, Software Improvement Group 
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(SIG) Maintainability Model, and Software Quality 

Assessment based on Lifecycle Expectations (SQALE). 

Codacy is another example of an automated code review and 

analysis tool. As an open-source project, SQUALE provides a 

veritable treasure trove of information on understanding and 

developing a software quality model. SQALE [11] differs 

from the others in that it is an open methodology that defines 

the software quality and technical debt model and is 

implemented by tools such as SonarQube. 

 Contribution: The primary contribution of this work is to 

describe an open-source plug-in to measure and visualize 

architectural complexity metrics not currently found in other 

tools. The work reported in this paper also differs from this 

existing work in that it begins to develop a quality model that 

focuses on architectural complexity and relies on only a small 

set of essential software metrics that address the primary 

sources of technical debt. 

II. METHODS 

 The Methods section includes metric identification and 

calculation, metric aggregation, and GitHub compilation.  

A. Metric Identification and Calculation 

 This section discusses three types of static source code 

metrics related to software quality characteristics and how 

they are calculated. The first measures architectural 

complexity, the second code complexity and coupling, and the 

third, code commenting. The Understand code visualization 

and static code analysis tool, developed by Scientific 

Toolworks, is used to perform all metric measurement and 

calculation. 

1) Architectural Metrics 

 The two selected visibility metrics define architectural 

complexity based on how reachable one file in the code base 

is from all the other files.  These two metrics are measured 

using the algorithm defined in [12]. The code for performing 

these measures is included in the open source plug-in. While 

there are numerous measures of software architecture [13] –

[15], these two were specified by the research agenda. 

 The first architectural metric is propagation cost. This is a 

system-wide metric that describes the proportion of software 

files that are directly or indirectly linked to each other.  If 

component A makes a call to B, A and B are directly linked. If 

file B makes a call to C, then B and C are directly linked and 

A and C are indirectly linked. Given this configuration, if C is 

changed, B might need to be changed as well. If B is changed, 

then A might need to be changed. So, a change in C might 

require both B (direct link) and A (indirect link) to be 

changed. The propagation cost provides a single, system-wide 

measure of how linked the code is.  

 The second architectural metric is the core size. This metric 

involves classifying every component (class or file) into one 

of five architecture groups based on the number of direct and 

indirect links of the components: core, shared, control, 

peripheral, and isolate. The algorithm also divides the overall 

architecture into one of four types: core-periphery, borderline 

core-periphery, multi-core, and hierarchical. The core group 

represents the largest cyclic group, i.e., the largest set of 

components that are interdependently linked to each other.  

 The utility of the propagation cost and core size measures of 

architectural complexity has been demonstrated in a number 

of studies [16] – [18]. These measures have been shown to 

relate significantly to defect density, programmer productivity, 

and programmer retention. Core files have been found to 

contain more defects and cost more to maintain [17].  

2) Complexity Metrics 

 A small set of complexity, size, and coupling metrics were 

selected based on evidence of supporting correlation with, or 

prediction of, the software characteristics of reliability and 

maintainability. Given the vast available literature on software 

metrics and an equally large variety of metrics, a reasonable 

starting point is systematic literature reviews. [19] reviews 99 

primary studies and compares their work to several other 

surveys and systematic literature reviews (e.g.,  [20] [21]). 

The results indicate that the link from metric to reliability and 

maintainability across studies is strongest for: LOC, WMC-

Unweighted/WMC-McCabe, RFC, and CBO. A high level 

definition of each of these metrics from [1] is: 

 LOC (Lines of Code): The number of lines containing 

source code, including inactive regions, in a component. 

LOC is a measure of size/volume. 

 WMC Unweighted (Weighted Method Count - 

Unweighted): A simple count of the number of methods 

implemented in a component. WMC is a measure of 

complexity. 

 WMC-McCabe (Weighted Method Count – McCabe): Like 

WMC-Unweighted, except that each method 

implemented in the component is weighted by its McCabe 

Cyclomatic complexity value. Cyclomatic complexity is 

the number of independent paths through a method. 

WMC is a measure of complexity.  

 RFC (Response for Class): The sum of the number of 

methods in a component plus the sum of all the methods it 

directly references in other components. RFC is a 

measure of complexity. 

 CBO (Coupling Between Objects): This is a measure of 

how many other components are relied on by a given 

component. CBO is a measure of coupling. 

We define each of these metrics based on existing calculations 

performed by Understand. The plug-in relies on these existing 

calculations, concretely defined in [22]. 

3) Comment Metrics 

 The Code-To-Comment ratio is used as an initial measure 

of code commenting. This metric has been well studied as part 

of earlier work on quality models [23]. Anecdotally, it is also 

one of the metrics most-used by developers utilizing the 

Understand software. The plug-in relies on existing 

functionality within Understand to calculate this metric. 
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B. Metric Aggregation Model 

 Propagation cost and core size metrics generate a project-

wide measurement. For all other metrics, an aggregation 

model is needed to generate a project-level description from 

the component-level description. In this initial work, two 

different types of aggregation were used. The first was to 

report median values, e.g., median LOC per component. The 

second was to report the number of components that exceeded 

a threshold, e.g., number of components that contained more 

than 200 LOC. Default thresholds were taken from [24], [25] 

and from thresholds previously defined within Understand. 

There are numerous difficulties with threshold values; the 

plug-in supports users easily changing to different values. 

Counts are also included in the report (e.g., Number of 

Classes), to convert from absolute number of thresholds 

exceed to percentage of files exceeding a threshold. This 

aggregation model represents a first step in ongoing work.  

C. GitHub Compilation 

 Software quality has also been studied specifically in the 

context of open-source code [26]. Open-source repositories, 

such as that available on GitHub, include information on the 

software product, the development process, and their 

popularity. The available information includes the software 

code, the associated version control system, the list of issues 

and their status, and the list of contributions, as well as the 

number of stars and forks [27]. All this information is 

available through the GitHub API.  

 Taking advantage of this, Python and Bash scripts running 

on a Linux box were created to automatically pull and process 

data from a list of specified GitHub projects using the API. 

The first script clones each repository into a local directory 

and runs the Understand metrics on it, while also querying 

relevant data fields (e.g., stars/watches/forks, languages used, 

number of issues) using the GitHub API, storing the results in 

a JavaScript Object Notation (JSON) file. A second script 

extracts the essential fields from both the JSON files and 

generated metrics of each project and compiles them into a 

single combined Comma Separated Values (CSV) file. This 

allows the results for groups of repositories to be easily 

viewed and manipulated in a spreadsheet.  

III. RESULTS 

 The Results section describes the results of the plug-in for 

project management, developer, and GitHub use cases.  

A. Project Management 

 From a management perspective, the goal is to use the plug-

in to calculate the current metric values. Once the plug-in is 

installed, the user opens a software code base in Understand 

and then selects a “Core Metrics” report menu item. At this 

point the user can elect to change the default thresholds. An 

interactive HTML report is generated as shown in Figure 1. 

The report includes all the generated metrics on the left and 

the various architecture groupings in a Design Structure 

Matrix graph in the center, as described in [12]. The plug-in 

was tested on a variety of open-source and proprietary 

software in Java, C++, C, and Web languages. 

 

 

 
Figure 1. Interactive report for a single GitHub Project. 
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Figure 2. Partial results compiled from three GitHub repositories. 

B. Software Development 

 For the software developer example, the goal is to reduce 

technical debt. Understand already supports this goal for the 

complexity and comment metrics. The plug-in takes advantage 

of existing Understand functionality to address architectural 

complexity as well. This is accomplished by importing the 

architecture partitions, to support tracking down and 

refactoring complexity and cyclic dependencies as shown in 

Figure 3 and Figure 4. 

 

 
Figure 3. A tree map in Understand where the map is divided by 

architecture partition, the size of each component is determined by 

LOC, and color indicates the amount of WMC-McCabe complexity 

(darker blue is more complex). 

C. GitHub Results 

 The GitHub compilation scripts were tested against 8 C++ 

and 8 Java projects from GitHub, choosing projects with high 

numbers of stars that spanned different application areas. 

When given the list of projects, the system was able to 

automatically download, analyze, and collect meta-

information on each project. These projects represent a total of 

5M+ lines of code, analyzed in about 40 minutes. The results 

are presented in CSV format as shown in Figure 2. Complete 

results are available on github.com/StottlerHenke. 

IV. DISCUSSION 

 The methods section focused on identifying metrics that are 

linked to software product reliability and maintainability and 

also to the most relevant types of technical debt facing 

developers. The results demonstrate that the developed plug-in 

is able to calculate the identified metrics and how this 

information can be used within Understand to help address 

technical debt.  The plug-in is freely available at: 

scitools.com/support/gui-plugins/. A licensed copy of 

Understand is needed to use the plug-in. 

 The results also demonstrate the ability to write scripts that 

use the plug-in to download the code and meta-information for 

a repository from GitHub, analyze the code, and then compile 

the results. The generated report includes context information 

such as the description, stars, contributors, and issues, in 

addition to the metrics generated from the source code. 

Additionally, the script serves as a template to use the system 

in other ways, for example measuring and compiling results as 

part of an automated build process. The compilation scripts 

are available at: github.com/StottlerHenke. 

 There are limitations in the current plug-in. First, the object-

oriented measures (CBO, WMC, WMC-McCabe, and RFC) 

are not currently calculated for C files. Second, the plug-in has 

been tested on code only up to 4.5M LOC, which took over an 

hour to analyze.  

 
Figure 4. Viewing the Core-Periphery architecture partition in Understand. 
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V. CONCLUSION 

 Software code quality and technical debt have significant 

impact on a software product’s reliability and maintainability. 

This paper identifies a small, essential, set of static software 

code metrics linked to reliability and maintainability and to 

the most commonly identified sources of technical debt.  A 

plug-in is created for the Understand code visualization and 

static analysis tool that calculates and aggregates the metrics 

and produces a high-level interactive html report as well as 

developer-level information needed to address quality issues. 

A script makes use of Git, Understand, and the plug-in to 

compile results for lists of GitHub repositories into a single 

file.  

 While the plug-in is useful as-is, it was developed as a first 

step in an ongoing project aimed at applying case-based 

reasoning to the issue of software product quality. The next 

step in this project aims to use the described plug-in as part of 

a research effort to define and validate the aggregation of 

these metrics as part of a software quality model. 
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