
Compiling Static Software Metrics for Reliability and

Maintainability from GitHub Repositories

Jeremy Ludwig, Steven Xu

Stottler Henke Associates, Inc.

San Mateo, CA

Frederick Webber

Air Force Research Laboratory

711th HPW/RHAS

WPAFB, OH

Abstract— This paper identifies a small, essential set of static

software code metrics linked to the software product quality

characteristics of reliability and maintainability and to the most

commonly identified sources of technical debt. A plug-in is

created for the Understand code visualization and static analysis

tool that calculates and aggregates the metrics. The plug-in

produces a high-level interactive html report as well as

developer-level information needed to address quality issues

using Understand. A script makes use of Git, Understand, and

the plug-in to compile results for a list of GitHub repositories

into a single file. The primary contribution of this work is to

describe an open-source plug-in to measure and visualize

architectural complexity based on the propagation cost and core

size metrics, which are not currently found in other tools. The

plug-in should be useful to researchers and practitioners

interested in these two metrics and as an expedient starting point

to experimentation with metric collection and aggregation for

groups of GitHub repositories. The plug-in was developed as a

first step in an ongoing project aimed at applying case-based

reasoning to the issue of software product quality.

Keywords— software product quality, technical debt, reliability,

maintainability, architecture, metrics, static code analysis

I. INTRODUCTION

There is a consistent push to improve software quality,
especially for components that are designed to be heavily re-
used and extended, e.g., as part of a software product line.
Software quality models are a way of articulating what is
meant by ‘software quality.’ These models define the desired
characteristics and sub-characteristics of software and the
relationship between these characteristics and measurable
properties of the software [1]. The ISO-IEC 25010: 2011 [2]
quality model defines eight desired characteristics of software
product quality. An objective of this paper is to identify a
small, essential set of static software code metrics linked to
these product quality characteristics. While all the
characteristics are important, the paper focuses specifically on
Reliability and Maintainability, as the bulk of existing research
linking software quality to static code analysis uses these
characteristics [3].

Technical debt is a measure of how much work would be
needed to move from the current code to higher-quality code
[4]. The source of technical debt during development and
sustainment stems primarily from making design,
implementation, documentation, and testing decisions that are
focused on short-term value [5]. As technical debt increases,

changes to the software become more difficult, error-prone,
and time-consuming, and this threatens the reliability and
maintainability characteristics of the software.

This is an especially important take-away for software
product lines, where long-lived, reusable modules are intended
to be shared by multiple systems. Each module will want to
invest in high software quality (low technical debt) initially and
maintain this investment in quality over time as it is extended
and updated. That is, as part of planned re-usability, each
module commits to making a long-term investment to software
quality. The likely alternative is that the software quality will
gradually degrade, until the problems become overwhelming
[6].

There are several practical software quality models and
tools that have been recently developed and that generally
include an automated measurement of technical debt [7].
However, by default, the measured technical debt may not be
an accurate measure of product quality issues [8]. While some
technical debt is unavoidable [9], a large survey of software
engineers and architects across multiple organizations provides
a practical view of the causes and sources of avoidable
technical debt [5]. Their results indicate that architectural
decisions, overly complex code, and lack of code
documentation are the top three avoidable sources of technical
debt in practice.

In the remainder of this paper, the Related Work section
briefly covers existing tools in this area. Following this, the
Methods section describes the work performed on metric
identification, metric calculation, and compilation of results for
GitHub repositories. The Results section illustrates use cases
for managers, developers, and GitHub compilation. Finally, the
Discussion and Conclusion sections evaluate and summarize
the results.

A. Related Work

 Related software quality and automated code review tools

are based on a software quality model that identifies specific

source code metrics, and describes how the measurements of

these metrics are aggregated, and how the aggregations are

used to assess characteristics of software quality and technical

debt [10]. Some examples of state-of-the-art models (and

tools) discussed are Software Quality Enhancement

(SQUALE), Quamoco Benchmark for Software Quality,

Columbus Quality Model, Software Improvement Group

2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Banff Center, Banff, Canada, October 5-8, 2017

978-1-5386-1644-4/17/$31.00 ©2017 IEEE 5

(SIG) Maintainability Model, and Software Quality

Assessment based on Lifecycle Expectations (SQALE).

Codacy is another example of an automated code review and

analysis tool. As an open-source project, SQUALE provides a

veritable treasure trove of information on understanding and

developing a software quality model. SQALE [11] differs

from the others in that it is an open methodology that defines

the software quality and technical debt model and is

implemented by tools such as SonarQube.

 Contribution: The primary contribution of this work is to

describe an open-source plug-in to measure and visualize

architectural complexity metrics not currently found in other

tools. The work reported in this paper also differs from this

existing work in that it begins to develop a quality model that

focuses on architectural complexity and relies on only a small

set of essential software metrics that address the primary

sources of technical debt.

II. METHODS

 The Methods section includes metric identification and

calculation, metric aggregation, and GitHub compilation.

A. Metric Identification and Calculation

 This section discusses three types of static source code

metrics related to software quality characteristics and how

they are calculated. The first measures architectural

complexity, the second code complexity and coupling, and the

third, code commenting. The Understand code visualization

and static code analysis tool, developed by Scientific

Toolworks, is used to perform all metric measurement and

calculation.

1) Architectural Metrics

 The two selected visibility metrics define architectural

complexity based on how reachable one file in the code base

is from all the other files. These two metrics are measured

using the algorithm defined in [12]. The code for performing

these measures is included in the open source plug-in. While

there are numerous measures of software architecture [13] –

[15], these two were specified by the research agenda.

 The first architectural metric is propagation cost. This is a

system-wide metric that describes the proportion of software

files that are directly or indirectly linked to each other. If

component A makes a call to B, A and B are directly linked. If

file B makes a call to C, then B and C are directly linked and

A and C are indirectly linked. Given this configuration, if C is

changed, B might need to be changed as well. If B is changed,

then A might need to be changed. So, a change in C might

require both B (direct link) and A (indirect link) to be

changed. The propagation cost provides a single, system-wide

measure of how linked the code is.

 The second architectural metric is the core size. This metric

involves classifying every component (class or file) into one

of five architecture groups based on the number of direct and

indirect links of the components: core, shared, control,

peripheral, and isolate. The algorithm also divides the overall

architecture into one of four types: core-periphery, borderline

core-periphery, multi-core, and hierarchical. The core group

represents the largest cyclic group, i.e., the largest set of

components that are interdependently linked to each other.

 The utility of the propagation cost and core size measures of

architectural complexity has been demonstrated in a number

of studies [16] – [18]. These measures have been shown to

relate significantly to defect density, programmer productivity,

and programmer retention. Core files have been found to

contain more defects and cost more to maintain [17].

2) Complexity Metrics

 A small set of complexity, size, and coupling metrics were

selected based on evidence of supporting correlation with, or

prediction of, the software characteristics of reliability and

maintainability. Given the vast available literature on software

metrics and an equally large variety of metrics, a reasonable

starting point is systematic literature reviews. [19] reviews 99

primary studies and compares their work to several other

surveys and systematic literature reviews (e.g., [20] [21]).

The results indicate that the link from metric to reliability and

maintainability across studies is strongest for: LOC, WMC-

Unweighted/WMC-McCabe, RFC, and CBO. A high level

definition of each of these metrics from [1] is:

 LOC (Lines of Code): The number of lines containing

source code, including inactive regions, in a component.

LOC is a measure of size/volume.

 WMC Unweighted (Weighted Method Count -

Unweighted): A simple count of the number of methods

implemented in a component. WMC is a measure of

complexity.

 WMC-McCabe (Weighted Method Count – McCabe): Like

WMC-Unweighted, except that each method

implemented in the component is weighted by its McCabe

Cyclomatic complexity value. Cyclomatic complexity is

the number of independent paths through a method.

WMC is a measure of complexity.

 RFC (Response for Class): The sum of the number of

methods in a component plus the sum of all the methods it

directly references in other components. RFC is a

measure of complexity.

 CBO (Coupling Between Objects): This is a measure of

how many other components are relied on by a given

component. CBO is a measure of coupling.

We define each of these metrics based on existing calculations

performed by Understand. The plug-in relies on these existing

calculations, concretely defined in [22].

3) Comment Metrics

 The Code-To-Comment ratio is used as an initial measure

of code commenting. This metric has been well studied as part

of earlier work on quality models [23]. Anecdotally, it is also

one of the metrics most-used by developers utilizing the

Understand software. The plug-in relies on existing

functionality within Understand to calculate this metric.

6

B. Metric Aggregation Model

 Propagation cost and core size metrics generate a project-

wide measurement. For all other metrics, an aggregation

model is needed to generate a project-level description from

the component-level description. In this initial work, two

different types of aggregation were used. The first was to

report median values, e.g., median LOC per component. The

second was to report the number of components that exceeded

a threshold, e.g., number of components that contained more

than 200 LOC. Default thresholds were taken from [24], [25]

and from thresholds previously defined within Understand.

There are numerous difficulties with threshold values; the

plug-in supports users easily changing to different values.

Counts are also included in the report (e.g., Number of

Classes), to convert from absolute number of thresholds

exceed to percentage of files exceeding a threshold. This

aggregation model represents a first step in ongoing work.

C. GitHub Compilation

 Software quality has also been studied specifically in the

context of open-source code [26]. Open-source repositories,

such as that available on GitHub, include information on the

software product, the development process, and their

popularity. The available information includes the software

code, the associated version control system, the list of issues

and their status, and the list of contributions, as well as the

number of stars and forks [27]. All this information is

available through the GitHub API.

 Taking advantage of this, Python and Bash scripts running

on a Linux box were created to automatically pull and process

data from a list of specified GitHub projects using the API.

The first script clones each repository into a local directory

and runs the Understand metrics on it, while also querying

relevant data fields (e.g., stars/watches/forks, languages used,

number of issues) using the GitHub API, storing the results in

a JavaScript Object Notation (JSON) file. A second script

extracts the essential fields from both the JSON files and

generated metrics of each project and compiles them into a

single combined Comma Separated Values (CSV) file. This

allows the results for groups of repositories to be easily

viewed and manipulated in a spreadsheet.

III. RESULTS

 The Results section describes the results of the plug-in for

project management, developer, and GitHub use cases.

A. Project Management

 From a management perspective, the goal is to use the plug-

in to calculate the current metric values. Once the plug-in is

installed, the user opens a software code base in Understand

and then selects a “Core Metrics” report menu item. At this

point the user can elect to change the default thresholds. An

interactive HTML report is generated as shown in Figure 1.

The report includes all the generated metrics on the left and

the various architecture groupings in a Design Structure

Matrix graph in the center, as described in [12]. The plug-in

was tested on a variety of open-source and proprietary

software in Java, C++, C, and Web languages.

Figure 1. Interactive report for a single GitHub Project.

7

Figure 2. Partial results compiled from three GitHub repositories.

B. Software Development

 For the software developer example, the goal is to reduce

technical debt. Understand already supports this goal for the

complexity and comment metrics. The plug-in takes advantage

of existing Understand functionality to address architectural

complexity as well. This is accomplished by importing the

architecture partitions, to support tracking down and

refactoring complexity and cyclic dependencies as shown in

Figure 3 and Figure 4.

Figure 3. A tree map in Understand where the map is divided by

architecture partition, the size of each component is determined by

LOC, and color indicates the amount of WMC-McCabe complexity

(darker blue is more complex).

C. GitHub Results

 The GitHub compilation scripts were tested against 8 C++

and 8 Java projects from GitHub, choosing projects with high

numbers of stars that spanned different application areas.

When given the list of projects, the system was able to

automatically download, analyze, and collect meta-

information on each project. These projects represent a total of

5M+ lines of code, analyzed in about 40 minutes. The results

are presented in CSV format as shown in Figure 2. Complete

results are available on github.com/StottlerHenke.

IV. DISCUSSION

 The methods section focused on identifying metrics that are

linked to software product reliability and maintainability and

also to the most relevant types of technical debt facing

developers. The results demonstrate that the developed plug-in

is able to calculate the identified metrics and how this

information can be used within Understand to help address

technical debt. The plug-in is freely available at:

scitools.com/support/gui-plugins/. A licensed copy of

Understand is needed to use the plug-in.

 The results also demonstrate the ability to write scripts that

use the plug-in to download the code and meta-information for

a repository from GitHub, analyze the code, and then compile

the results. The generated report includes context information

such as the description, stars, contributors, and issues, in

addition to the metrics generated from the source code.

Additionally, the script serves as a template to use the system

in other ways, for example measuring and compiling results as

part of an automated build process. The compilation scripts

are available at: github.com/StottlerHenke.

 There are limitations in the current plug-in. First, the object-

oriented measures (CBO, WMC, WMC-McCabe, and RFC)

are not currently calculated for C files. Second, the plug-in has

been tested on code only up to 4.5M LOC, which took over an

hour to analyze.

Figure 4. Viewing the Core-Periphery architecture partition in Understand.

8

V. CONCLUSION

 Software code quality and technical debt have significant

impact on a software product’s reliability and maintainability.

This paper identifies a small, essential, set of static software

code metrics linked to reliability and maintainability and to

the most commonly identified sources of technical debt. A

plug-in is created for the Understand code visualization and

static analysis tool that calculates and aggregates the metrics

and produces a high-level interactive html report as well as

developer-level information needed to address quality issues.

A script makes use of Git, Understand, and the plug-in to

compile results for lists of GitHub repositories into a single

file.

 While the plug-in is useful as-is, it was developed as a first

step in an ongoing project aimed at applying case-based

reasoning to the issue of software product quality. The next

step in this project aims to use the described plug-in as part of

a research effort to define and validate the aggregation of

these metrics as part of a software quality model.

ACKNOWLEDGMENT

This material is based upon work supported by the United
States Air Force Research Laboratory under Contract No.
FA8650-16-M-6732. The views, opinions, and/or findings
contained in this article/presentation are those of the
author/presenter and should not be interpreted as representing
the official views or policies, either expressed or implied, of
the AFRL.

DISTRIBUTION A. Approved for public release:
distribution unlimited (case 88ABW-2017-2167).

REFERENCES

[1] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical

Approach, Third Edition, 3rd ed. Boca Raton, FL, USA: CRC Press,

Inc., 2014.
[2] Organización Internacional de Normalización, ISO-IEC 25010: 2011

Systems and software engineering - Systems and software Quality

Requirements and Evaluation (SQuaRE) - System and software
quality models. Geneva: ISO, 2011.

[3] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin, “Empirical

evidence on the link between object-oriented measures and external
quality attributes: a systematic literature review,” Empir. Softw. Eng.,

vol. 20, no. 3, pp. 640–693, Jun. 2015.

[4] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In
Search of a Metric for Managing Architectural Technical Debt,” in

Proceedings of the 2012 Joint Working IEEE/IFIP Conference on

Software Architecture and European Conference on Software
Architecture, Washington, DC, USA, 2012, pp. 91–100.

[5] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,

“Measure It? Manage It? Ignore It? Software Practitioners and
Technical Debt,” in Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, New York, NY, USA, 2015,

pp. 50–60.
[6] E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What

Software Practitioners Have to Say about Technical Debt,” IEEE

Softw., vol. 29, no. 6, pp. 22–27, Nov. 2012.
[7] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the Principal of

an Application’s Technical Debt,” IEEE Softw., vol. 29, no. 6, pp. 34–

42, Nov. 2012.

[8] I. Griffith, D. Reimanis, C. Izurieta, Z. Codabux, A. Deo, and B.

Williams, “The Correspondence Between Software Quality Models
and Technical Debt Estimation Approaches,” in Proceedings of the

2014 Sixth International Workshop on Managing Technical Debt,

Washington, DC, USA, 2014, pp. 19–26.
[9] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From

Metaphor to Theory and Practice,” IEEE Softw., vol. 29, no. 6, pp.

18–21, Nov. 2012.
[10] R. Ferenc, P. Hegedűs, and T. Gyimóthy, “Software Product Quality

Models,” in Evolving Software Systems, T. Mens, A. Serebrenik, and

A. Cleve, Eds. Springer Berlin Heidelberg, 2014, pp. 65–100.
[11] J.-L. Letouzey, “The SQALE Method for Managing Technical Debt

Definition Document,” 31-Mar-2016. [Online]. Available:

http://www.sqale.org/wp-content/uploads/2016/08/SQALE-Method-
EN-V1-1.pdf. [Accessed: 04-Feb-2017].

[12] C. Baldwin, A. MacCormack, and J. Rusnak, “Hidden Structure:

Using Network Methods to Map System Architecture,” 2014.
[13] R. Kazman et al., “A Case Study in Locating the Architectural Roots

of Technical Debt,” in Proceedings of the 37th International

Conference on Software Engineering - Volume 2, Piscataway, NJ,
USA, 2015, pp. 179–188.

[14] S. Stevanetic and U. Zdun, “Software Metrics for Measuring the

Understandability of Architectural Structures: A Systematic Mapping
Study,” in Proceedings of the 19th International Conference on

Evaluation and Assessment in Software Engineering, New York, NY,

USA, 2015, p. 21:1–21:14.
[15] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and

Quantifying Architectural Debt,” in Proceedings of the 38th
International Conference on Software Engineering, New York, NY,

USA, 2016, pp. 488–498.

[16] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the
Structure of Complex Software Designs: An Empirical Study of Open

Source and Proprietary Code,” Manag. Sci., vol. 52, no. 7, pp. 1015–

1030, Jul. 2006.
[17] A. MacCormack and D. J. Sturtevant, “Technical debt and system

architecture: The impact of coupling on defect-related activity,” J.

Syst. Softw., vol. 120, pp. 170–182, Oct. 2016.
[18] D. J. Sturtevant, “System design and the cost of architectural

complexity,” Thesis, Massachusetts Institute of Technology, 2013.

[19] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin, “Empirical
evidence on the link between object-oriented measures and external

quality attributes: a systematic literature review,” Empir. Softw. Eng.,

vol. 20, no. 3, pp. 640–693, Mar. 2014.
[20] M. Riaz, E. Mendes, and E. Tempero, “A Systematic Review of

Software Maintainability Prediction and Metrics,” in Proceedings of

the 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, Washington, DC, USA, 2009, pp.

367–377.

[21] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software
fault prediction metrics: A systematic literature review,” Inf. Softw.

Technol., vol. 55, no. 8, pp. 1397–1418, Aug. 2013.

[22] “Metrics | SciTools.com.” [Online]. Available:
https://scitools.com/feature/metrics/. [Accessed: 07-Mar-2017].

[23] D. Coleman, B. Lowther, and P. Oman, “The application of software

maintainability models in industrial software systems,” J. Syst. Softw.,
vol. 29, no. 1, pp. 3–16, Apr. 1995.

[24] Ö. F. Arar and K. Ayan, “Deriving thresholds of software metrics to

predict faults on open source software: Replicated case studies,”

Expert Syst. Appl., vol. 61, pp. 106–121, Nov. 2016.

[25] S. Herbold, J. Grabowski, and S. Waack, “Calculation and

optimization of thresholds for sets of software metrics,” Empir. Softw.
Eng., vol. 16, no. 6, pp. 812–841, Dec. 2011.

[26] D. Spinellis et al., “Evaluating the Quality of Open Source Software,”

Electron. Notes Theor. Comput. Sci., vol. 233, pp. 5–28, Mar. 2009.
[27] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A.

Wierzbicki, “GitHub Projects. Quality Analysis of Open-Source

Software,” in Social Informatics, 2014, pp. 80–94.

9

