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Abstract— The work presented in this paper describes an 

intelligent scheduling software framework that utilizes domain-

specific heuristics. The customizability of the framework and 

heuristics allows the software to develop a valid schedule that 

reflects each domain’s specific preferences and constraints. Four 

distinct examples of this are presented in the areas of prototype 

vehicle testing, pharmaceutical packaging, mortgage audit 

scheduling, and satellite communication. In each example, the 

software solves a complex scheduling problem in less than five 

minutes and produces a schedule that is significantly better than 

those reached by previous methods. The primary contribution of 

this brief is describing how the customization of a general 

scheduling framework quickly generates solutions for specialized 

and highly constrained problems in a variety of domains. 
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II. INTRODUCTION 

Scheduling, at its most basic, is the process of assigning 

tasks to resources over time, with the goal of optimizing the 

result according to one or more objectives [1]. Scheduling is 

heavily used in construction, manufacturing, defense, and 

service industries to minimize the time and cost associated 

with the completion or production of large and complex 

projects. 

The Aurora scheduling framework is one example of a 

general-purpose scheduler that has been successfully applied 

to a variety of domains [2], [3]. Aurora combines graph 

analysis techniques with heuristic scheduling techniques to 

quickly produce an effective schedule based on a defined set 

of tasks and constraints. This typically includes the following: 

 Temporal: Tasks must be scheduled between the project 

start and end dates; each task has duration and an optional 

start date and an optional end date.  

 Calendar: Tasks can only be scheduled during working 

shifts; tasks cannot be scheduled on holidays. 

 Ordering: Tasks can optionally be assigned to follow 

either immediately after/before another task or sometime 

after/before another task; optionally with a specific lag 

time in between. 

 Resource: Each task can require that resources be 

available for the task to be scheduled. 

The framework distills the various operations involved in 

creating a schedule that respects all of these constraints into 

reconfigurable modules that can be exchanged, substituted, 

adapted, and extended. This framework is used as a 

foundation to create domain-specific scheduling tools that 

respect the constraints specific to domains. Additionally, 

heuristics are tuned on a domain-specific basis to ensure a 

high-quality schedule for a given domain. 

The remainder of this brief will describe related work, 

followed by an overview of the scheduling framework. 

Following this, four use cases demonstrating the application of 

the framework will be discussed along with a short 

conclusion. 

A. Related Work 

There is a body of prior work outside of Aurora towards 

creating a general-purpose scheduling framework that forms 

the basis of domain-specific scheduling tools. The OZONE 

Scheduling Framework [4] is one example. [5] describes the 

validation of the OZONE concept through its application to a 

diverse set of real-world problems, such as transportation 

logistics and resource-constrained project scheduling. [6] 

presents a design for a general scheduling framework for 

manufacturing. [1] presents an overview of several modern 

general purpose scheduling systems such as the SAP 

Production Planning and Detailed Scheduling System, 

ASPROVA Advanced Planning and Scheduling, Preactor 

Planning and Scheduling Systems, and ORTEM Agile 

Manufacturing Suite. Each of these modern systems has a 

distinct feature set while sharing much in common with 

Aurora and each other. The primary contribution of this brief 

is to describe one specific framework and how it is customized 

to develop schedules in a variety of domains.  

III. INTELLIGENT  SCHEDULING FRAMEWORK 

The scheduling framework consists of two primary 

components: the engine and the user interface. Both 

components will be customized to create a domain-specific 
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scheduling tool, However, this paper focuses on engine 

customization. 

A. Scheduling Engine 

The scheduling engine is designed to be highly flexible 

and easily customizable, by allowing a software developer to 

specify what components to use for different parts of 

scheduling. The steps in the scheduling process are described 

in detail below and all configurable elements are shown in 

bold.  

1) Schedule Initialization 

First, Aurora applies the Preprocessor to the schedule 

information. Second, Aurora uses the Queue Initializer to set 

up the queue that will be used to run the scheduling loop. A 

standard Queue Initializer puts some or all the schedulable 

elements—tasks and resources—onto the queue. Third, the 

queue uses the Prioritizer to determine the priority of each 

element. The Prioritizer may be re-applied within the 

scheduling loop.  

2) Scheduling loop 

First, the Scheduler calls constraint propagation on the 

highest- priority schedulable to be sure that all its 

requirements and restrictions are up to date. Second, the 

Scheduler looks at the element and considers any Scheduling 

Method that is associated with it (e.g., Forward, Backward). 

The Scheduler also selects which Quality Criterion to 

associate with the selected scheduling method; the Quality 

Criterion determines what makes an assignment “good.” 

Third, the Scheduler calls the Schedule Method on the 

schedulable. The result is that the schedulable element is 

assigned to a time window and has resources selected to 

satisfy any resource requirements. It also returns a list of the 

conflicts resulting from the given assignment. Fourth, the 

Scheduler calls constraint propagation on the schedulable 

(again) to update all the neighbors so that they are 

appropriately restricted by the newly scheduled element. This 

process may result in additional conflicts; if so, these are 

added to the list of conflicts from scheduling., Fifth, the 

Scheduler asks the Conflict Manager to resolve those 

conflicts. 

3) Schedule Finalization 

When the queue is empty, Aurora goes through a final conflict 

management step, this time at the global level. Aurora calls 

the Postprocessor on the schedule, so that any additional 

analysis may be done before Aurora returns the schedule 

results. 

IV. EXAMPLE DOMAINS 

Two different types of modifications are made to the 

intelligent scheduling framework to create a domain-specific 

tool. First, the components in the scheduling engine are 

updated specifically for the domain. Second, the user interface 

is modified to import, display, and edit domain-specific 

properties and functionality. This customization results in a 

tool that includes heuristics that are currently used by planners 

to solve the problem with existing tools and technology and 

that respects the constraints particular to each domain. Four 

domain-specific tools created with the framework and their 

results are briefly discussed. 

A. Protype Vehicle Testing 

Prototype vehicle testing is an essential part of building 

models of cars and trucks in the automotive industry. This can 

involve carrying out hundreds of tests on expensive hand-built 

prototype vehicles. As part of creating a schedule, the primary 

objectives in this domain are to minimize the number of 

prototype vehicles required and to complete the project in the 

allotted time window. This domain also includes additional 

constraints: Vehicle Build Dates: Vehicles are resources that 

are not available for tests until the date they are created; 

creation dates follow a given calendar; the scheduling system 

should assign creation dates to vehicles such that the objective 

functions are minimized; Exclusive: Tests indicated as 

exclusive must be the first test on the selected vehicle; and 

Destructive: Tests indicated as destructive must be the last 

test on the selected vehicle. 

While most of the scheduling engine components were 

customized [7], [8], the Prioritizer contained the bulk of the 

domain specific heuristics. In general, if “difficult” tasks are 

scheduled earlier in the process, the schedule tends to avoid 

subsequent conflicts that would be difficult to repair. Several 

heuristics were developed to identify these difficult tasks—

those tasks that are exclusive, are significantly longer in 

duration, are destructive, have significant follow-on work, and 

have fewer options with respect to resources and/or time 

windows. 

In the end, the customized system created a testing schedule 

that met all of the constraints, making use of over 100 vehicles 

and over 30 vehicle configurations to complete over 4000 

days of testing [9]. A conservative estimate suggests the 

schedule includes a 6% reduction in the number of vehicles 

over the previous scheduling method, resulting in cost savings 

in the millions of dollars. 

B. Pharmaceutical Packaging 

Pharmaceutical packaging is a critical step in the production 

and distribution of pharmaceutical drugs, where it is 

imperative that all packages are free from contamination, 

properly labeled according to where they will be distributed, 

and, most important, contain only the desired product in the 

correct dosage. A schedule for a packaging plant assigns 

products to packaging lines and determines the order in which 

they are packaged.  

There are several important factors in producing a good 

schedule: Changeover Times: How long it takes to set up for 

the next packaging operation depends on the previous 

packaging operation and the selected line; Line Options: 

Each product has a subset of lines it can use in packaging, 

Throughput: each product has a certain packaging rate for 

each line; and Consistency: All packaging for a specific 

product should occur on the same line, and packaging order 

should be consistent from month to month. 

2



Changeover times, line options, and throughput all feed into 

the line selection criteria—effectively a customized resource 

selection criteria. In each case, the optimal selection is 

balanced against resource availability in the schedule at large. 

Even with heuristic scheduling, analyzing the resource 

selection tradeoffs is a computationally expensive process. 

However, the consistency requirement actually reduces the 

scalability issues. 

Because the factory needs to generally do things in the same 

order from one month to the next, the Preprocessor in this 

domain rigorously explores the problem space using 

utilization projections and resource selection criteria 

customized to use changeover times and throughput to find a 

good product ordering and equipment selection allocation for 

a single month. Having found that order, the scheduling 

system can reuse the order for the other months of the year, at 

linear computational cost. This is a slightly unusual situation 

because the scheduling step’s decisions are effectively pre-

determined by the customized preprocessor, but the 

preprocessor uses customized versions of the scheduler’s 

helper classes to determine the best product allocations for the 

month, which will then become the template for the whole 

schedule. 

The system provides automated scheduling across any 

number of packaging lines in a plant, while finding a balance 

that minimizes changeover time and maximizes overall 

equipment effectiveness. This efficiency increase allows for 

lower inventories and provides the plant an improved ability 

to accommodate change. The automated scheduling, in 

conjunction with the speed at which scheduling is performed, 

allows the human planners to better adapt to changing 

circumstances. 

C. Mortgage Audit Scheduling 

Mortgage auditing is routinely performed on lenders to 

guarantee that mortgage approvals are appropriate and 

unbiased. A large mortgage auditing company may perform 

thousands of audits for dozens of clients in a given week. Each 

audit goes through multiple synchronized steps, and all steps 

must be completed by a hard deadline. There are a number of 

constraints on how those audits should be allocated to auditors 

to create a schedule: Training: There are a wide variety of 

mortgage types, and audits must be assigned to personnel with 

the correct training; Consistency: Assignment of a consistent, 

minimal subset of auditors is advantageous; and 

Thoroughness:  At least two auditors are required.  

Because some of these constraints are soft (e.g., using 

consistent auditors for a client, or preferring a small number of 

auditors), while others are hard (e.g., training requirements or 

deadline satisfaction), a flexible scheduling strategy is 

required. Backtracking once tasks are formally scheduled is 

slow, so instead the Preprocessor has been modified to 

construct a less precise but more nimble projection. The 

Preprocessor models a queue for each auditor, with logic to 

determine on which day a given audit will be completed. By 

populating this queue in due-date order, starting with the most 

preferred formulation but shifting work based on a variety of 

heuristics, Aurora is able to quickly find a solution that 

maximizes the soft constraint satisfaction while satisfying the 

hard constraints.  

The customized system allows automated scheduling of 

thousands of audits, a process that used to require a human 

scheduler to devote a person-day to each week. Because it is 

automated, the system can update much more frequently to 

support rapid adaptation to changing circumstances. 

D. Satellite Communication 

The Air Force commands and controls a variety of satellites 

through a global network of antennas and ground support 

equipment. Each constellation of satellites (e.g. the GPS 

satellites) is commanded from a separate satellite operations 

center. Each constellation’s controlling organization makes 

satellite communication support requests for the antennas and 

other ground support equipment (including limited bandwidth 

for each multi-antenna site as a whole) independently of the 

others to a central scheduling organization which must 

deconflict the competing requests. The most obvious 

constraint on this process is that there must be line of sight 

between the antenna and the satellite. In general, the 

scheduling organization tries to meet the original requests as 

closely as possible. In a typical single day, there are about 600 

or more support requests and usually more than half are in 

conflict with each other. Many of the conflicts are seemingly 

unsolvable, e.g. if there is only one antenna at a site and two 

requests for that antenna at the same time, the conflict is 

seemingly unsolvable. Yet this organization produces a 

conflict-free schedule daily, while meeting all requests. 

Meeting all (or as many as possible) support requests as 

closely as possible is the main objective. 

The solution is a two-step process. The first step applies the 

bottleneck avoidance algorithm [10] to meet as many of the 

requests as possible with the existing resources, without 

relaxing any constraints. The bottleneck avoidance algorithm 

involves the Preprocessor to derive a global perspective by 

determining which resources are bottlenecks (most overly-

contended-for) and at which times. This explained more fully 

in [11] but very briefly, this involves “spreading” each request 

pseudo-probabilistically across all resources that it might use. 

(E.g. if a support request needs one of two antennas it is 

pseudo allocated 50% to each one and similarly the request’s 

needed minutes are spread across the full possible time 

window). The Prioritizer uses this information to put requests 

that need the most overly-contended-for resources at the most 

overly contended for times at the front of the queue to be 

scheduled first. The ScheduleMethod uses the bottleneck 

information to make resource and time window selections to 

avoid the worst bottlenecks by making the assignment which 

most reduces the bottleneck problem. That is, in making this 

local decision it considers the global perspective.  Bottleneck 

avoidance solves about half of the conflicts but the remaining 

3



ones are typically unsolvable without relaxing some aspect of 

the requests. 

The second step of the process iteratively examines each 

remaining conflict, and makes suggested changes to one or 

more support requests. For example, a specific support may 

request 10 minutes of preparation time before the support will 

actually commence. The scheduler may know that this 

constellation’s manager will accept 5 minutes, if there is no 

other choice. The suggested change to that manager is to 

reduce his preparation time to 5 minutes. Other changes relate 

to moving the support out of its requested time window or to a 

different site or replacing ground support equipment with 

alternatives or even dropping certain hardware requirements 

all together. Some of these changes are more suggestable if 

the other satellite in the conflict is from the same 

constellation. The scheduler annotates the schedule with 

symbols and notes for the suggested change, appending his 

initials. With dozens of constellations, and each constellation 

having dozens of these rules of thumb, there were hundreds of 

undocumented rules that the expert schedulers used to resolve 

effectively all the remaining conflicts. Within each set of 

rules, there were preferences for which to use before others. 

Combinations and domino effects (e.g. solving a conflict by 

creating another, then solving that one) had to also be 

considered. This knowledge was elicited and implemented in 

constellation-specific, user-editable rule bases which were 

incorporated into Aurora’s Postprocessor. The application of 

each rule also made the necessary note annotations and 

appended the software’s initials. 

Over a thirty-year period, dozens of researchers have 

worked on this specific problem and the Air Force had 

previously invested tens of millions of dollars to develop 

various solutions, but all of them were considered 

operationally unacceptable (primarily because the relaxation 

rules had never been elicited before). In 2017, this application 

of Aurora passed high-stakes testing so that it could be 

operationally implemented and it demonstrated a 20-fold 

improvement in the time required to deconflict a 24-hour 

schedule. 

 

V. CONCLUSION 

   This paper illustrates the application of a general scheduling 

framework to four distinct domains. While scheduling 

problems share much in common as described in the 

introduction, each of the four domains also contains additional 

constraints and objectives that define what constitutes a ‘good’ 

schedule in that particular domain. For each domain, we 

describe how the customizability of the framework and 

heuristics allows the software to develop a valid schedule that 

reflects each domain’s specific objectives and constraints. 

Finally, the four systems highlighted in this paper are all 

deployed and in-use. This allows us to briefly describe the 

impact the scheduling system has had in each domain. In all 

cases, the scheduling system solves a complex scheduling 

problem in less than five minutes and produces a schedule that 

is significantly better than those arrived at by previous 

scheduling methods. 
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