
Applying a Heuristic-Based Scheduling Framework

in Manufacturing, Service, and

Communication Domains

Jeremy Ludwig, Rob Richards, Annaka Kalton, Dick Stottler

Stottler Henke Associates, Inc.

San Mateo, CA

ludwig; richards; kalton; stottler @stottlerhenke.com

Abstract— The work presented in this paper describes an

intelligent scheduling software framework that utilizes domain-

specific heuristics. The customizability of the framework and

heuristics allows the software to develop a valid schedule that

reflects each domain’s specific preferences and constraints. Four

distinct examples of this are presented in the areas of prototype

vehicle testing, pharmaceutical packaging, mortgage audit

scheduling, and satellite communication. In each example, the

software solves a complex scheduling problem in less than five

minutes and produces a schedule that is significantly better than

those reached by previous methods. The primary contribution of

this brief is describing how the customization of a general

scheduling framework quickly generates solutions for specialized

and highly constrained problems in a variety of domains.

A. Keywords—scheduling framework; heuristics; prototype

vehicle testing; pharmaceutical packaging; satellite

communication; mortgage auditing

II. INTRODUCTION

Scheduling, at its most basic, is the process of assigning

tasks to resources over time, with the goal of optimizing the

result according to one or more objectives [1]. Scheduling is

heavily used in construction, manufacturing, defense, and

service industries to minimize the time and cost associated

with the completion or production of large and complex

projects.

The Aurora scheduling framework is one example of a

general-purpose scheduler that has been successfully applied

to a variety of domains [2], [3]. Aurora combines graph

analysis techniques with heuristic scheduling techniques to

quickly produce an effective schedule based on a defined set

of tasks and constraints. This typically includes the following:

 Temporal: Tasks must be scheduled between the project

start and end dates; each task has duration and an optional

start date and an optional end date.

 Calendar: Tasks can only be scheduled during working

shifts; tasks cannot be scheduled on holidays.

 Ordering: Tasks can optionally be assigned to follow

either immediately after/before another task or sometime

after/before another task; optionally with a specific lag

time in between.

 Resource: Each task can require that resources be

available for the task to be scheduled.

The framework distills the various operations involved in

creating a schedule that respects all of these constraints into

reconfigurable modules that can be exchanged, substituted,

adapted, and extended. This framework is used as a

foundation to create domain-specific scheduling tools that

respect the constraints specific to domains. Additionally,

heuristics are tuned on a domain-specific basis to ensure a

high-quality schedule for a given domain.

The remainder of this brief will describe related work,

followed by an overview of the scheduling framework.

Following this, four use cases demonstrating the application of

the framework will be discussed along with a short

conclusion.

A. Related Work

There is a body of prior work outside of Aurora towards

creating a general-purpose scheduling framework that forms

the basis of domain-specific scheduling tools. The OZONE

Scheduling Framework [4] is one example. [5] describes the

validation of the OZONE concept through its application to a

diverse set of real-world problems, such as transportation

logistics and resource-constrained project scheduling. [6]

presents a design for a general scheduling framework for

manufacturing. [1] presents an overview of several modern

general purpose scheduling systems such as the SAP

Production Planning and Detailed Scheduling System,

ASPROVA Advanced Planning and Scheduling, Preactor

Planning and Scheduling Systems, and ORTEM Agile

Manufacturing Suite. Each of these modern systems has a

distinct feature set while sharing much in common with

Aurora and each other. The primary contribution of this brief

is to describe one specific framework and how it is customized

to develop schedules in a variety of domains.

III. INTELLIGENT SCHEDULING FRAMEWORK

The scheduling framework consists of two primary

components: the engine and the user interface. Both

components will be customized to create a domain-specific

2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Banff Center, Banff, Canada, October 5-8, 2017

978-1-5386-1644-4/17/$31.00 ©2017 IEEE 1

scheduling tool, However, this paper focuses on engine

customization.

A. Scheduling Engine

The scheduling engine is designed to be highly flexible

and easily customizable, by allowing a software developer to

specify what components to use for different parts of

scheduling. The steps in the scheduling process are described

in detail below and all configurable elements are shown in

bold.

1) Schedule Initialization

First, Aurora applies the Preprocessor to the schedule

information. Second, Aurora uses the Queue Initializer to set

up the queue that will be used to run the scheduling loop. A

standard Queue Initializer puts some or all the schedulable

elements—tasks and resources—onto the queue. Third, the

queue uses the Prioritizer to determine the priority of each

element. The Prioritizer may be re-applied within the

scheduling loop.

2) Scheduling loop

First, the Scheduler calls constraint propagation on the

highest- priority schedulable to be sure that all its

requirements and restrictions are up to date. Second, the

Scheduler looks at the element and considers any Scheduling

Method that is associated with it (e.g., Forward, Backward).

The Scheduler also selects which Quality Criterion to

associate with the selected scheduling method; the Quality

Criterion determines what makes an assignment “good.”

Third, the Scheduler calls the Schedule Method on the

schedulable. The result is that the schedulable element is

assigned to a time window and has resources selected to

satisfy any resource requirements. It also returns a list of the

conflicts resulting from the given assignment. Fourth, the

Scheduler calls constraint propagation on the schedulable

(again) to update all the neighbors so that they are

appropriately restricted by the newly scheduled element. This

process may result in additional conflicts; if so, these are

added to the list of conflicts from scheduling., Fifth, the

Scheduler asks the Conflict Manager to resolve those

conflicts.

3) Schedule Finalization

When the queue is empty, Aurora goes through a final conflict

management step, this time at the global level. Aurora calls

the Postprocessor on the schedule, so that any additional

analysis may be done before Aurora returns the schedule

results.

IV. EXAMPLE DOMAINS

Two different types of modifications are made to the

intelligent scheduling framework to create a domain-specific

tool. First, the components in the scheduling engine are

updated specifically for the domain. Second, the user interface

is modified to import, display, and edit domain-specific

properties and functionality. This customization results in a

tool that includes heuristics that are currently used by planners

to solve the problem with existing tools and technology and

that respects the constraints particular to each domain. Four

domain-specific tools created with the framework and their

results are briefly discussed.

A. Protype Vehicle Testing

Prototype vehicle testing is an essential part of building

models of cars and trucks in the automotive industry. This can

involve carrying out hundreds of tests on expensive hand-built

prototype vehicles. As part of creating a schedule, the primary

objectives in this domain are to minimize the number of

prototype vehicles required and to complete the project in the

allotted time window. This domain also includes additional

constraints: Vehicle Build Dates: Vehicles are resources that

are not available for tests until the date they are created;

creation dates follow a given calendar; the scheduling system

should assign creation dates to vehicles such that the objective

functions are minimized; Exclusive: Tests indicated as

exclusive must be the first test on the selected vehicle; and

Destructive: Tests indicated as destructive must be the last

test on the selected vehicle.

While most of the scheduling engine components were

customized [7], [8], the Prioritizer contained the bulk of the

domain specific heuristics. In general, if “difficult” tasks are

scheduled earlier in the process, the schedule tends to avoid

subsequent conflicts that would be difficult to repair. Several

heuristics were developed to identify these difficult tasks—

those tasks that are exclusive, are significantly longer in

duration, are destructive, have significant follow-on work, and

have fewer options with respect to resources and/or time

windows.

In the end, the customized system created a testing schedule

that met all of the constraints, making use of over 100 vehicles

and over 30 vehicle configurations to complete over 4000

days of testing [9]. A conservative estimate suggests the

schedule includes a 6% reduction in the number of vehicles

over the previous scheduling method, resulting in cost savings

in the millions of dollars.

B. Pharmaceutical Packaging

Pharmaceutical packaging is a critical step in the production

and distribution of pharmaceutical drugs, where it is

imperative that all packages are free from contamination,

properly labeled according to where they will be distributed,

and, most important, contain only the desired product in the

correct dosage. A schedule for a packaging plant assigns

products to packaging lines and determines the order in which

they are packaged.

There are several important factors in producing a good

schedule: Changeover Times: How long it takes to set up for

the next packaging operation depends on the previous

packaging operation and the selected line; Line Options:

Each product has a subset of lines it can use in packaging,

Throughput: each product has a certain packaging rate for

each line; and Consistency: All packaging for a specific

product should occur on the same line, and packaging order

should be consistent from month to month.

2

Changeover times, line options, and throughput all feed into

the line selection criteria—effectively a customized resource

selection criteria. In each case, the optimal selection is

balanced against resource availability in the schedule at large.

Even with heuristic scheduling, analyzing the resource

selection tradeoffs is a computationally expensive process.

However, the consistency requirement actually reduces the

scalability issues.

Because the factory needs to generally do things in the same

order from one month to the next, the Preprocessor in this

domain rigorously explores the problem space using

utilization projections and resource selection criteria

customized to use changeover times and throughput to find a

good product ordering and equipment selection allocation for

a single month. Having found that order, the scheduling

system can reuse the order for the other months of the year, at

linear computational cost. This is a slightly unusual situation

because the scheduling step’s decisions are effectively pre-

determined by the customized preprocessor, but the

preprocessor uses customized versions of the scheduler’s

helper classes to determine the best product allocations for the

month, which will then become the template for the whole

schedule.

The system provides automated scheduling across any

number of packaging lines in a plant, while finding a balance

that minimizes changeover time and maximizes overall

equipment effectiveness. This efficiency increase allows for

lower inventories and provides the plant an improved ability

to accommodate change. The automated scheduling, in

conjunction with the speed at which scheduling is performed,

allows the human planners to better adapt to changing

circumstances.

C. Mortgage Audit Scheduling

Mortgage auditing is routinely performed on lenders to

guarantee that mortgage approvals are appropriate and

unbiased. A large mortgage auditing company may perform

thousands of audits for dozens of clients in a given week. Each

audit goes through multiple synchronized steps, and all steps

must be completed by a hard deadline. There are a number of

constraints on how those audits should be allocated to auditors

to create a schedule: Training: There are a wide variety of

mortgage types, and audits must be assigned to personnel with

the correct training; Consistency: Assignment of a consistent,

minimal subset of auditors is advantageous; and

Thoroughness: At least two auditors are required.

Because some of these constraints are soft (e.g., using

consistent auditors for a client, or preferring a small number of

auditors), while others are hard (e.g., training requirements or

deadline satisfaction), a flexible scheduling strategy is

required. Backtracking once tasks are formally scheduled is

slow, so instead the Preprocessor has been modified to

construct a less precise but more nimble projection. The

Preprocessor models a queue for each auditor, with logic to

determine on which day a given audit will be completed. By

populating this queue in due-date order, starting with the most

preferred formulation but shifting work based on a variety of

heuristics, Aurora is able to quickly find a solution that

maximizes the soft constraint satisfaction while satisfying the

hard constraints.

The customized system allows automated scheduling of

thousands of audits, a process that used to require a human

scheduler to devote a person-day to each week. Because it is

automated, the system can update much more frequently to

support rapid adaptation to changing circumstances.

D. Satellite Communication

The Air Force commands and controls a variety of satellites

through a global network of antennas and ground support

equipment. Each constellation of satellites (e.g. the GPS

satellites) is commanded from a separate satellite operations

center. Each constellation’s controlling organization makes

satellite communication support requests for the antennas and

other ground support equipment (including limited bandwidth

for each multi-antenna site as a whole) independently of the

others to a central scheduling organization which must

deconflict the competing requests. The most obvious

constraint on this process is that there must be line of sight

between the antenna and the satellite. In general, the

scheduling organization tries to meet the original requests as

closely as possible. In a typical single day, there are about 600

or more support requests and usually more than half are in

conflict with each other. Many of the conflicts are seemingly

unsolvable, e.g. if there is only one antenna at a site and two

requests for that antenna at the same time, the conflict is

seemingly unsolvable. Yet this organization produces a

conflict-free schedule daily, while meeting all requests.

Meeting all (or as many as possible) support requests as

closely as possible is the main objective.

The solution is a two-step process. The first step applies the

bottleneck avoidance algorithm [10] to meet as many of the

requests as possible with the existing resources, without

relaxing any constraints. The bottleneck avoidance algorithm

involves the Preprocessor to derive a global perspective by

determining which resources are bottlenecks (most overly-

contended-for) and at which times. This explained more fully

in [11] but very briefly, this involves “spreading” each request

pseudo-probabilistically across all resources that it might use.

(E.g. if a support request needs one of two antennas it is

pseudo allocated 50% to each one and similarly the request’s

needed minutes are spread across the full possible time

window). The Prioritizer uses this information to put requests

that need the most overly-contended-for resources at the most

overly contended for times at the front of the queue to be

scheduled first. The ScheduleMethod uses the bottleneck

information to make resource and time window selections to

avoid the worst bottlenecks by making the assignment which

most reduces the bottleneck problem. That is, in making this

local decision it considers the global perspective. Bottleneck

avoidance solves about half of the conflicts but the remaining

3

ones are typically unsolvable without relaxing some aspect of

the requests.

The second step of the process iteratively examines each

remaining conflict, and makes suggested changes to one or

more support requests. For example, a specific support may

request 10 minutes of preparation time before the support will

actually commence. The scheduler may know that this

constellation’s manager will accept 5 minutes, if there is no

other choice. The suggested change to that manager is to

reduce his preparation time to 5 minutes. Other changes relate

to moving the support out of its requested time window or to a

different site or replacing ground support equipment with

alternatives or even dropping certain hardware requirements

all together. Some of these changes are more suggestable if

the other satellite in the conflict is from the same

constellation. The scheduler annotates the schedule with

symbols and notes for the suggested change, appending his

initials. With dozens of constellations, and each constellation

having dozens of these rules of thumb, there were hundreds of

undocumented rules that the expert schedulers used to resolve

effectively all the remaining conflicts. Within each set of

rules, there were preferences for which to use before others.

Combinations and domino effects (e.g. solving a conflict by

creating another, then solving that one) had to also be

considered. This knowledge was elicited and implemented in

constellation-specific, user-editable rule bases which were

incorporated into Aurora’s Postprocessor. The application of

each rule also made the necessary note annotations and

appended the software’s initials.

Over a thirty-year period, dozens of researchers have

worked on this specific problem and the Air Force had

previously invested tens of millions of dollars to develop

various solutions, but all of them were considered

operationally unacceptable (primarily because the relaxation

rules had never been elicited before). In 2017, this application

of Aurora passed high-stakes testing so that it could be

operationally implemented and it demonstrated a 20-fold

improvement in the time required to deconflict a 24-hour

schedule.

V. CONCLUSION

 This paper illustrates the application of a general scheduling

framework to four distinct domains. While scheduling

problems share much in common as described in the

introduction, each of the four domains also contains additional

constraints and objectives that define what constitutes a ‘good’

schedule in that particular domain. For each domain, we

describe how the customizability of the framework and

heuristics allows the software to develop a valid schedule that

reflects each domain’s specific objectives and constraints.

Finally, the four systems highlighted in this paper are all

deployed and in-use. This allows us to briefly describe the

impact the scheduling system has had in each domain. In all

cases, the scheduling system solves a complex scheduling

problem in less than five minutes and produces a schedule that

is significantly better than those arrived at by previous

scheduling methods.

REFERENCES

[1] M. L. Pinedo, Scheduling. Cham: Springer International Publishing,
2016.

[2] A. Kalton, “Applying an Intelligent Reconfigurable Scheduling System

to Large-Scale Production Scheduling,” presented at the International
Conference on Automated Planning & Scheduling (ICAPS) 2006,

Ambleside, The English Lake District, U.K., 2006.

[3] R. Richards, “Critical Chain: Short-Duration Tasks & Intelligent
Scheduling in e.g., Medical, Manufacturing & Maintenance,” presented

at the 2010 Continuous Process Improvement (CPI) Symposium, Cal

State University, Channel Islands, 2010.
[4] S. F. Smith, O. Lassila, and M. Becker, “Configurable, Mixed-Initiative

Systems for Planning and Scheduling,” in Advanced Planning
Technology, A. Tate, Ed. Menlo Park, CA: AAAI Press, 1996.

[5] M. A. Becker, “Reconfigurable Architectures for Mixed-initiative

Planning and Scheduling,” Carnegie Mellon University, Pittsburgh, PA,
USA, 1998.

[6] J. M. Framinan and R. Ruiz, “Architecture of manufacturing scheduling

systems: Literature review and an integrated proposal,” Eur. J. Oper.
Res., vol. 205, no. 2, pp. 237–246, Sep. 2010.

[7] J. Ludwig, A. Kalton, R. Richards, B. Bautsch, C. Markusic, and J.

Schumacher, “A Schedule Optimization Tool for Destructive and Non-

destructive Vehicle Tests,” in Proceedings of the Twenty-Eighth AAAI

Conference on Artificial Intelligence, Québec City, Québec, Canada,

2014, pp. 2998–3003.
[8] J. Ludwig, B. Presnell, L. Loomis, D. Decker, and K. Light, “Deploying

an Intelligent Pairing Assistant for Air Operations Centers,” presented at

the Maritime/Air Systems & Technologies (MAST) Europe Conference
2016, Amsterdam, Netherlands, Jun-2016.

[9] J. Ludwig, A. Kalton, R. Richards, B. Bautsch, C. Markusic, and C.

Jones, “Deploying a Schedule Optimization Tool for Vehicle Testing,”
in Proceedings of the 10th Scheduling and Planning Applications

woRKshop (SPARK), 2016, pp. 44–51.

[10] D. Stottler and K. Mahan, “Automatic, Rapid Replanning of Satellite
Operations for Space Situational Awareness (SSA),” presented at the

Advanced Maui Optical and Space Surveillance Technologies

Conference, 2015.
[11] K. Mahan, R. Stottler, and R. Jensen, “Bottleneck Avoidance

Techniques for Automated Satellite Communication Scheduling,” in

Infotech@Aerospace 2011, American Institute of Aeronautics and

Astronautics.

4

