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Rehearsing Naval Tactical Situations Using
Simulated Teammates and an Automated Tutor

Emilio Remolina, Sowmya Ramachandran, Richard Stottler, and Alex Davis

Abstract—This paper describes a deployed simulation-based Intelligent Tutoring System (ITS) for training of Tactical Action Officers
(TAOs). The TAO on board a Navy ship is responsible for the operation of the entire watch team manning the ship’s command center.
The ITS goal is to train the TAO in “command by negation,” in which watchstanders perform their duties autonomously, while the TAO
supervises, intervening in order to correct mistakes and rectify omissions. The ITS uses artificial intelligence (Al) techniques to provide
Automated Role Players (ARPs) representing the watchstanders in the ship, and to provide a Natural Language interface to

communicate with these automated teammates. An adaptive coaching strategy is used to provide coaching and feedback during an
exercise. The paper presents a discussion of the ITS instructional design, its architecture, and the Al techniques it employs.

Index Terms—Atrtificial intelligence applications, computer-assisted instruction, intelligent tutoring systems.

1 INTRODUCTION

HE Tactical Action Officer (TAO) on board a US Navy

Cruiser, Destroyer, or Frigate is responsible for the
operation of the entire watch team manning the ship’s
command center. Responsibilities include tactical decision
making, console operation, communications, and over-
sight of a variety of watchstander responsibilities in air,
surface, and subsurface warfare areas. This paper de-
scribes PORTS TAO-ITS, a deployed Intelligent Tutoring
System (ITS) [1], [2] for the instruction of TAOs in
training at the Surface Warfare Officers School (SWOS) in
Newport, Rhode Island [3].

PORTS TAO-ITS uses a learn-by-doing strategy whereby
the TAO is presented with a computer-simulated tactical
situation, in which he should act as if aboard an actual ship.
The ITS uses a high-fidelity simulation of the Aegis system
consoles, based on Northrop Grumman PC-based Open-
architecture Reconfigurable Training System (PORTS).
artificial intelligence techniques are employed to model
the behavior of automated crew members who autono-
mously react to the tactical situation and interact among
them and with the TAO. The TAO uses a natural language
interface to communicate with the simulated teammates.
During an exercise, the ITS provides real-time coaching and
feedback which are sensitive to changes in the student’s
mastery of a wide variety of continually assessed principles.

Before the use of PORTS TAO-ITS, an instructor was
needed for every two students. The instructor played the
role of other teammates and provided coaching and after
action review. The logistics of this training setup provided
limited training opportunities to the students. With the
advent of the ITS, one instructor is needed in a classroom of
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42 students. The ITS teaches material that has the least
ambiguity and controversies. These latter types of situations
are discussed with instructors and other students and
rehearsed using a traditional fully manned simulation.

In the rest of the paper we provide details about the
PORTS TAO-ITS functionality (Section 2), its instructional
design (Section 3), its architecture (Section 4), and the
artificial intelligence techniques it employs (Section 5).

2 PORTS TAO-ITS FuncTIONAL DESCRIPTION

Most of the TAO’s work consists of deciding whether a
track (aircraft, boat, submarine) is a friend or a threat, and
processing such track accordingly. This requires the TAO to
monitor the tracks behavior and to gather additional track
information provided by existent human intelligence,
electronic sensory information, or by visual identification
of the track. In this last case, for example, the TAO could
send a helo to identify a far away boat, or have the bridge
identify a boat inside visual range. The TAO gathers
information, analyzes it, and ensures that the correct
decisions are made and actions are taken based on the
tactical situation. He does his work by issuing verbal orders
and querying the members of the combat information
center (CIC). Watchstanders (teammates) autonomously
decide which tasks to execute given a tactical situation.
They, however, are expected to announce their intentions
before executing their tasks. When these are correct, the
TAO must merely acknowledge the watchstander’s deci-
sion. However, if these decisions are incorrect or omitted,
the TAO must negate the incorrect decision or proactively
initiate the omitted actions [4].

From a functional perspective, PORTS TAO-ITS consists
of two major subsystems: 1) PORTS, a high-fidelity
simulation of the Aegis system TAOs will use aboard a
ship, and 2) the ITS component, which complements the
simulation by providing the simulated teammates and the
automated tutor that help TAOs learn their jobs by
rehearsing tactical situations.

Published by the IEEE CS & ES
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Fig. 1. PORTS TAO-ITS student interface.

Fig. 1 shows the PORTS simulated TAO console and
the ITS GUL Bars (green bars in the figure) are used to
display coach feedback and hinting. A control panel is
used to display TAO utterances for his approval and to
control the scenario execution. The PORTS console in-
cludes panels for Variable Action Buttons (VABs), display
selection (map control keys), radio control, tactical situa-
tion map (a scaled version of the large screen display),
and automatic status boards that, among other things,
display information on the hooked track (right topmost
corner in the figure). The mouse is used to push buttons
and select tracks. These displays are driven by a computer
simulation of the ownship’s sensors and weapons, external
platforms, and the environment.

The ITS provides textual hints and feedback using the
colored boxes shown in Fig. 1. Each box is associated with a
particular principle and expected action the TAO should
apply. The color of the box reflects the urgency of the TAO
intervention. Most of the TAO actions require verbal
communications with simulated teammates. For this, the
TAO pushes a pedal and talks. The recognized utterance is
shown to the TAO in the control panel. The TAO must click
a submit button for the utterance to be sent to other
teammates. This extra step of showing the recognized
sentence is needed because the system does not recognize
all the utterances the student says or because the system
could fail to recognize a valid utterance.

2.1 A PORTS-TAO ITS Session

On logging to the ITS, the TAO will execute an exercise that
is selected either by an instructor according to a course
curriculum or by the ITS itself. In this last case, the ITS
suggests exercises that teach principles the student has not
mastered. The student is then presented with the exercise’s
prebrief describing the initial tactical situation. The prebrief
is customized for the student by highlighting the principles
taught by the exercise that are new to the student or that the
student has not mastered. These principles define the
aspects of the exercise to which the student should pay
the most attention.

When the exercise starts, the PORTS simulator consoles
are shown, and the student is free to use the consoles and
interact with the simulated teammates at will (Fig. 1). Each
exercise has an associated PORTS simulation script that will
control the occurrence and behavior of tracks (airplanes,
boats, submarines, missiles) that the TAO and simulated
teammates might react to (most tracks might be distracters).
The behavior of TAO force assets (e.g., the ship, a helo, a P3)
is controlled by the simulated teammates as a result of
interactions with the TAO. For example, the TAO might
decide to send a helo to investigate a track. The ITS will
generate the simulation commands that will direct the helo
toward the track. Once the helo reaches the track, the
simulated teammates inform the TAO of any visual
information associated with the track. This information
might in turn trigger other behaviors from the teammates,
or prompt the TAO to make some actions (e.g., move the
helo away from a possibly hostile track). As discussed in
Section 3, simulated teammates might make intentional
mistakes to force the TAO to give corrective commands.

During the exercise the ITS provides hints when a TAO
action is expected and the TAO’s mastery of the action’s
underlying principle is low (do not provide a hint for
something the TAO knows how to do). Hinting is faded as
the student gains mastery of the domain principles. There
are four levels of hints: an alert, a general hint, a specific
hint, and a prompt. The alert, the first to appear, is visually
similar to other hints but has no content; it consists of a blue
bar that appears on the screen. This is the instructional
equivalent of a tap on the shoulder, indicating to the student
that an action is expected without giving any further
information. The remaining hints contain text that gradually
becomes more specific as they progress. The general hint
tends to indicate some information about the situation that
the TAO might not have noticed, to which he is expected to
react (e.g., Is your helo available for ASW use?). The specific
hint gives the gist of the type of action that is expected (e.g.,
Use your helo to investigate radar riser.). Finally, the prompt
provides the precise content of the action (e.g., Say, ASWE
TAO vector helo to investigate radar riser.). The ITS assesses
the student differently depending on how many hints are
displayed before the correct action is taken, with the lowest
assessment resulting from no action at all [4].

On ending the exercise the TAO is given a debrief, a
chronological HTML record of principles passed and failed
in the exercise, with links to explanations of each principle
as well as relevant portions of the detailed exercise
transcript. This detailed transcript includes the TAO
actions, teammate’s interventions, and the significant
tactical events that occurred during the exercise (e.g., an
incoming missile was detected). The debrief also sum-
marizes any progress the student made. For this, the ITS
compares the student model before and after the exercise to
identify those new things the student did well or those
principles whose proficiency notably decreased.

3 PORTS-TAO ITS INSTRUCTIONAL DESIGN

PORT TAO-ITS is designed to support classroom instruc-
tion guided by a curriculum. The ITS has two primary
modes: classroom and homework. The classroom mode is
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instructor-led with the entire group of students running the
same exercise chosen by the instructor. Here, the instructor
introduces the students to exercises that assess principles
they have not seen before and, as the exercise goes on, may
monitor the progress of the students (and their successes
and failures) from a display on the instructor station.

Homework mode allows students to practice on their own,
with the ITS selecting exercises containing principles that
the student has already encountered in classroom mode and
on which the student needs to improve. This mode does not
introduce new content, reserving that for the classroom
environment where the instructor is available to explain the
essence of new principles and expected TAO behavior. The
ITS identifies the weakest of those principles already
covered by the curriculum (all those principles with
comparable lowest proficiency) and selects an exercise that
teaches the largest set of those weakest principles. This
strategy maximizes the utility of the training scenario by
giving the student the opportunity to increase his profi-
ciency in as many principles as possible, while not over-
whelming him with the applicability of too many
unfamiliar principles. As the student executes scenarios
intended to increase proficiency in some principles, the
continuous performance evaluation might reveal further
deficiencies in other principles, changing the set of weakest
principles and thus the focus of the adaptive training.
Variety in the training exercises is achieved by creating
different simulation scenarios, varying the numbers of
tracks or the types of mistakes made by ARPs.

This design was specified by the participating subject
matter expert trainers. The rationale was that trainers
wanted a greater level of control over the introduction of
new concepts.

PORTS TAO-ITS instructional strategy is what TAOs and
their trainers call “command by negation.” A TAO expects
watchstanders to do their jobs correctly, concerning himself
with maintaining awareness of those activities and of the
tactical picture, stepping in for major decisions such as the
engagement of an aircraft. When a watchstander takes an
inappropriate action, either by making a mistake or for lack
of information not normally available at that watchstation,
the TAO negates it and supplies a new order. This also
applies when a watchstander fails to act, and the TAO
“negates” that inaction. Cases include a watchstander
failing to make a routine report on the status of a friendly
air asset, or incorrectly announcing intent to query an
aircraft when it is within its territorial airspace [4].

The ITS is designed to require this “negation” of the
student more and more often, and in response to more
nuanced mistakes, over the course of exercises. To this end,
we partitioned instructional content into three levels, which
were labeled simply by numbers (1)-(3). The three levels
apply to principles, Automated Role Players (ARPs)
behaviors, and exercises. A single principle may have three
levels, in applying to three different kinds of situations as
illustrated next.

For example, the principle “query range” consists of
knowing the correct range to issue a query to an aircraft.
(Whether a query is appropriate for that aircraft in the first
place is another principle.) To test this principle at level 1,
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Fig. 2. PORTS TAO-ITS architecture.

an ARP announces intent to query at the correct range, and
the TAO simply must acknowledge that announcement in
order to pass. No negation is necessary. At level 2, the ARP
may remain silent when the aircraft reaches the correct
range, and the TAO must notice this omission and request
the query. At level 3, the ARP may intend to query at the
wrong range, which the TAO must notice and correct. The
ITS maintains a separate assessment of student’s mastery
for each principle level so that the student must learn how
to act correctly in each type of situation.

Some principles do not involve ARP’s actions at all, but
rather require the TAO to maintain situational awareness of
the tactical picture, performing console actions to select
tracks and varying display ranges appropriately to cover
the area referred by the current tactical conversation being
carried out among ARPs.

Predictability in exercises was an important design
requirement in order to make it easy for instructors to
monitor students. With this in mind various events
controlling the tactical situation are specified when author-
ing the exercise and are not dependent on the student
model. Given a scenario, coaching is the only dimension of
adaptation to student expertise.

4 PORTS-TAO ITS ARCHITECTURE

Fig. 2 shows a simplified diagram of the PORTS TAO-ITS
architecture. The figure does not include the different
authoring tools, content elements (e.g., principles, exer-
cises), and external applications (e.g.,, LMS, instructor
console) that are part of the deployed system. Next, we
discuss the three loosely coupled layers in the architecture.

The ITS GUI layer includes those components the
student interacts with during an exercise. These compo-
nents are

e [TS UI: This is the user interface that enables the
student to start an exercise and review the debrief
after the exercise is complete.

e  Simulator UI: This is the student GUI used when
executing an exercise. It consists of the underlying
PORTS interface and an UI that allows the ITS to
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provide hints and real-time feedback to the student
(see Fig. 1).

e  Speech Generation: This is the module to convert
ARP’s textual utterances to speech. The ITS uses
ATT Natural Voices text-to-speech software in its
implementation.

e  Speech Recognition: This is the module to convert
student speech to an internal representation
(events). The ITS uses SRI EduSpeak software in
its implementation.

The ITS middle layer encapsulates most of the domain-
dependent knowledge required for the simulated team-
mates’ behaviors and the student evaluations. The main
components are

e  Simulator API: This component is a wrapper around
the disparate PORTS APIs to simplify interaction
between the ITS and PORTS. It allows for the receipt
of simulation events (e.g., “weapon launched”) as
well as querying the simulation’s current state. It
also allows the ITS to send commands to PORTS to
modify the state of the simulation dynamically (e.g.,
control a friendly helo to carry out TAO orders).

o  Real-World Manager: This component maintains a
world representation suitable for reasoning about
the tactical situation. This representation enhances
the simulation data with domain concepts that are
not represented by the simulator (e.g., air corridor,
track groups).

e  Automated Role Players (ARPs): This component is
responsible for simulating the behaviors of the various
teammates in an exercise. The ARPs are capable of
monitoring the state of the simulation and generating
utterances as well as actions in the simulation.

e  Performance Evaluator: This component is responsible
for monitoring the student’s performance. It runs
evaluation machines, each in charge of evaluating the
student in a specific well-defined situation that
requires the TAO to apply a principle (a particular
set of skills and knowledge). Evaluation machines
process student utterances, actions, and the current
simulation state and in turn generate abstract events
that signal when the student should be applying a
principle and whether the student failed or suc-
ceeded in doing so. The coach and assessment agents
will interpret these events, effectively decoupling
evaluation, coaching, and performance assessment.

The ITS core layer is based on Flexitrainer [5], an
extensible, agent-based ITS framework that handles instruc-
tional planning, updates the student model, manages all
interactions with the student, and coordinates the various
components of the system. Its main components are

o  Instructional Planner: At the heart of the FlexiTrainer
engine, there is a collection of “agents” responsible
for carrying out instructional actions [6]. The
Instructional Planner is responsible for selecting
which agents should carry out what actions in order
to achieve the goal posted to it. Adding functionality
to the FlexiTrainer engine is done by adding new
agents or modifying the actions/behavior of existing

ones. The ITS includes a coach agent that monitors
the student’s performance and generates appropri-
ate feedback, hinting, and coaching. There is also a
debriefer agent that generates the after action
review, and an exercise picker agent that imple-
ments the algorithms to suggest exercises when in
homework mode (Section 3).

o  Assessment Manager: This component is responsible
for all functionality relating to cumulative assess-
ment diagnosis. By cumulative assessments, we
mean assessments that are aggregated over the long
term (multiple scenario performances and observa-
tions). It makes decisions about the student’s
proficiency on tasks, skills, and principles, and
performs differential diagnosis (e.g., it assess that
the student can perform a skill under certain
conditions but not in others).

o ARP Manager: It provides the interface between the
ARPs and instructional agents embedded in
FlexiTrainer, allowing FlexiTrainer to send com-
mands to the ARPs. For example, the coach agent
will instruct from time to time an ARP to make a
mistake for instructional purposes. The ARP in
turn will generate a corresponding ARP event
indicating that it has made a mistake (and hence, a
TAO corrective action is now expected).

In this architecture, components interact with each other
mostly through events. A typical interaction among
components will be as follows. Suppose the simulated
AIR teammate requests authorization to query a track, and
that the TAO is expected to acknowledge the communica-
tion. The AIR sends a command to the text-to-speech
component, and once the command is executed, it publishes
an event capturing the intent of its utterance, something
like {ARP RequestForTrackActiontrackld = 80001, action =
query, source = AIR, destination = TAO}. This event is
received among others by the evaluation machines asso-
ciated with the principles evaluated by the exercise. One of
such evaluation machines will deduce that the TAO needs
to apply the principle “query-range-1” which requires the
TAO to acknowledge the query by saying “TAO aye.”
The evaluation machine then publishes an event sig-
naling that principle evaluation is active, an event like
{ Eval Principle, principle = query-range-1, trackld = 80001}.
This event is received by the coach agent, who in turn starts
a behavior to provide hints for the principle “query-range-
17 (if the student mastery of the query-range-1 principle is
low). Suppose the TAO says “TAO aye” after the first hint is
shown. This utterance will be translated into some event
that the evaluation machine and the AIR will receive. The
AIR will proceed to do the query. The evaluation machine
will detect a successful application of the principle and
publish an event signaling success. The coach agent will
receive this event, relate it to the current coaching, and
provide a positive real-time feedback. Conversely, if the
TAO does not take any action, then a principle failure will
be signaled. The “query-range-1” has associated time-outs
indicating when a hint should be given and the maximum
time allowed for the TAO response. If this maximum time
passes without the TAO action, the evaluation machine
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publishes a failure event. The coach will receive this event
and provide a negative real-time feedback to the student.

5 ARTIFICIAL INTELLIGENCE TECHNIQUES

The main artificial intelligence techniques employed by
PORTS-TAO ITS are the use of explicit domain ontologies,
natural language processing, and modeling of human
behaviors. Next, we discuss the use of these techniques.

5.1 Knowledge Representation

The ITS uses an explicit domain ontology representing the
domain concepts and relationships among these concepts
[7]. Although many of the simulator concepts have a
counterpart on this ontology, this ontology is mainly about
domain concepts (e.g., tracks, track group, tasks, events)
and ITS concepts (e.g., principles, exercises, hints). Tracks
and track groups represent simulation objects and the other
concepts are needed to support the instructional agents. The
state of the simulation is represented by the physical and
geographical information about tracks (e.g., the location and
speed of an airplane) and the collection of actions the ARPs
and the TAO have taken with respect to such tracks (e.g.,
whether a track has been queried). Explicit relationships
among tracks are also maintained, for instance, to know
which tracks belong to a formation, or which missiles have
been launched to counter an enemy airplane.

Rules are used to propagate the properties of tracks in a
group from those of individual units. For example, a set of
boats will be declared to be in a group if they are close to
each other and heading in the same direction at about the
same speed. The leader of the group will be the boat in a
group that is closer to the ownship. The TAO and the ARPs
will process a group of tracks by referring to the group
leader and any action on the group leader is understood to
apply to the whole group. A set of “ontology rules” capture
the fact that if a group leader is declared friendly, then all
other group tracks are friendly too. These rules simplify the
definition of ARP’s behaviors by eliminating the need to
explicitly set the properties of each unit in a group when a
property for the group leader changes.

Finally, rules of engagement are captured within the
ARP behaviors. We illustrate this in the next section when
an ARP is asked to query a track.

5.2 Natural Language Processing

The ITS uses the commercially available EduSpeak speech
recognition software to transform speech into text. EduSpeak
is used in a command-and-control mode, where it only
recognizes utterances included in a given grammar. This
grammar increases the recognition rate and was decided
appropriate for this application [4].

Although the use of a grammar helps with the speech
recognition problem, the ITS grammar allows indexicals
that require some contextual information for a sentence to
be interpreted. The ITS does not use a central component
that provides an internal representation for every possible
utterance (a well-known hard problem), but rather the ITS
uses a distributed approach where the final interpretation
of an utterance is left to the simulated teammates and
evaluation machines processing such utterances. Simulated

teammates and evaluation machines use some context from
ongoing dialogs (represented internally by ARP’s beha-
viors) and the tactical situation (as represented by the track
information) to understand a sentence. At times a sentence
just might be ignored. Next, we illustrate the use of this
contextual information.

The EduSpeak’s text is transformed into a set of events
representing the intent of the utterance. Simulated team-
mates and evaluation machines will receive these events
like any other events in the system. Most TAO utterances
are transformed into events that have all the needed
information for an ARP to decide how to react. For
example, if the TAO says “AIR TAO query track 80001,” an
event like {RequestTrackActionaction = “query’trackld =
80001, source = T AOdestination = AIR} will be generated
and the AIR teammate will be able to check if the query
should be performed (as specified by the rules of
engagement), and start the behavior that will perform the
query if required. The similar sentence “AIR TAO,
negative, query track” will not specify the track and the
AIR might not know what the sentence is about. If the AIR
has recently made the mistake of “warning track 80001
before querying it,” then the AIR will be expecting a query
order and will interpret the TAO sentence as “query track
80001.” The AIR will then acknowledge the TAO and start
the query procedure. In any other context, the AIR will just
remain silent. The details of how ARPs maintain such
context information are explained in the next section.

5.3 Automated Role Players

The ITS includes 30 simulated teammates, performing
370 behaviors, and evaluates the TAO in 160 principles
across the air, surface, and subsurface warfare areas. The
behaviors of simulated teammates are modeled using
Behavior Transition Networks (BTNs) [8], [9]. An BTN is
a kind of state machine where states are behaviors and state
transitions represent the conditions under which an agent
will stop executing one behavior and start executing
another behavior. Basic behaviors (those that cannot be
described in terms of other behaviors) are called actions.
Unlike state machines, BTNs provide the following con-
structs proper of programming languages:

they are hierarchical,

have variables (local memory),

have access to blackboards (shared memory),

are polymorphic—the same behavior is executed

differently by each teammate, and

5. can execute arbitrary perceptual or action-oriented

code (e.g., query a database, interact with the
simulator).

The ITS uses the SimBionic tool to author and execute BTNs

[8]. As illustrated in Fig. 3, SimBionic allows scenario

authors to create behaviors by drawing a flowchart-like

graphical representation. Specifically, actions are repre-

sented as rectangles, behaviors as boldfaced rectangles,

conditions as ovals, and connectors as lines. Scenario

authors can attach as many variable assignments, complex

expressions, and explanatory comments as they like to any

of these elements.

L=
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Fig. 3. Representing simulated teammate behaviors using BTNs.

When modeling using BTNs, authors must decide on the
basic building blocks (actions, predicates, and key beha-
viors shared by simulated entities) and use these building
blocks to define specific behaviors for the simulated
teammates in the scenario. The actual modeling process
most often follows a top-down design where high-level
behaviors are successively refined. Next, we present some
actions, predicates, and behaviors used to model simulated
teammates in the PORT TAO-ITS application.

Simulated teammates actions represent the primitive
things an agent can do. Some actions are domain indepen-
dent, like generating an event, or the action of sending a
request to the text-to-speech engine. Some actions are
domain dependent, like matching a submarine datum
against a database of datum. Simulated teammates’ pre-
dicates are used to check conditions or to access data.
Domain-independent predicates include checking whether
a new event has been received or checking whether a
command has been executed. Domain-dependent predi-
cates include calculating the CPA (Closest Point of
Approach) of a given track and most other geometric
calculations proper of the domain.

Each ARP has a possibly large number of associated
behaviors, each representing how the ARP should react to
a particular situation. Fig. 3 shows a high-level description
of how the simulated AIR teammate might execute a kill
track procedure. In this procedure, the AIR will first
announce its intent to kill, wait for the TAO authorization,
wait for the ship’s FIS to be green (a switch the TAO must
turn before engagements), order the IDS teammate to
launch the missile, and then monitor that the missile hits its
target. The definition of this behavior uses domain-
independent “low-level” behaviors, like the ones to say
something, and the ones to wait for an authorization (wait
for an event of a given type satisfying some constraints).
The definition also uses domain-dependent behaviors like
monitoring that a missile hits a target. The sequential logic

of the behavior is defined by the arrows connecting the
boxes in Fig. 3. As expected, not all ARP behaviors will
follow a linear logic illustrated in Fig. 3.

Fig. 3 also illustrates some of the expressiveness of the
BTNs language. Notice, in particular, how the “wait for
the ship’s FIS to be green” is simply represented by a
behavior transition conditioned in the predicate “get(own-
ship,“isFisRed”)” to be false (oval in Fig. 3). If switching
the FIS to green counts as an kill authorization, then the
arrow leaving the “waitForUtterance” box will be directly
connected to the oval labeled by “get(ownship,“is-
FisRed”).” This transformation will indeed represent the
fact that the “wait for authorization” behavior should be
suspended as soon as the FIS is green. Behavior
representation constructs like this have been proposed in
different Al agent literature, especially in the area of
mobile robotics [10].

Behaviors associated with simulated teammates are
triggered by the state of the simulation (e.g., a track is
approaching the ship), or by events generated by other
simulated teammates (e.g., the AIR teammate requests all
other teammates to checkprint a given track). This way, the
behavior of the team is controlled by changing the
environment conditions where the team interacts. This
approach circumvents the problem of defining tailored-
simulated teammates and changing the simulation to
support a particular scenario. The logic of each ARP
behavior might itself be simple, but a complex system
behavior emerges from the complexity of the environment
in which the ARPs and the trainee are operating. This is
akin to the “reactive agents” approach proposed in the Al
literature [11].

Information derived from the execution of a behavior is
stored by either updating objects included in the world
representation (e.g., mark a track as checkprinted, declare a
track hostile) or by making assertions in a blackboard used to
represent the current tactical context. For example, this
blackboard includes the current threat (if any), information
that is used to disambiguate TAO utterances using
indexicals or qualifications that refer to such a threat (e.g.,
“Surface TAO query incoming boat”). Each ARP has
specific behaviors that contribute to add or retract informa-
tion from this blackboard and therefore maintain the
current context current.

Dialogs with other teammates or humans (there is not a
difference) are represented by BTNs showing the logic of
the agent’s interventions during the dialog (Fig. 3). Each
agent uses its blackboard to store relevant information that
may affect the dialog execution. The agent interventions are
usually conditioned on information contained in this
blackboard (e.g., avoid asking for information already
provided in the dialog). Dialogs between the trainee and
the simulated teammates may take different courses
depending mainly on the information provided by the
trainee. Many dialogs follow the same pattern of interac-
tions or dialog rules. The system uses a library of dialog
macros (implemented by BTNs) that abstract these common
interactions and help simplify the authoring of dialogs.

As discussed in Section 3, the ITS is designed to train the
TAO by “command by negation,” where the TAO has to
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know the job of the teammates and acknowledge correct
actions or correct incorrect actions. Accordingly, ARP
behaviors exist in order to create situations where princi-
ples can be evaluated for all levels. Level 1 is intended to
help the TAO to learn to maintain awareness, and to
habituate to the normal responsibilities of the watch-
standers in a variety of situations. At this level, ARPs
perform perfectly and the student witnesses no actions that
need negating, so usually the TAO is simply expected to
verbally acknowledge the action.

Level 2 requires the TAO to apply this awareness, by
noticing when the usual procedures are not followed. At this
level, ARPs tend to make mistakes of omission, usually by
remaining silent when an utterance is appropriate. This
requires the TAO to notice the omission and take action, most
often by requesting the ARP to act. When the TAO does not
act, ARPs might correct the situation themselves, or another
ARP (the Captain) might intervene to correct the situation.

Level 3 involves the ARPs tending to make mistakes of
commission, where actions are taken incorrectly. Here, the
TAOjis expected tonotice the mistake and request a correction
of it. In the middle of an exercise, with many concurrent
threads of activity with respect to a variety of simultaneous
tracks, these ARP mistakes can be harder to notice and correct
than when an ARP omitted an action altogether.

ARPs do not commit mistakes at every possible opportu-
nity, but rather do their jobs correctly until a mistake is
designated to happen. This is under control of the exercise
author, who decides what mistakes will happen in an
exercise, during what time range, and with what frequency.
Thus, the body of content on which the student is evaluated in
a particular exercise is tightly controlled, but there is
randomness to the mistakes from the student’s perspective
to prevent the student from “learning” the exercise rather
than the principles. Thus, two exercises may have identical
sets of events within the tactical picture, but depending on the
ARP behaviors, may evaluate entirely different principles.

Finally, evaluation machines are also implemented using
BTNs. In this case, the purpose of the evaluation machine
behavior is to signal that the TAO should be applying a
principle and then decide whether the TAO executed the
correct action. The best way to employ BTNs to monitor
real-time mission execution is to have a large number
operating in parallel, where each looks at the situation and
student’s actions from the perspective of how they handle
specific types of situations or apply specific types of
principles. Since most of the TAO principles require the
supervision of the other watchstanders, the implementation
of the evaluation machines is simplified by having the ARPs
explicitly signal when they do a correct action, omit an
action, or take an incorrect action. This way, the evaluation
machines do not have to continually monitor the ARPs to
decide how the TAO should act.

6 RELATED WORK

The PORT TAO-ITS uses a scenario-based learn-by-doing
training approach as proposed in [12]. This approach is akin
to the Constraint-Based Tutors applied in intractable
domains, in which knowledge cannot be fully articulated,
and it is considered impossible or impractical to build a

computational system which can perform at the level of the
human expert [2]. Instead of building a general expert
model to interpret student actions [1], [13], a collection of
situated experts (evaluation machines) is designed to
handle a specific type of situation that might arise during
a training scenario. Each evaluation machine is activated by
its own set of preconditions. These are much easier to
develop in a case-specific way than in the general case. By
parameterizing these evaluation machines, it is possible to
use them in a variety of tactical situations.

The idea of training with simulated teammates is not
new. For example, Johnson et al. [14] discuss the key
capabilities and technical issues of using animated peda-
gogical agents and their potential for team training among
others. In [15], an architecture and modeling language is
proposed to define such agents so that synthetic teammates
exhibit flexible human-like behavior and are able to support
face-to-face spoken conversations in virtual worlds.

The need for simulated teammates to train tactical
situations under stress conditions, like the ones described
in this paper, has long been recognized by the military,
either as a cost-effective training alternative (to reduce
instructor-student ratio) or as a response to concerns
generated by on-the-job experiences. For example, the
Tactical Decision Making Under Stress (TADMUS) project,
sponsored by the Office of Naval Research (ONR), was
spawned by the 1988 USS Vincennes incident, where an
Aegis cruiser engaged in a littoral warfare peace-keeping
mission shot down an Iranian Airbus. Investigations follow-
ing the incident suggested that stress may have effects on
decision making and that these effects were not well
understood [16]. Also, the Synthetic Cognition for Opera-
tional Team Training (SCOTT) project proposes to apply
advanced human behavioral representation methods to
meet a critical team training need in the Navy, specifically
to provide deployable training for critical aviation team
skills without requiring any additional personnel besides the
individual receiving the training [17], [18].

Different approaches and representation languages have
been used to model teamwork issues such as team roles,
authority, coordination, and negotiated decision making
[15], [19], [20], [21], [22]. These approaches share the
common idea that agents need to have an explicit repre-
sentation of tasks, goals, and shared situational state that
allow team members to monitor the environment, proac-
tively carry out actions, give or accept orders, and negotiate
plan options. These approaches differ in aspects like their
underlying teamwork theories (e.g., joint intentions [23] is
used by BDI agents [19] and in STEAM [20], sharedPlans in
[22]) and the type of out-of-the-box functionality embedded
in the representation language and the companion execution
algorithms. For example, STEAM [20] provides algorithms
that automatically establish commitments to a team goal and
to reassign team member responsibilities if necessary. In
[17], a rich model of dialogs is linked with the task model
both to interpret utterances as well as to decide when the
agent should speak and what to say.

In our application, we used BTNs to model the
simulated teammate’s behaviors. BTNs complement “pro-
duction rules” used in systems such as Soar [24] and iGEN
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[17], by using the hierarchical state machine formalism to
facilitate the definition of task sequencing and branching
logic. However, BTNs do not provide any special
construct to support teamwork. There are, however, some
teamwork aspects that simplify the implementation of
simulated teammates in our application. The team
structure is fixed and the responsibilities of team members
are well established. Authority and commitment to team
goals are not an issue either. The major issues in our
application are 1) to decide which actions should be taken
and coordinate with other teammates the action execution,
2) to maintain a situation representation supporting this
action selection and execution, and 3) to carry out dialogs
with the student and other teammates. As described in
Section 5, we have implemented content-independent
BTNs that capture some common coordination patterns
proper of this domain. These patterns are used to define
situation-dependent behaviors where the team coordina-
tion aspects are hidden at the highest level of a behavior
description (following the hierarchical structure of a
behavior will reveal these coordination aspects). Similarly,
dialogs are implemented like any other agent behavior
(using BTNSs), the logic of these behaviors describing the
conditions under which the agent should intervene. This
approach has sufficed for this application, but we are
considering the use of specialized modules as in [17] that
might simplify the authoring of dialogs.

7 CONCLUSION

PORTS TAO-ITS illustrates a simulation-based learn-by-
doing tactical decision-making ITS, where the student
interacts with simulated teammates using a natural
language interface. Behavior Transition Networks (BTNs)
facilitate the definition of the simulated teammates’
behaviors and evaluation machines that provide the
situated context for real-time coaching and after action
review. Evaluation machines circumvent the problem of
creating an expert model of the TAO behavior or their
simulated teammates in order to provide tutoring. The
creation of such expert models might be impossible in
this domain.

The most risky aspect of the ITS is the use of a natural
language interface. The ITS largely bases its assessment of the
student’s performance on the output of the speech recogni-
tion system. The speech recognition system uses a grammar
including correct command syntax and vocabulary augmen-
ted with likely incorrect replacement words (synonyms such
as “kill,” “engage,” “destroy,” etc.). Instructors felt this was
appropriated since this system was not being designed to
tutor radio communications syntax and skills. Thus, com-
munication vocabulary or syntax mistakes would not be
caused by a lack of tactical understanding but were more
likely to be the results of momentary lapses. This design
decision turned out to be appropriated for beginner and
intermediate students but not for expert TAOs who usually
want to use a more loose language.

The deployment of PORTS TAO-ITS took 2 years ending
in October of 2008. Different versions of the ITS have been
used in classroom instruction as part of the TAO training at
SWOS. Although there have been informal evaluations

showing its potential benefit, it is still early to have some
conclusive evaluations of its instructional value. The final
acceptance and success of the ITS not only depends on its
technical and instructional value, but in the organizational
commitment to this unfamiliar technology.
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