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Overview 
•  Describe a computer vision system, called 

ExPATSS, which uses deep learning 
techniques to classify ships in videos 

•  What does ExPATSS do and why is it 
important 

•  How ExPATSS uses deep learning 
•  Data and training methodology 
•  Results 
•  Future work 
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What is ExPATSS? 
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•  ExPATSS = Extensible Platform for 
Automated Tactical Sensor Screening 

•  Computer vision system being developed 
for the Navy to aid maritime surveillance of 
threats 

•  ExPATSS automatically detects and 
classifies ships in video streams in real time 

•  Processes infrared and visible light data 

 



Why is ExPATSS Important? 
•  ExPATSS is targeted to run on the central 

tactical support center onboard an aircraft 
carrier 

•  Multiple sensor gathering data 
simultaneously 

•  Currently – one sensor operator/analyst at 
each sensor location 

•  Future – all sensor data streamed to 
centralized location on carrier, single 
operator/analyst 
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Why is ExPATSS Important? 
•  Monitoring multiple sensor streams can 

quickly lead to attention overload 
•  ExPATSS automatically processes each 

individual streams for important events 
•  Assigns each stream a priority number to 

help direct the analyst’s attention 
•  More quickly identify threats  
•  Generate a more complete and accurate 

picture of the tactical situation 
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ExPATSS System Overview 
 

•  Processes multiple streams 
•  Aggregates activity from each stream 
•  Prioritizes the importance of each stream for the 

operator 
•  Computer vision and deep learning processing 

happens in Recognition Engine 
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ExPATSS Computer Vision 
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•  Main computer vision module 
that monitors for important 
events 

•  Important events are defined 
as streams containing ships 

•  Detects and tracks objects 
and classifies frames 

•  Several object detectors 
working in parallel to detect 
activity 

•  Tracking Module keeps track 
of object locations and filters 
out sporadic false positives 

•  Contact Recognizer classifies 
frames using CNN 



Contact Recognizer – Applying 
Deep Learning 
•  Convolutional Neural Networks are used in 

the Contact Recognizer 
•  Performs classification at the frame level 
•  Classifies the frame into the following six 

classes 
•  Open water (no visible ships) 
•  Warship 
•  Speedboat 
•  Sailboat 
•  Merchant ship 
•  Cruise ship 
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CNN – Training Data 
•  Real data is difficult to acquire, and 

expensive to collect 
•  Gathered publicly available images from 

Flickr 
•  Searched Flickr for images of each of six 

classes 
•  Used a training set of 2,128 images, and 

456 images for validation, and 456 images 
for testing 
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CNN – Training Process 
•  Using the open source deep learning 

framework called Caffe for training and 
classification 

•  Used the ImageNet dataset of millions of 
images to initialize the neural network 

•  Overcome limited training data 
•  Generic enough representation of the visual 

world to be useful across applications 
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CNN – Training Parameters 
•  Convolution Neural Network 

•  AlexNet architecture 
•  5 convolutional layers with rectified linear activation 

functions, and max pooling 
•  Followed by 3 fully connected layers 

•  100,000 iterations 
•  Batch size of 50 
•  Base learning rate of 0.001 
•  Step size of 20,000 
•  Momentum of 0.9 
•  Weight decay of 0.005  
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CNN – Results on Flickr Data 
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•  Sample classification results 
•  Performs well on a variety of images 
•  Struggles when the ship is low resolution 
•  Struggles when object doesn’t belong to any of 

the classes it was trained on 



CNN – Results on Flickr Data 
    Detected class 
    Cruise Cargo Open Sail Speed War 

A
ct

ua
l c

la
ss

 

Cruise 86.4% 1.2% 7.4% 0.0% 4.9% 0.0% 
Cargo 1.5% 88.1% 4.5% 0.0% 3.0% 3.0% 
Open 0.0% 0.0% 97.8% 1.1% 1.1% 0.0% 
Sail 0.0% 1.2% 4.8% 91.4% 1.2% 1.2% 
Speed 0.0% 1.5% 3.0% 1.5% 94.0% 0.0% 
War 1.4% 2.8% 4.2% 0.0% 1.4% 90.1% 
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•  Quantitative classification results 
•  Confusion matrix presented above 
•  Overall classification rate of 91.4% over 

456 images 



CNN – Training Set Size 
•  Typically, CNN requires large amounts of 

training data 
•  Investigated how the training set size would 

affect the classification accuracy 
•  Tested model performance with training set 

varying from only 10 training images to 
2,000 images 

•  Performed 5 trials for each training set size 
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CNN – Training Set Size 
•  Six-way classification accuracy on the Flickr dataset, as 

a function of total training set size, averaged over five 
trials. 
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ExPATSS System Results 
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Correct Classification 



ExPATSS System Results Cont’d 

17 

Incorrect Classification 

  

 



ExPATSS System Results Cont’d 
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Classification results on ExPATSS data 

Video Number of 
frames 

Correct 
Classification Rate 

speed_boat_1 3,625 0.79 
speed_boat_2 4,320 0.68 
warship_1 750 0.91 
sail_1 570 0.00 
warship_2 600 0.97 
speed_boat_3 480 0.67 
warship_3 1,890 0.14 
warship_4 1,980 0.91 
open_water_1 114,497 1.00 
stormy _waters_1 7,223 1.00 
stormy_waters_2 441 1.00 

 



ExPATSS System Results Cont’d 
•  The system uses CNNs for image 

classification and achieves higher than 79% 
correct classification rate for 7 out of 11 
videos of real maritime data 

•  The system classifies long segments of 
open water (both stormy and calm) with 
100% accuracy over 114,197 fames 
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Conclusions 
•  Designed and implemented a system to 

automatically detect and classify ships in 
maritime scenes 

•  The detection and classification results are 
used to cue operators of important events 

•  Can be used during video playback to skip 
uninteresting segments of footage, saving 
large amounts of human-hours 
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Future Work 
•  Improve the current CNN model by using a 

larger and more diverse training set 
•  Train new CNN models with more specific 

ship classes 
•  Apply CNN-based approaches directly to 

the object detection problem, to not only 
classify images but also identify where in 
the image the ships of interest are 
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