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ABSTRACT 
We describe a system called ExPATSS (Extensible Platform for 
Automated Tactical Sensor Screening) that we are developing for 
the Navy to automatically detect and classify ships from onboard 
an aircraft carrier. ExPATSS simultaneously processes several 
video streams for ship detection and classification, in order to 
reduce the attention and concentration currently required of 
human sensor operators, who presently have to manually monitor 
all the video streams at once. ExPATSS leverages recent 
developments in deep learning, specifically Convolutional Neural 
Networks (CNN), to accurately detect and classify ships. 
ExPATSS has been developed and tested using real-world data 
and this paper discusses the effectiveness of using CNN within the 
system. 
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1. INTRODUCTION 
Accurate, rapid acquisition and interpretation of sensor data is 
critical to modern naval warfare. The need to maintain situational 
awareness in both open water and coastal zones necessitates a 
broad array of sensing apparatuses distributed across sea, land, 
and air vessels. Accurate interpretation and integration of the data 
from these sensors can mean the difference between early 
detection of an enemy threat and mission failure, including the 
loss of lives. 

Proper interpretation of data from cameras, including both visual-
spectrum and infrared sensors such as the FLIR and multi-mode 
Inverse Synthetic Aperture Radar (ISAR) installed on a modern 
Anti-Submarine Warfare (ASW) platform (e.g., an MH-60R 
helicopter) requires intense concentration by a highly trained 
human operator. The tactical information acquired from even one 
of these sensors can include ten or more unique contacts of 
interest, making the potential for cognitive overload a significant 
risk even for a single data stream. As the number of data streams 
increases, so too does the likelihood of missed or mischaracterized 
contacts, resulting in potentially erroneous analysis and delay or 
disruption of the tactical decision-making process. 

Systems have been developed and deployed to assist with the 
processing of ASW sensor data streams. However, these systems 
still rely heavily on human operators to carry out the initial 
identification and classification of contacts, as well as to assess 
their significance to their mission objectives — all tasks that 
require intense attentional commitment. As such, current systems 

can only offload a portion of overall operator effort and are really 
only helpful for on-craft processing of a small number of 
simultaneous sensor streams. 
To make matters worse, next-generation Navy systems are 
evolving toward integrated multi-platform, multi-sensor platforms 
that incorporate real-time transmissions of raw sensor data from 
multiple vehicles into a centralized command and control 
framework for analysis. This shift has a number of advantages, 
including a potential to significantly increase the speed at which 
changes in the tactical picture are understood and communicated 
up the chain of command, and an opportunity for increased fusion 
of data from disparate sensor sources to generate a more complete 
and accurate picture of the tactical situation as it develops. 
However, it is likely that available manpower will remain constant 
or even decrease in the future, resulting in individual sensor 
operators in centralized command and control analysis positions 
required to analyze significantly greater quantities of 
simultaneous streaming data. In a realistic ASW scenario with 
four airborne helicopters simultaneously transmitting two sensor 
streams each (FLIR and ISAR), this increase in sensor data 
relative to available operator attention is almost certain to degrade 
overall operator performance and reduce situational awareness. 

In this paper, we describe a system called ExPATSS (Extensible 
Platform for Automated Tactical Sensor Screening) that Stottler 
Henke Associates is developing for the Navy in order to reduce 
operator overload and to minimize the effort and attention 
required of the operator per-stream. The overall goal of ExPATSS 
is to automatically perform some of the raw sensor data analysis 
involved in ASW in order to aid sensor operators in detecting and 
tracking contacts across a large number of simultaneous data 
streams. By freeing operators to focus their attention on higher-
priority events and contacts, we have found that the advantages of 
centralized multi-sensor video processing can be realized without 
additional manpower requirements and with no reduction in 
accuracy or latency of analysis. In particular, here we describe 
applying deep learning with Convolutional Neural Networks 
(CNNs) to image data, in order to automatically detect and 
classify ships from onboard an aircraft carrier. We evaluate the 
ability of CNNs to recognize whether or not ships are present in 
images, and if so, to classify the type of ship into one of several 
categories of interest. For training the classifier, we use publicly 
available imagery downloaded from social media websites as a 
convenient, inexpensive, and large-scale data source. We also 
present results using real-world data. 
 

2. RELATED WORK 
Object detection and recognition is a central problem in computer 
vision and has been studied extensively for many decades. Until 
recently, the standard approaches for object recognition involved 
using hand-designed algorithms that tried to abstract important 
visual characteristics into statistical feature vectors, for input into 



standard machine learning algorithms like Support Vector 
Machines (SVMs). However, since a deep learning-based 
technique won the 2012 ImageNet challenge [4], there has been a 
dramatic shift in interest within the computer vision community 
towards techniques that automatically learn the feature extraction 
stage, instead of relying on hand-designed algorithms. The most 
popular technique so far is based on Convolutional Neural 
Networks, which are similar to the classic feed-forward neural 
networks that have been studied for decades, but typically are 
much deeper, have many more parameters, and have a unique 
architecture that encourages them to cue on spatially-contiguous 
regions within an image. CNN-based and deep learning 
techniques in general have now been shown to outperform 
traditional techniques on a wide variety of problems, ranging from 
image classification [4], to object detection [5], to image 
captioning [8], among many others. Much of the rapid progress in 
this area is also due to large-scale image collections (like 
ImageNet, which contains millions of labeled images [3]), and 
high-quality, open-source CNN implementations like Caffe [2]. 

 

3. APPLYING DEEP LEARNING TO SHIP 
CLASSIFICATION 
We now describe how we apply CNNs to our novel ship 
classification application. We first give an overview of the 
ExPATSS system in Section 3.1, and then discuss how we apply 
CNNs to ship recognition in Section 3.2. 

3.1 ExPATSS System Overview 
The ExPATSS system receives video input streams from multiple 
sources. There are two general types of input streams: ISAR 
(radar input) and FLIR (visible light and infrared input). In this 
paper, we focus on processing of the FLIR visible light input. 

Each stream is individually processed by a Recognition Engine, 
which performs object detection, classification, and tracking. 
Then the data from each Recognition Engine is aggregated by the 
Correlation Module, which merges the tracking results to identify 
and label identical objects caught across multiple video streams. 
Finally, the Prioritization Module processes the 
detection/classification results and assigns a priority value to each 
video stream, which aids the operator in appropriately directing 
his or her attention towards the most important stream. 
 

 
Figure 1: ExPATSS Overview Diagram 

 

 
Figure 2: FLIR Recognition Engine 

Within ExPATSS, the FLIR Recognition Engine contains the core 
vision capabilities. A single FLIR Recognition Engine is created 
for each FLIR video stream, which in turn processes FLIR video 
data to automatically detect and classify ships. 

The FLIR Recognition Engine, shown in Figure 2, is composed of 
three major components: the General Object Detection Module, 
the Contact Recognizer, and the Tracking Module. The General 
Object Detection Module consists of many different types of 
object detectors, each using a different algorithm to detect objects 
in the frame. The Combiner Module aggregates all objects 
detected by the individual object detectors and removes 
duplicates. The Contact Recognizer is tasked with 
recognizing/classifying ship types, while the Tracking Module 
collects the output from the Combiner Module and the Contact 
Recognizers to keep a track or history of each ship detected. 

Within the FLIR Recognition, the General Object Detection 
Module detects non-specific objects in the video frame by using 
various object detectors such as a Blob Detector, which looks for 
contiguous homogeneous image regions, and a Feature Detector, 
which cues on corner detection to detect objects. The Combiner 
Module combines similar objects from different detectors into a 
single object to avoid detecting duplicates, by comparing 
candidate object detections using size and pixel location, and 
combining them into a single bounding box that minimally 
encloses both original boxes if the detections are significantly 
overlapping. The Contact Recognizer performs classification by 
using the Convolutional Neural Network (CNN)-based 
recognition that we describe in more detail here. Finally, the 
Tracking Module compares object locations from frame to frame. 
It assigns every contact a track ID in each frame, and if there is 
sufficient positional overlap between a contact on the current 
frame and one on a previous frame, a single ID is assigned. 
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For each frame, the FLIR Recognition Engine outputs the pixel 
location of each object detected as well as its ID and 
classification. 

 

3.2 Application of CNNs 
The Contact Recognizer is the main image classification module. 
We use a Convolutional Neural Network in the Contact 
Recognizer to estimate a class label for each detected object. The 
Contact Recognizer uses Caffe, an open source deep learning 
framework, to perform classification at the frame level.   

For our initial experiments presented here, we focus on an image-
level classification task, i.e. deciding if a photo contains a given 
ship category or not. In particular, we classify an image into either 
open water (no ship visible), or one of five ship types: warship, 
speedboat, sailboat, merchant (cargo) ship, or cruise ship. These 
classifications were chosen based on the general ship types of 
interest to the Navy. We included a class for open water so that 
we can classify frames with no ship activity, which is useful for 
skipping to segments of interesting footage during playback. The 
open water class is also helpful to minimize the false positive rate 
of the object detectors. The object detectors will sometimes detect 
water movement (waves, splashing water, reflections, etc.) as 
objects of interest. We are able to lower the false positive 
detection rate by filtering out detected objects when the CNN 
classification result for a frame is open water. 

3.2.1  Training Data 
Deep learning-based models like CNNs typically require large 
amounts of training data, which is challenging for applications 
like our task where training data can be expensive to collect. We 
thus used publicly-available images downloaded from a social 
photo sharing website (Flickr.com) as our training dataset. These 
are consumer-style photos that may have significantly different 
properties from the images collected by cameras in a real 
application. For example, most users only upload their “good” 
photos – sharp, well-composed, with interesting or unusual 
content – whereas real applications may capture images with 
significant blur, noise, etc. Nevertheless, because images on Flickr 
are uploaded by so many different users under many different 
imaging scenarios, we find that they are diverse enough to create a 
reasonable, low-cost training dataset for our task. 
In particular, two human coders were asked to browse Flickr to 
find images from each of the five categories of ships (cruise, 
cargo, speed, sail, and war) as well as photos of open water. They 
used different strategies including searching based on keywords 
and browsing ocean-related Flickr groups and photo collections. 
They were asked to try to collect as wide a variety of images as 
possible, e.g. featuring ships in a variety of different poses, 
illumination conditions, sizes, etc., and to avoid collecting 
duplicate or near-duplicate photos or many photos taken by the 
same photographer. They were also asked to ignore photos that 
were obviously synthesized or edited (e.g. cartoons of ships, or 
photos with prominent watermarks). 

We then downloaded the photos they selected from Flickr, at a 
resolution of 500 pixels on the longest side. The human coders 
were then asked to label the images by drawing bounding boxes 
around all instances of ships visible in any of the images. We used 
the publicly-available LabelMe [7] tool. This yielded a set of 
3,040 images, or about 500 images per class (the distribution 
across classes was approximately uniform), with a total of 3,533 

bounding boxes. We split the images into training, validation, and 
testing sets of 2,128, 456, and 456 images, respectively. 

3.2.2 Training the models 
We used the open-source Caffe package [2] to train a 6-way 
classifier. Instead of training a network from scratch, we used a 
model trained on the ImageNet dataset of millions of images [3] 
to initialize the parameters of the network, and then “fine-tuned” 
on our much smaller dataset. This approach is often used to 
overcome limited training data; the intuition is that although the 
initialization parameters were derived for a completely different 
task and dataset, they still incorporate a generic enough 
representation of the visual world to be useful on other tasks. We 
used the AlexNet architecture [4], consisting of 5 convolutional 
layers (with rectified linear (ReLU) activation functions, and 
spatial max-pooling) followed by three fully-connected layers 
(with drop-out), except that we replaced the last layer with a six-
output layer to fit our six-class problem. We trained the network 
for a total of 100,000 iterations using a batch size of 50, a base 
learning rate of 0.001, a step size of 20,000, a momentum of 0.9, 
and a weight decay of 0.005. Training took approximately nine 
hours on a single system with an NVidia Tesla K40 GPU. 
 

4. EXPERIMENTAL RESULTS 
We now present preliminary experimental results of our ship 
detection and classification system based on deep learning. We 
present results on the Flickr data in Section 4.1. And we present 
some initial results for real-world data in our EXPATSS 
application in Section 4.2. 
 

4.1 Results on Flickr dataset 
We first evaluated the image-level classifier on the held-out 
portion of our Flickr dataset. To do this, we resized each image to 
227 x 227 pixels, and then presented it as input to the CNN 
trained in the last section. The CNN generates a confidence for 
each of the six classes, and we chose the single highest as the 
predicted class. 

The CNN achieved an overall correct classification rate of about 
91.4% on this 6-way problem, versus a majority class baseline 
(i.e. predicting the most frequent class) of 19.7%. Table 1 presents 
the confusion matrix for this experiment. As the table shows, the 
majority of errors occur because the classifier misses the ship in 
an image, incorrectly predicting it as open water. Many of these 
cases are small ships far in the distance, or ships photographed  

Table 1 Confusion matrix for image-level ship classification on 
the Flickr test dataset 

  Detected class 
  Cruise Cargo Open Sail Speed War 

A
ct

ua
l c
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Cruise 86.4% 1.2% 7.4% 0.0% 4.9% 0.0% 
Cargo 1.5% 88.1% 4.5% 0.0% 3.0% 3.0% 
Open 0.0% 0.0% 97.8% 1.1% 1.1% 0.0% 
Sail 0.0% 1.2% 4.8% 91.4% 1.2% 1.2% 
Speed 0.0% 1.5% 3.0% 1.5% 94.0% 0.0% 
War 1.4% 2.8% 4.2% 0.0% 1.4% 90.1% 



 
Figure 3: Randomly-sampled correctly (top) and incorrectly (bottom) classified images for each class in the Flickr test dataset. 

 

from very unusual perspectives. Excluding this error mode, the 
correct classification rate rises to 95.1%, indicating that once a 
ship is found in an image, the chance of it being identified as the 
correct type is quite high. Many of the remaining errors are due to 
ambiguity between ship types in the training data, because we did 
not define them precisely to our human coders (who were also not 
maritime experts). For instance, a yacht could be identified as a 
cruise ship or a speedboat, while small military crafts could be 
classified as warships or speedboats. Figure 3 presents some 
sample correctly- and incorrectly-classified images. 

Given the relatively small amounts of real-world training data in 
the target ExPATSS application, another important consideration 
of applying CNNs to this problem is how much training data they 
need to achieve acceptable levels of classification accuracy. To 
measure this, we performed an ablation study on our Flickr 
dataset, in which we trained on subsets of the training data of 
different sizes. Figure 4 presents results ranging from only 10 
training images total (i.e., an average of less than two images per 
class) to nearly the full training dataset of 2,000 images 
(averaging about 330 images per class). For each training set size, 
we performed five trials and show the mean and error bars (plus 
and minus two standard errors). Of course, accuracy is quite low 
with a training set as small as 10 images, and the variation across 
trials is quite high, indicating of course that which images are 
chosen in the training set is critical. However, even at these small 
training sets, classification accuracy is still about twice that of the 
majority class classifier (about 50% versus 19%), which is likely 
due to the fact that we fine-tune a classifier trained on ImageNet 
instead of training from scratch (as has been observed for one-shot 
learning with CNNs in other work [6]). Every factor of 10 
increase in training set size reduces the error rate by a factor of 
roughly two (50% error at 10, 20% error at 100, 11% error at 
1,000), and it appears that increasing the training set further will 
likely continue to improve results above our training set size of 
2,000.  
 

 
Figure 4: Six-way classification accuracy on the Flickr 
dataset, as a function of total training set size, averaged over 
five trials. Error bars show plus/minus two standard errors. 
Although training the CNN model for 100,000 iterations requires 
significant computational resources (about 9 hours on a single 
Tesla K40 GPU), in a real application the classification running 
time is much more critical. After the network has been loaded and 
initialized in memory and images have been preprocessed, we 
measured a GPU-based classification time of about 0.048 seconds 
per image, or about 20.7 frames per second, suggesting that the 
technique could be run in near real-time if a GPU is available. 
CPU-only classification was significantly slower, at about 0.91 
seconds per image.  
 

4.2 Results of ExPATSS Using CNN 
Table 2, shows the result of ExPATSS in classifying ships in our 
test videos. 

Each video has one main ship in view. The correct classification 
rate represents the performance of the system in classifying the 
main ship in view. The correct classification rate is calculated 
based on a per-frame basis. It represents the percentage of frames 
the system correctly classifies the ship. Using the CNN classifier, 
the ExPATSS system does very well in 9 out of 11 test videos. 



Table 2 Classification results on ExPATSS data. 

Video Number of frames Correct Classification 
Rate 

speed_boat_1 3,625 0.79 

speed_boat_2 4,320 0.68 

warship_1 750 0.91 

sail_1 570 0.00 

warship_2 600 0.97 

speed_boat_3 480 0.67 

warship_3 1,890 0.14 

warship_4 1,980 0.91 

open_water_1 114,497 1.00 

stormy _waters_1 7,223 1.00 

stormy_waters_2 441 1.00 

 

Figure 5 below shows sample frames that the ExPATSS system 
was able to correctly classify. 

  

  
Figure 5: Sample ExPATSS frames correctly classified. 

 

  

 
Figure 6: Sample incorrectly-classified ExPATSS frames. 

Figure 6 above shows a sample collection of incorrect 
classifications. The system performance decreases as the 
resolution of the ship decreases. Additionally, the system fails to 
classify the sailboat without the sail up, as well as the warships 
from the bow view.  

ExPATSS can very accurately categorize frames with no activity 
as open water. We achieved perfect results (no false positives) 
over 1:03:27 (114,197 fames) of open ocean, and 0:04:18 (7,664 
frames) of stormy choppy water. 

 
Figure 7: Sample Open Ocean Frame 

 

 
Figure 8: Sample Stormy Ocean Frame 

These results suggest that ExPATSS can be used to easily skip 
over uninteresting segments in playback. 
 

5. CONCLUSION 
To improve maritime situational awareness and to reduce operator 
overload, we have designed and implemented a system to 
automatically detect and classify ships in maritime scenes. The 
system uses CNNs for image classification and achieves higher 
than 79% correct classification rate for 7 out of 11 videos of real 
maritime data. The system achieves higher than 67% correct 
classification rate for 9 out of 11 videos. The system classifies 
long segments of open water (both stormy and calm) with 100% 
accuracy over 114,197 fames. This allows the system to be used 
during video playback to skip uninteresting segments of footage, 
which can save enormous amounts of human-hours. 

Our future work includes improving the current CNN model by 
using a larger and more diverse training set. We also plan to train 
new CNN models with more specific ship classes, i.e. training a 
CNN model to distinguish between different types of warships. 
Finally, we plan to apply CNN-based approaches directly to the 
object detection problem, to not only classify images but also 
identify where in the image the ships of interest are. Until 
recently, CNN-based detection techniques have been too slow for 
online applications. However, we have achieved promising initial 
results with the recently-proposed technique of Redmon et al. [5], 
which can deliver near real-time object detection in some 
scenarios. 
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