
 978-1-4799-5380-6/15/$31.00 ©2016 IEEE
 1

Serious Games for Team Training and Knowledge
Retention for Long-Duration Space Missions

Sowmya Ramachandran
Stottler Henke Associates, Inc.

1650 S. Amphlett Blvd., Suite 300
San Mateo, CA 94402

Sowmya@StottlerHenke.com

Bart Presnell
Stottler Henke Associates, Inc.

1650 S. Amphlett Blvd., Suite 300
San Mateo, CA 94402

BPresnell@StottlerHenke.com

Rob Richards
Stottler Henke Associates, Inc.

1650 S. Amphlett Blvd., Suite 300
San Mateo, CA 94402

Richards@StottlerHenke.com

Abstract—NASA’s Johnson Space Center is working with
Stottler Henke to improve teamwork skills for long-duration
space missions. Numerous factors, however, make instilling
teamwork skills into deep-space astronauts extremely
challenging. First, due to communication difficulties and
mission duration, teams must be trained in a wide variety of
domains—from maintenance procedures throughout the ship,
to extremely thorough medical training, to science evaluations.
Second, there may be a significant delay between when such
knowledge is acquired and when it is needed; for instance,
several years may pass between an astronaut learning how to
diagnose, and to treat, a collapsed lung. Third, training must
anticipate a huge range of conditions; the sheer length of deep-
space missions when compared to shuttle missions vastly
increases the number, and scope, of possible situations that
could arise, making it virtually impossible to train for every
scenario. To face the myriad challenges of deep-space flight,
inflight training must be readily available.

Our solution is a low-fidelity simulation using game-based
training that leverages our experience with intelligent tutoring
system (ITS) technology. Game-based training is engaging—it
provides an entertaining break from the more onerous aspects
of deep-space flight. Moreover, it incentivizes practice of
amorphous, but critical, teamwork skills, motivating crews to
practice more frequently for either mission-related team
training or generalizable team skills training. Finally, a game-
based solution addresses the problem of finding the physical
space in which to train when a small crew is constrained in a
cramped environment for extended periods of time.

This paper reviews the process of creating games based on
firefighting on the International Space Station (ISS) and
Medical Training. We review the process of analyzing the
firefighting procedure to determine the teamwork skills
involved; how those skills were mapped to game mechanics;
what changes were made to try to make the experience more
engaging; and finally, whether these changes were effective.

TABLE OF CONTENTS

1. INTRODUCTION ... 1	
2. TECHNICAL APPROACH 2	
3. EDUCATIONAL TOOLS 5	
4. FUTURE WORK ... 7	
5. CONCLUSION .. 8	
REFERENCES .. 9	
BIOGRAPHY .. 9	

1. INTRODUCTION
Instilling teamwork skills into astronauts serving on long-
duration space missions presents many challenges, starting
with the vast array of domains—from maintenance
procedures throughout the ship, to extremely thorough
medical training, to science evaluations that crew members
must learn due to communication difficulties and mission
duration. In addition, there may be a significant delay
between when such knowledge is acquired and when it is
needed, meaning skills must regularly be refreshed;
furthermore, the sheer length of deep-space missions vastly
increases the number, and scope, of possible situations that
may arise, making it virtually impossible to train for every
scenario. To face the myriad challenges of deep-space
flight, inflight training must be readily available.

Exploration crews have continually expressed a need for
more chances to learn to work together as a team prior to
flight, coupled with the need to retain proficiency with
limited room to practice during flight. Our solution
leverages Intelligent Tutoring System (ITS) technology in
conjunction with low-fidelity simulation using game-based
training, thereby providing engaging game-based training
with the pedagogical benefits of ITSs. Our ITS approach
stresses near-term or just-in-time development and
maintenance of specific teamwork knowledge, skills, and
attitudes (KSAs) that will be applied to imminent tasks.
Primary aims are practice and analysis of the teamwork
skills that are critical not only for success in particular tasks,
but also in maintaining an effective team given challenging
circumstances.

Background

The work that the project team has undertaken in developing
game-based training can be associated with research
conducted on the topic of simulation-based training (SBT).
SBT refers to training interventions that use many different
types of simulations in order for providing opportunities to
teach and administer practice opportunities for learning
skills. SBT is an effective approach for taskwork and
teamwork training, and is applied in multiple domains
including aviation, military, and healthcare [1].

One common misconception is that the characteristics of the
simulation—primarily the fidelity, or realism, of the

 2

technology utilized for training—have the most impact on
training effectiveness. However, based on validation studies
of training simulations possessing varying degrees of
fidelity, a majority of training experts agree that realism
plays a minor role in training effectiveness, with a need for
more emphasis on that actual training content [2] [3].

There are two critical requirements for using SBT: (1)
applying valid, reliable, and effective metrics to monitor
trainee performance, and (2) implementing event triggers—
target opportunities for practicing targeted training skills—
can help in the training process. Metrics must provide
diagnosable criteria regarding the learning performance of
trainees, as well as determine what needs to be focused on
for improving trainees for future cases. One reason for using
event triggers is the measurement of team performance is
the most effective for capturing data at the individual and
team level [4]. Additionally, event triggers can be designed
in order to elicit certain skills associated with training.

Our approach is based on the belief that there are generic
teamwork skills that can be trained [5] [6]. Regardless of
domain, these skills are required to be an effective member
of a team. Different domains and team structures may place
more stress on different skills, but the basic skills remain
constant. We base our training and metrics on the 4-C model
of teamwork. In this model, there are 4 basic skills.

Cohesion: Degree to which team members exhibit
interpersonal attraction, group pride, and commitment to the
team task.

Coordination: Enactment of behavioral mechanisms
necessary to perform a task and transform team resources
into outcomes.

Communication: Transactional process by which team
members can send and receive information simultaneously.

Cognition: Shared understanding among team members,
developed as a result of team member interaction--
familiarity with teammate knowledge, skills, and abilities.
Cognition includes knowledge of roles and responsibilities
as well as of team mission objectives and norms.

2. TECHNICAL APPROACH
The focus of our technical design and implementation has
been on supporting the need for domain independence. Our
two primary areas of concern are game platform and
performance metrics. For the game platform, the
architecture uses a very generic system of objects and
properties with a collection of actions that can alter the
object properties. This approach does place limits on the
type and scale of games that can be created. Additionally,
until we finish development of authoring tools, the creation
of individual games could be more time-consuming than
developing a system focused on a particular domain or type
of game. However, by choosing this type of domain model,
we can support a large number of different domains in

developing a wide variety of games, but also in being able
to analyze performance in a wide variety of games [7].

The same approach was taken with the development of
performance metrics. While there is significant work on
domain- specific analysis of teamwork, we wanted to avoid
having to generate new performance metrics for each
domain. For example, there are existing checklists for
assessing medical team communication, but we did not want
the tool to be dependent on its ability to analyze the domain-
specific situation. For example, we did not want to have to
author rigid rules such as in a medical game with a cardiac
arrest event, wherein the bedside nurse is needed to supply
the latest blood gas measurements to the on-call doctor.
Instead, we structured our metrics to use the type of the
ration of information requests vs information supplied to
make an assessment of how effective communication has
been. For example, in the above scenario, we use a ratio of
information-supplying actions vs. information request
actions to assess how the player in the bedside nurse role is
supplying the needed information. This is based on the
belief that if the nurse needed to supply the latest blood gas
measurements, the nurse would receive a request for that
information. This approach allows us to assess how well
players are supplying the needed information without
having to create domain-specific analyzers to review each
communication sent.

We describe below the specifics of the game platform and
the elements used in our domain-independent performance
assessments.

Game Platform

The overall platform is a basic client server architecture
built on existing commercial platforms. This approach
provides maximum flexibility in how the system can be
deployed as well as flexibility in which platforms can be
supported.

Overall System Design

Figure 1. System Organization

Development of a Formal Simulation Structure

We formalized the simulation structure in order to allow

 3

easier construction of future domains and to enable analysis
of actions for performance assessment and review.

The simulation world consists of two classes of entities:
Actors and Game Objects. Each Game Object is associated
with Properties. Actions are links between entities. A
Source and a Sink define an Action. The Source property of
an Action defines who or what initiates the action. The Sink
property defines who or what is affected by the action.
There are four types of actions:

• Actor to Object: This represents an action taken by
personnel that affects one or more properties of an Object.
E.g., extinguish fire, shut down electric subsystem.

• Object to Actor: This represents information about
Object properties passed to personnel, e.g., fire port code,
sensor readings.

• Object to Object: This represents automatic
processes in the simulation, e.g., shutdown of electric
subsystem resulting in putting out a fire.

• Actor to Actor: This represents information and
communication between personnel, e.g., passing code from
assistant to firefighter. Once the simulation model is
defined, a communication model or a model of how
information is passed around can be generated. Much of the
communication model can be generated automatically from
the simulation structure definition. Figure 2 below shows an
example of a communication model. The Game Engine
tracks the frequency of activation of each link as a game
unfolds. The communication model is useful for assessing
team communication in-scenario. It is also useful for
determining coverage. For example, if players never trigger
some communication links, then future training may need to
be adjusted to direct the players towards these links.

Figure 2. Example Communication Model

Game Engine

Significant changes have been made to the current game
engine during this project. First, we have made a significant
change in the environment: We designed the initial effort to

be dark to limit the information available to any one player
and to force communication. We determined this dark
environment, however, to be too confusing to players. A
first-person perspective within a maze environment has
since been found to be sufficient to keep any one player
from having complete knowledge of the game environment.
Changes have also been made to supply a mini-map display
of the environment. This map has simplified navigation
within the environment. The map is limited to only the
information the player had discovered or had been shared
with the player, which makes the domain significantly more
a test of sharing information effectively than of individual
maze-solving skills.

Features have been added to allow the players to perform
explicit information-based actions. Rather than allowing just
unstructured communication via the chat window, the game
allows for explicit information actions. There are four types
of information actions:

Send Information

a. Example – Source of a fire

Request Information

b. Example – The Code For A Port

Assign a task

c. Example – Shut down a component

Acknowledge

d. Example – Acknowledge any of the
incoming communications

The final change to the game engine has been the inclusion
of the golden snitch. This is a random object that appears
within the world. The snitch is an entirely individual action.
The goal of this functionality is to provide a distraction from
the main goal of extinguishing the fires. This current
functionality is temporary in nature and will ultimately be
replaced by an action more applicable to the domain.

Metrics

Over this project, we have also expanded the metrics used to
evaluate team performance. First, we implemented
infrastructure to support directly querying the players about
their knowledge of the expected team behavior. The query
questions and responses are derived from the existing
communication models, meaning we expect this
functionality should translate seamlessly to additional
domains. The frequency of the query adapts to the players’
performance. The system focuses queries on those concepts
and players that have shown some errors.

The second set of metrics is based on the number and ratio
of action types. We have added the ability to tag actions
with type information. The tag types are:

 4

• TEAM

• INDIVIDUAL

• INFORMATION

• REQUEST

• ASSIGNMENT

• ACKNOWLEDGEMENT

The metrics being measured are:
INFORMATION vs. REQUEST – The ratio of information
being supplied against the amount of information being
requested. If more information is being supplied than is
requested, this shows the team is anticipating the needs of
other team members.

TEAM vs. INFORMATION – The ratio of team-focused
actions vs. individual actions. This serves as a measure of
team commitment and focus.

INFORMATION + ASSIGNMENT vs.
ACKNOWLEDGMENT – The ratio of information
provided versus the number of acknowledgments. This
serves as a measure of the focus on closed-loop
communication.

TEAM vs. ASSIGNMENT – The ratio of team goal actions
vs. the number of assignment actions. This serves as a
measure of how focused the team is on coordination.

Furthermore, we have embedded research-based team
performance assessment metrics within the fire-suppression
game, in collaboration with our consultant, Dr. Eduardo
Salas, who offered recommendations for assessment metrics
and scoring criteria based on a thorough analysis of team
training research.

Following the 4Cs model of teamwork, the assessments
metrics we have added fall into the following categories:

Figure 3. Communication Channel Selector

Figure 4. Send Information Screen

Players can also acknowledge receipt of information from
their teammates, as seen in Figure 5 below.

Figure 5. Screen For Acknowledging Message

The following scores are computed to assess a player’s
team-communication skills:

• The ratio of the number of "acknowledge"
communications a player sends to the total number of
communications that team member sends and receives.

• The ratio of the number of information requests
sent by each member of the team compared to the number of
information messages sent by each team member. The ratio
is a team-wide metric showing how effective the team is at
efficiently providing information.

Cohesion—Cohesion is assessed by introducing the notion
of individual game goals—in addition to team goals. The
team goal for the fire-suppression game is to put out all the
fires in the space station. The new version of the game
additionally includes individual goals in the form of
experiments that players are responsible for. Periodically,
players will be called upon to monitor or perform some
actions related to their experiments. Sometimes attending to
the individual goals will conflict with attending to the team
goals, and a player’s sense of cohesion with the rest of the
team will be reflected in how they choose to resolve this
type of conflict. For instance, do they compromise on the
individual goal in favor of the team goals—or vice versa? A
player’s score on the cohesion dimension of team

 5

performance is computed as a ratio of individual actions to
the number of team actions they perform.

Cognition—Team cognition is related to players’ mastery of
their own tasks and knowledge of others'. It also relates to
situation awareness. To assess this dimension of team
performance, we introduced direct querying mechanisms
whereby each player is given a multiple-choice question to
indicate their knowledge or situation awareness. The
frequency of these questions is modulated by the player’s
performance both on the game and on prior multiple-choice
questions. The questions are auto-generated based on the
model of actions represented within the game.

Coordination—Coordination is a measure of how
effectively a team orchestrates its activities to achieve its
goal, and a large part of coordination consists of knowing
when and to whom to delegate and when to execute a task
oneself. To assess coordination, we have introduced a
scoring metric that reflects the ratio of the number of
assignment actions performed by a player to the number of
execution actions. It is also based on measuring the
percentage of valid assignments made by a player. Invalid
assignments are those a player is unable to perform. For
example, assigning a firefighter to determine the source of a
fire would be invalid.

We have, furthermore, refined the assessment metric to
include measure of communication efficiency. The goal: to
find an assessment that rewards both the effectiveness of the
communication as well as the efficiency of information sent.
Our previous metric used the numbers of requests for
information in ratio to the number of actions performed.
While this was a reasonable measure of how well team
members were supplying the information needed by other
teammates, it also rewarded behavior wherein significant
amounts of extraneous information were being delivered.

The most successful metric we have developed is a simple
weighted sum between the ratio of actions to requests as
well as the ratio between actions to bits of information sent.
This simple formula seems to reward the desired behaviors.
This formula also allows the metric to be adjusted to
different domains where the costs of requests or of sending
information may vary.

3. EDUCATIONAL TOOLS
The technical approach to the game engine and metrics
allows us to develop training games for a variety of domains
and to assess team behavior in these games. However, this is
only a partial solution—we must also support the
educational process. There are two key sets of tools we need
to supply in support of the educational goals. The first is a
debriefing tool. The current standard for most effective
team-based training involves allowing highly trained
proctors to conduct the post-game debriefings. Research has
shown the quality of the debriefing to be critical to the
effectiveness of the game as teamwork training tool. Our
initial approach is to provide tools for the team to review

performance, rather than initially attempt to fully automate
the debriefing process.

The second area we must address is determining the
appropriate content to use for training teams [8]. We are
developing two approaches to determining the appropriate
content. In the first approach, we look to match existing
games with descriptions of new domains; the second
approach is to expand the scripting capabilities. These
scripting capabilities will have a twofold focus: First, we
will provide the ability to adjust the actions and information
available to each role. Second, we will add capabilities to
control the type of in-game events to be generated. These
changes will allow educators to better tailor the game to the
skills they wish to focus on [9].

Visual Debriefing Tools—We have included visualization of
assessment metrics to facilitate end-of-the-game debriefings
(Figure 6). These allow visualizations of how the
performance assessment metrics change over time and are
generated from game performance data logs after the
completion of a game.

Figure 6. Debrief Tool Showing Events And Metric

Value Over Course Of Simulation

Content Selection

Game Matching and Retrieval—One of the innovations of
this effort has been an approach to auto-generating games
for new team configurations by modifying existing games.
Critical to this approach are algorithms for mapping game
characteristics to team configurations and for matching team
configurations to identify similarities and differences. We
have developed a graph-matching algorithm to determine
the "best match" between existing game domains and new
training domains. The algorithm extracts features in each

 6

domain and uses these to measure similarity. The model of
roles and objects and the required information
communication between them automatically construct the
feature set. We have implemented a basic matching
function.

The matching algorithm determines the features in a desired
team structure and interactions. These features are based on
the number of roles, the actions available to each role, and
finally on the information that is gathered, used, or passed
by each action. These features are then compared to the
existing library of games. For each existing domain, a score
is calculated as to whether the existing domain matches each
feature of the new domain. These feature-matching scores
are combined to determine an overall matching score. Once
the existing domain that most closely matches the new
domain is found, a matching is determined between the
roles of the new domain and the existing domain. The
existing domain can then be used as the basis of training for
the new domain.

For example, the team may need to train for an exploration
task, in which one team member must monitor a sensor
reading while providing instructions to another team
member operating a tool. This instance of team interaction
can be based on the firefighting game, as opposed to another
game where all players know all the information, and the
interaction is based on efficiently assigning tasks.

Event Scripting to Test Specific Skills

While there is great value in allowing the system to match
content to the particular team configuration, there is a need
to allow team trainers to generate scenarios that train teams
in very specific scenarios. To support this requirement, we
have developed a Domain Specific Language that allows
trainers to configure the domain-specific behaviors as well
as specify the team configuration, the actions and
information available to a specific player, the metrics to use
for a scenario, and the events to trigger the team-specific
behaviors.

For Cohesion, there are two script elements that are of
particular interest. First, there is the ability to add new tasks
to particular players using simple commands. This
mechanism allows for scenarios where an individual team
member can be overloaded, and an event is triggered where
supporting behavior from teammates is needed.

The scripting allows the success of the team to be measured
in several ways. First, trainers can specify metrics based on
task state, either by measuring task statistics or insuring that
specific actions have been performed for each task. Second,
trainers can specify metrics that measure the actions taken.
The trainer can either measure the delay between actions or
the prevalence of certain actions. For example, in a medical
domain, the trainer can specify reports that detail for the
number of patient transfer actions that occur, or they can
configure the scenario to report the delay between the
patient being added and a patient being transferred. Finally,

the scripting language allows for the specification of the
surveys that can be given to the players. These can be
surveys that allow players to rate either the overall
performance—or specific aspects of the performance—of
the team or individual. The trainer will receive reports on
how the team responded.

For Communication, the scripting language allows for
configuring scenarios that force communication between
players. Trainers can script which pieces of information
particular players can receive. The scripting language also
allows tasks and other items to be transferred between
players. Both of these features are intended to force the
players to communicate about the state and requirements of
tasks.

There are two features for measuring the effectiveness of
communication. First, the task status can be the metric. This
does not measure whether the appropriate communication
protocols are used, but it does measure the effectiveness of
the communication. We also have a metric to analyze the
patterns of communication: this analysis tries to determine
the amount of closed-loop communication as well as
determine which players are communicating.

For Cognition there are scriptable events that can stress the
players' shared cognitive models. The script elements allow
trainers to construct scenarios wherein an initial plan must
change as resources are removed or new tasks are added.
Additionally, communication capabilities can be removed
from individual players—forcing players to make decisions
without the ability to consult with other players.

To measure the cognitive performance, we can again use
metrics on the state of the tasks as well as direct querying of
the player. The scripting also allows for traditional task
order surveys. These surveys ask each player to order the
tasks involved in a procedure. The trainers can be given a
report showing how similarly each player in the team
ordered the tasks.

There are also mechanism to force Coordination between
the players. The script makes available to the players
different actions they can perform as well as allowing them
access to different supplies. These script mechanisms allow
the trainers to specify situations wherein players must
coordinate actions so that all tasks can be completed.

To support the extensive scripting capabilities of the system,
we have developed modifications to the popular open-
source software development environment, Eclipse. We
developed the scripting language by designing a Domain
Specific Language in the Groovy programming language.
Because the scripting language is essentially Groovy, we
can take advantage of the code completion capabilities of
Eclipse. In addition, we have developed code templates that
can be used by the Eclipse editor. These templates are added
into the context sensitive menus of the Eclipse text editor.
Scenario authors can insert the templates and tab through

 7

the elements in the templates. This approach makes it very
easy to quickly develop a scenario.

4. FUTURE WORK
With these new tools fully functional, we plan to expand the
library of games we have in two different ways. First, we
intend to develop a game for a very specific domain. Then
we will look at a very generic domain that allows for
developing games that test a wide range of teamwork skills
without any domain background.

New Medical Care Game Design

We first began development of the parameters for a new
game in the area of medical care focused on diagnostic
protocols for cardiovascular issues and designed to teach the
importance of full assessment before diagnosis and
treatments; of clear assignment of roles and responsibilities;
and of closed-loop communications. Having defined the
parameters of the game, we commenced development of the
storyline and gameplay.

It has not been not our goal to develop a sophisticated,
engaging, challenging high-fidelity simulation. Instead,
offering large numbers of simple simulations provides the
challenge and engagement. The game, we decided, should
require players to alternate roles of assessing, treating, and
monitoring patients. In the finalized overall design for the
healthcare teamwork game, the focus of the game is on three
modes of communication that are essential to a functioning
medical team—either for deep space missions or teams in
standard medical environments. The three types of
communication we focus on are:

• Basic communication between nurses and doctors.

o Providing practice at using SBAR
communication. Nurses must supply four
pieces of information in communication
with doctors:

§ Situation;
§ Background;
§ Assessment; and
§ Recommendation

• Patient History.

o Nurses must be able to quickly and
efficiently transfer care of patients from
one nurse to another. The game design is
meant to ensure that these transfers
happen, and happen quickly.

• Code Management.

o Medical teams must be able to quickly
manage these life-or-death situations. A
significant part of the success of the code
is having a team member be able to take

over the code and effectively assign team
tasks to other members. This is a
teamwork skill critical to any medical
team. Even highly trained, experienced
medical teams typically take the time to
review and practice code management.

Several mini-games comprise the overall game experience.
The purpose of these mini-games is to mimic the workloads
associated with actual medical environments. The
transitions into and out of the mini-games provide
opportunities and challenges in transferring patient history
and care instructions between nurses. The mini-games are
designed to accomplish two tasks: First, they are meant to
mimic the types of skills needed for different nursing roles.
For example, the patient management game has been
envisioned as a Tetris-based game. The basic tasks to be
done for each patient are relatively simple; the difficulty
comes in managing the needs of a number of patients. The
second goal of the mini-games is to provide an opportunity
to refresh medical knowledge. For example, some of the
mini-games may provide reminders about the steps and
checks that must be performed. A game based on feeding in
a central line, for example, would require the player to go
through a simple version of the procedure:

Find the correct entry point.
Feed the line into the central vena cava.

There are three player roles. We expect that the majority of
the players will be floor nurses. These nurses must transfer
patient management when they switch from the central
management game to other procedure games. While playing
procedure mini-games, the nurses will not be able to
manage other patients. This constraint is what forces
significant transfer of patients between nurses. The second
role is the charge nurse, who must take a basic history and
coordinate the transfer of patients between nurses. The final
role is that of the doctor. The doctor will take updates from
nurses and require procedures to be done. The doctor can
also change the management tasks associated with a patient.

The assessment makes use of our existing statistical
measures. Also included are measures of the speed of play
in the mini-games, allowing us to assess how much overall
improvement is the result of improved teamwork and how
much is the outcome of improvement with game mechanics.

Generic Team Skill Game

The envisioned game would be a simple grid-based
navigation game. The goal of the game would be to navigate
through the world to reach a required destination while
completing sub-goals (i.e., gathering items) in the virtual
environment. The world itself would consist of several
different cells:

(1) Standard Cell – a cell that can be crossed and can
contain items that can be picked up.

 8

(2) Wall Cell – a cell that cannot be crossed and cannot
contain items.

(3) Gate Cell – a cell that can be crossed when the gate is
unlocked. It cannot be crossed when locked. It cannot
contain items.

(4) Lock Cell – a cell that can unlock a gate for a limited
period of time. It cannot contain items.

(5) Destination Cell – the goal of the navigation task.
When all avatars reach this cell, the level ends.

The instructors would be given significant control over how
the world is configured in order to manipulate complexity
and difficulty, including:

Specify each cell type

(6) Place items within the world

(7) Connect lock cells to gates

(8) Adjust how long gates are open

(9) The number of avatars in the world

Using the new scripting flexibility and control over
scenarios, instructors will be able to create teamwork
practice opportunities based on their assessment of training
objectives. For example, the specific workings of the lock
and gate cells can create problems that test each of the
teamwork skills. If the instructor configures the scenario so
only Player 2 can see the gates, and only Player 3 can see
the locks, they have created a scenario eliciting teamwork
communication (i.e., the players must communicate what
elements are where for the other team member to operate).
On the other hand, if the world is configured so only Player
2 can operate the locks, the level becomes a coordination
problem. When the instructor can configure the world so
there is only one avatar and control over the avatar’s actions
and movements rotates between members of the team, and
there is communication cutoff between teammates, the game
becomes a cognition problem.

Improve Authoring Environment

Building upon the code completion tools within Eclipse has
made the task of writing new scenarios relatively easy.
However, there can still be significant cognitive demands in
making sure the scenario scripting is logically consistent.
We would like to build upon the tool infrastructure of
Eclipse to allow a phase of logical analysis on the scripts.
This analysis phase would be used to detect any logic errors
in the scenario before testing the scenario within the game.

A second area of research is to generate scenarios based on
high-level preferences from trainers. Our hope is to develop
a system that can generate new scenarios based on the types
of teamwork problems the trainers want to work on. We will
generate these as scripts rather than directly within the game

itself. This approach will allow the content generation to be
insulated from the specific game engine as well as allowing
trainers to build upon and fine-tune auto-generated
scenarios.

5. CONCLUSION
This project has demonstrated that it is possible to develop a
game framework that supports the assessment of teamwork
in a domain-independent manner. While the framework
does require that the new actions, objects, and properties are
defined for new domains, the teamwork assessment can be
done without having to specify complicated domain specific
expert based assessment rules. This approach makes it
significantly easier for this tool to adapt to a variety of new
domains.

While this domain-independent assessment and platform is
critical to the viability of this system, there is still
significant work to be done to meet the needs of teamwork
educators. To make the training process more efficient, we
must allow educators the tools to control which teamwork
skills are being tested and the level of challenge being
issued.

Having both a domain-independent assessment as well as a
sophisticated set of curriculum controls will allow team
training to be applied to a variety of domains. Teamwork
training has generally been a secondary concern, but with
the expansion of communication and technology, more and
more tasks have become cross-domain. Medical decisions
must involve decisions made by members from different
disciplines; nurses, surgeons, pathologists, pharmacists,
social services, technologists, and administrators must all
collaborate to make life-and-death decisions. Teamwork
skills have become critical to making this diverse group
with different expectations function in a highly stressful
environment. Tools such as we are building will be critical
additions to training in all of these domains.

 9

REFERENCES
[1] Salas, E., Wilson, K. A., Burke, C. S., & Priest, H. A.

(2005). Using simulation-based training to improve
patient safety: what does it take? Joint Commission
Journal on Quality and Patient Safety, 31 (7), 363-371.

[2] Jentsch, F., & Bowers, C. A. (1998). Evidence for the
validity of pc-based simulations in studying aircrew
coordination. International Journal of Aviation
Psychology, 8, 243-260.

[3] Maran, N. J., & Glavin, R. J. (2003). Low- to high-fidelity
simulation - a continuum of medical education? Medical
Education, 37, Suppl 1:22-8.

[4] Salas, E., Rosen, M. A., Held, J. D., & Weissmuller, J. J.
(2009). Performance measurements in simulation-based
training: A review and best practices. Simulation and
Gaming, 40 (3), 328-376.

[5] Salas, E., & Burke, C. S. (2002). Simulation for training is
effective when… Quality Safety Health Care, 11, 119-
120.

[6] Salas, E., Oser, R. L., Cannon-Bowers, J. A., &
Daskarolis-Kring, E. (2002). Team training in virtual
environments: An event-based approach. In K. M.
Stanney (Ed.), Handbook of virtual environments: Design,
implementation, and applications (pp. 873-892).
Mahwah, NJ: Lawrence Erlbaum Associates.

[7] Rieber, L. P. (1996). Seriously considering play:
Designing interactive learning environments based on the
blending of microworlds, simulations, and games.
Educational Technology Research and Development, 44,
43-58.

[8] Weaver, S. J., Wildman, J. L., & Salas, E. (2009). How to
build expert teams: Best practices. In R. J. Burke & C. L.
Cooper (Eds.), The Peak Performing Organization (pp.
129-156). New York: Routledge.

[9] Volpe, C., Cannon-Bowers, J. A., Salas, E., & Spector, P.
E. (1996). The impact of cross-training on team
functioning: an empirical investigation. Human Factors,
38, 87-100.

BIOGRAPHY
Sowmya Ramachandran
received a Ph.D. in Computer
Science from University of
Texas at Austin in 1998. Dr.
Ramachandran's interests focus
on intelligent training and
education technology, including
intelligent tutoring and
intelligent synthetic agents for
simulations. She is also

interested in issues of motivation and metacognition.
Experience with military and private industry gives Dr.
Ramachandran a unique perspective on the needs and
requirements of the ultimate end-users and their
constraints. She contributes expertise in AI, instructional
systems, probabilistic reasoning, and knowledge
management. She has developed ITSs for a range of
topics including reading comprehension, high school
Algebra, helicopter piloting, and healthcare domains. She
has participated in workshops organized by the Learning
Federation, a division of the Federation of American
Scientists, to lay out a roadmap for critical future
research and funding in the areas of ITSs and virtual
patient simulations. She has developed a general-purpose
authoring framework for rapid development of ITSs,
which was used to develop an intelligent tutor for training
Navy Tactical Action Officers. She has also developed
tools and technologies for training emergency first
responders.

Bart Presnell received an MS in
Computer Science from
Georgia Institute of Technology
in 2004. Mr. Presnell has
performed as a lead software
engineer on numerous behavior
modeling projects at Stottler
Henke. His research interests
include applying these behavior
cognitive models to game-based

training systems, most recently completing work on a
behavior model for air combat tactics. Past projects have
included efforts to create an online virtual world aimed at
reducing childhood obesity (www.creature101.com) and
an automated planner to model a variety of red forces in
an effects-based air campaign simulator. The planner
allowed cognitive models based preferences to guide
search in both hierarchical task network planning as well
as operator-based planning. Mr. Presnell’s research
interests focus on agent architectures, agent-based
simulation, planning, and multi-agent coordination. He is
particularly focused on applying these technologies to
entertainment and educational interactive simulations.
Past research efforts have involved team coordination for
Aibo Robots in the Robocup competition and modeling
communication behavior of emergency operation
personnel during a crisis situation. Prior to joining

 10

Stottler Henke, he worked for 7 years as a software
engineer for game development studios such as
Electronic Arts and Stormfront Studios. He created Agent
architectures and behaviors for agents in a variety of
games, including sports, driving, puzzle, action, and
combat titles.

Robert Richards received a
Ph.D. in Mechnical
Engineering from Stanford
University in 1995. Dr.
Richards is managing and has
managed multiple projects for
both commercial and
government clients, including
various intelligent-tutoring-
system-based training projects.

Dr. Richards is the Principal Scientist and Manager of
Stottler Henke’s Navy helicopter training contract,
OMIA. OMIA is a PC-based desktop training system that
teaches crewmembers the Navy’s new MH-60R and MH-
60S helicopters. Dr. Richards has taken OMIA from a
Research and Development SBIR project to a deployed
training tool that has been awarded over $6 million in
Phase III funding. He was also the PI for INCOT, an Air
Force project that developed automated tools for network
layout. These projects exemplify his wide range of
research and application area interests, including:
training system development; applying automation and
artificial intelligence techniques; and decision support
tool development for life-critical situations. Dr. Richards
has publications in all of these domains.

 11

