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Abstract 
Whenever an auto manufacturer refreshes an existing car or 
truck model or builds a new one, the model will undergo 
hundreds if not thousands of tests before the factory line and 
tooling is finished and vehicle production begins. These 
tests are generally carried out on expensive, custom-made 
prototype vehicles because the new factory lines for the 
model do not exist yet. The work presented in this paper 
describes how an existing intelligent scheduling software 
framework was modified to include domain-specific 
heuristics used in the vehicle test planning process. The 
result of this work is a scheduling tool that optimizes the 
overall given test schedule in order to complete the work in 
a given time window while minimizing the total number of 
vehicles required for the test schedule. The tool was 
validated on the largest testing schedule for an updated 
vehicle to date. This model exceeded the capabilities of the 
existing manual scheduling process but was successfully 
handled by the tool. Additionally the tool was expanded to 
better integrate it with existing processes and to make it 
easier for new users to create and optimize testing 
schedules.  
 

Introduction   
Vehicle testing is an essential part of building new cars and 
trucks. Whether an auto manufacturer refreshes an existing 
model or builds a new one, the model will undergo 
hundreds if not thousands of tests. Some tests are exciting, 
such as a 48 km/h dynamic rollover and measuring the 
impact on the crash-test dummies. Other tests are not quite 
as sensational but still important, like testing the heating 
and air conditioning system.  
 What these tests have in common is that they are 
generally carried out on hand-built prototype vehicles 
because the new factory lines for the models do not exist 
yet. These vehicles can each cost as much as an ultra-
luxury Bentley or Lamborghini, which results in pressure 
to reduce the number of vehicles. There are two additional 
complications with the test vehicles. First, the hand-built 
vehicles take time to build and are not all available at once, 
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but instead become available throughout the testing 
process based on the build pitch of the test vehicles. An 
example of this is one new test vehicle being made 
available each weekday. Second, there are many particular 
types of a model, and each test might require a particular 
type or any of a set of types (e.g., any all-wheel-drive 
vehicle). There may be dozens of types of a particular 
vehicle model to choose from, varying by frame, market, 
drivetrain, and trim. 
 At the same time, market forces dictate when new or 
refreshed models must be released. The result is additional 
pressure to complete testing by certain dates so model 
production can begin.  
 Finally, testing personnel and facilities are limited 
resources. For example, it would be desirable to schedule 
all of the crash tests at the very end of the project so other 
tests could be carried out on those vehicles first. However 
there aren’t enough crash labs or personnel to support this, 
so the crashes must be staggered throughout the project. 
 To summarize, the constraints placed on creating a valid 
schedule in this domain are: 
• Temporal: Tests must be scheduled between the 

project start and end date; each test has duration and 
an optional start date and an optional end date.  

• Calendar: Tests can only be scheduled during 
working shifts; tests cannot be scheduled on 
holidays. 

• Ordering: Tests can optionally be assigned to 
follow either immediately after another test or 
sometime after another test. 

• Resource: Each test can only be scheduled on 
certain vehicle types; tests may optionally be 
required to use the exact same vehicle as another 
test; tests may require personnel to be available; and 
tests may require facilities to be available. 

• Build Pitch: Vehicles are not available for tests 
until the date they are created; creation dates follow 
a given build pitch schedule with additional 
constraints. 

• Exclusive: Test indicated as exclusive must be the 
first test on the selected vehicle. 



• Destructive: Tests indicated as destructive must be 
the last test on the selected vehicle. 

 The work presented in this paper describes how Aurora, 
an existing intelligent scheduling software framework 
(Kalton, 2006), was modified to include domain-specific 
algorithms and heuristics used in the vehicle test planning 
process. The framework combines graph analysis 
techniques with heuristic scheduling techniques to quickly 
produce an effective schedule based on a defined set of 
activities, precedence, and resource requirements. These 
heuristics are tuned on a domain-specific basis to ensure a 
high-quality schedule for a given domain. The resulting 
domain-specific scheduler is named Hotshot.  
 The end product of this work is a deployed system that 
automatically creates a valid schedule from a set of 
constraints provided by the planner. The created test 
schedule will complete the work in a given time window 
and observe all of the scheduling constraints. The schedule 
optimization process includes determining which vehicle 
types are built and the order in which they are built and   
minimizes the total number of vehicles required for the 
entire test schedule.  
 Results from the deployed system are presented from 
applying the system to a large-scale testing effort for a 
vehicle model update. This effort was not considered 
manageable using the existing manual scheduling process, 
so there is no direct comparison to the pre-existing 
scheduling process. Prior work reported elsewhere does 
include a direct comparison between Hotshot and the 
previous scheduling process with a 12% reduction in 
number of vehicles required (Ludwig et al., 2014). 
 In the remainder of this paper, we first discuss related 
work. Following this we describe the Aurora scheduling 
framework and summarize changes made to create the 
domain-specific Hotshot scheduling tool, focusing on the 
features added to support the transition from prototype to 
deployed system. The methods and results sections 
contains the details of how the deployed system was 
validated  by creating one of the largest test schedules for a 
single vehicle model to date. Finally, we present future 
work in the conclusion. 
 The primary contributions of this case study are 
describing the customization of an existing general 
scheduling framework to solve a specialized and highly 
constrained problem and discussing the requirements 
included in deploying a scheduling system that both 
supports novice planners and integrates with existing 
processes. 

Background and Related Work 
The current version of the software extends the prototype 
Hotshot system (Ludwig et al., 2014), which demonstrated 
the ability to generate a valid schedule with a significant 

reduction in the number of vehicles required relative to the 
existing planning process. The deployed version of Hotshot 
includes a number of significant improvements to the 
initial prototype.  
 Schwindt & Zimmerman (2015) provide a thorough 
review of related work aimed at creating test schedules that 
respect testing constraints and minimize the number of 
prototype vehicles required. The work presented in this 
paper is most similar to that of Limtanyakul and 
Schwiegelshohn (2012, 2007). They use constraint 
programming to solve nearly the same problem of creating 
a test schedule for prototype vehicles. Both papers work 
towards a valid test schedule that meets the same 
scheduling constraints described previously (temporal, 
resource, ordering, build pitch, etc.), minimizes how many 
vehicles are built, determines the vehicle types to build, 
and determines the order in which the prototypes should be 
built according to a build pitch.  
 Bartels and Zimmerman (2007) also worked on the 
problem of scheduling tests on prototype vehicles meeting 
temporal, resource, and ordering constraints while 
minimizing the number of vehicles required. Initially they 
use a mixed integer linear program model for smaller 
schedules, moving to a heuristic scheduling method to find 
solutions for larger schedules. They found that dynamic, 
multi-pass heuristics produced the best results. These are 
the same type of prioritization heuristics used in Aurora. 
 Zakarian (2010) took a different approach in their 
prototype scheduling work for General Motors. They 
focused on developing a scheduling and decision support 
tool that considers the uncertainty in the test process, such 
as duration of tests, possibility of failure, and prototype 
availability. The tool helps users trade off between 
competing goals such as completing the tests according to 
schedule, quality of testing, and number of prototype 
vehicles required. Similar to their work, Aurora will 
highlight conflicted tests that cannot be scheduled because 
of insufficient resource availability in the given time 
frame. 
 One primary difference from previous research is that 
our work focuses on domain specific customization of a 
general-purpose scheduling framework already in use in 
other applications. A scheduling framework takes 
advantage of the large degree of commonality among the 
scheduling processes required by different domains, while 
still accommodating their significant difference. This is 
accomplished by breaking parts of the scheduling process 
into discrete components that can easily be replaced and 
interchanged for new domains.  
 Framinan and Ruiz (2010) present a design for a general 
scheduling framework for manufacturing. Aurora, used in 
our work, is one example of an implemented scheduling 
framework (Kalton, 2006). Aurora distills the various 
operations involved in most scheduling problems into 



reconfigurable modules that can be exchanged, substituted, 
adapted, and extended to accommodate new domains (e.g., 
Richards, 2015; Richards, 2010a; Richards, 2010b). The 
OZONE Scheduling Framework (Smith et al., 1996) is 
another example of a system that provides the basis of a 
scheduling solution through a hierarchical model of 
components to be extended and evolved by end-
developers. Becker (1998) describes the validation of the 
OZONE concept through its application to a diverse set of 
real-world problems, such as transportation logistics and 
resource-constrained project scheduling.  
 Another difference from existing research is that the 
scope of the work presented in this paper extends beyond 
the prior work, including the Hotshot prototype, in a 
number of ways. The work presented in this paper is part 
of a deployed system that includes visualization, analysis, 
and integration with existing processes; is currently in use 
by novice planners; includes methods to identify and 
automatically resolve common types of modeling errors 
created by novice planners; and includes methods to 
transition the testing schedule from planning stage to 
execution phase.  

Scheduling Framework 
Aurora was designed to be a highly flexible and easily 
customizable scheduling system. It is composed of a 
number of components that can be plugged in and matched 
to gain different results. The scheduling system permits 
arbitrary flexibility by allowing a developer to specify 
what components to use for different parts of 
scheduling. Aurora has been successfully applied in a 
multitude of domains, including medical, manufacturing, 
and aerospace. (Richards, 2015; Richards, 2010a; 
Richards, 2010b). The steps in the scheduling process are 
described in detail below. All configurable elements are 
shown in bold. Elements that were modified for the test 
vehicle domain will be discussed further in later sections. 

 Additionally, Aurora includes a default user interface 
that is further customized for each domain. As shown in 
Figure 1, a domain specific wizard to walk the user 
through the scheduling process is shown in the center. 
Behind this are parts of the standard interface: list of tasks 
(left), information on the selected task (center), and a 
network diagram (right) showing the ordering constraints 
between tasks. Other views include resources and 
calendars as well as various reports and graphs. 

Scheduling Process 
Schedule Initialization 
1. Aurora undoes any previous post-processing (to get back 
to the “true” schedule result state) and applies the 
Preprocessor to the schedule information. 
2. Aurora uses the Queue Initializer to set up the queue 
that will be used to run the scheduling loop. A standard 
Queue Initializer puts some or all of the schedulable 
elements—activities, flows, and resources—onto the 
queue. 
3. The queue uses the Prioritizer to determine the priority 
of each element. Depending on the execution strategy, 
these priorities may be used to periodically sort the queue 
or to schedule the element with the highest priority at each 
stage.  
4. The Schedule Coordinator triggers the scheduling of the 
elements on the queue by starting the Scheduling Loop.  
 
Scheduling loop 
1. A schedulable element (task, project, or resource) asks 
the Scheduler to schedule it. 
2. The Scheduler calls constraint propagation on the 
schedulable so as to be sure that all of its requirements and 
restrictions are up to date. 
3. The Scheduler looks at the element, considers any 
Scheduling Method that is associated with it (e.g., 
Forward, Backward). A Scheduling Method determines 
how the system goes about trying to schedule an element. 
The Scheduler also selects which Quality Criterion to 
associate with the selected scheduling method; the Quality 
Criterion determines what makes an assignment “good.” 
4. The Scheduler calls the Schedule Method on the 
schedulable. The process depends a great deal on the 
Schedule Method, but the result is that the schedulable 
element is assigned to a time window and has resources 
selected to satisfy any resource requirements. It also 
returns a list of the conflicts resulting from the given 
assignment. 
5. The Scheduler calls constraint propagation on the 
schedulable (again) in order to update all of the neighbors 
so that they are appropriately restricted by the newly 
scheduled element. This process may result in additional 

Figure 1. Aurora scheduling user interface.  



conflicts; if so, these are added to the list of conflicts from 
scheduling. 
6. The Scheduler adds the conflicts to the Conflict 
Manager and asks the manager to attempt to resolve those 
conflicts. 
 
Schedule Finalization 
1. When the queue is empty, Aurora goes through a final 
conflict management step, this time at the global level.  
2. Aurora calls the Postprocessor on the schedule, so that 
any additional analysis may be done before Aurora returns 
the schedule results. 
3. Aurora sends the schedule results to the GUI for display. 

Domain-Specific Customization 
Two different types of modifications were made to the 
Aurora framework to create the Hotshot tool. First, the user 
interface front end was modified to import the testing 
model, display and edit domain-specific properties, 
perform the optimization to minimize the number of 
required vehicles, and to search for additional resources 
that could be added to shorten the project schedule. 
Second, components in the scheduling back end were 
updated specifically for this domain. 
 
User Interface Customization 
There are seven features added to the general scheduling 
user interface that are specific to the vehicle test domain: 
import an Excel model of the testing problem, edit the 
build pitch, edit the vehicles and build order, determine 
how to handle irregular tasks, minimize the number of 
vehicles required, search for additional resources that could 
be used to shorten the schedule, and export the schedule to 
a client-specific format. Each of these features will be 
described in greater detail, highlighting new features and 
changes made to existing features as the user base of the 
system grew. 
 The starting point of the Aurora customization for the 
vehicle testing domain is importing the testing tasks, task 
constraints, calendars, resources (vehicles, vehicle types, 
personnel, facilities), and build pitch information from a 
set of Excel spreadsheets. These Excel spreadsheets 
represent a model of the overall testing problem. Once 
imported, the general user interface supports graphically 
viewing and editing the model elements such as tasks, 
resource requirements, resources, resource sets, 
constraints, and calendars. For the deployment, the primary 
additions were in model error checking. In practice, 
multiple team leaders specify portions of the overall 
model. This leads to situations where models are defined 
that are logically impossible to solve. One example is when 
there are more days of work indicated than there are days 
of vehicles available given the build pitch and end date. 

The deployed system looks for common mistakes made 
with the prototype and alerts the user to the problem using 
familiar terms that they can easily understand. 
 The Build Pitch (Figure 2) dialog was added for viewing 
and editing the general build pitch per week (number of 
vehicles that can be built) as well as a maximum for each 
vehicle type per week. For example, 10 test vehicles per 
week can be built, but only 5 all-wheel-drive can be built 
in a week. Additionally, each vehicle type has a first 
available date, which determines the earliest date that a 
vehicle of that type could be available. The Manage 
Vehicles dialog is related to Build Pitch, allowing the user 
to edit the vehicles to be built and their build order. The 
build order is assigned automatically during the 
optimization process. Build dates are assigned based on the 
build order, moving from 1 to n and selecting the first 
available date that meets two criteria: number of 
vehicles/week is not exceeded and vehicle type per week is 
not exceeded.  

 While the general build pitch can be used at the start of 
the scheduling process, part-way through the test process a 
more detailed build pitch is released that gives specific 
dates in which vehicles will be available, for example, 3 
vehicles on Monday the 1st. Later in the test process, the 
information is even more detailed, with specific dates 
given to each test vehicle to be built. The deployed version 
of Hotshot supports the existing planning process by 
including all three of these modes and updating the 
schedule as the model transitions from most general to 
most specific build pitch. 
 Greater use of the system also indicated that an 
additional dialog to handle tasks with irregular dates was 
needed. The Set Task End Dates dialog was added to 
support tasks that were allowed to extend beyond the 

Figure 2. Build pitch configuration. 



desired project end date. Examples of this include tasks 
with a given end date later than the project end date, 
individual tasks that are longer than the entire project 
duration, and chains of tasks linked with ordering 
constraints such that the combined duration exceeds the 
entire project duration. In all these cases, the user 
determines if the entire project should be extended or if the 
task(s) will be allowed to complete at a date past the 
project end date.  
 The Optimization Dashboard (Figure 3) is used to 
minimize the number of vehicles required to schedule the 
testing tasks.  In Hotshot, optimization is accomplished by 
using the scheduling engine to perform a search through 
the space of schedules to find a valid schedule that requires 
fewer vehicles. The Optimization Dashboard helps 
visualize the setup and search process for the user. The 
upper left area of Figure 3 summarizes the present state of 
the current schedule, showing the number of vehicles 
required, the number of destructive and exclusive tasks, the 
utilization of vehicles in the testing schedule, and the 
actual project end date relative to the initial. The upper 
right shows the current status of optimization, which will 
change once the Start button is pressed. This portion of the 
dialog also provides an estimate of how long the remaining 
optimization will take. The central portion of the dialog 
contains the five parts of the optimization process. Buttons 
for starting and controlling the optimization are found 
along the bottom of the dialog.  

 There are five steps in the optimization process. The first 
three steps prepare the scheduling model for search, the 
fourth step carries out the search, and the final step returns 
the schedule to the end user format: 
1. Set Backward Schedule. Mark all tasks to be backward 
scheduled. This means that the schedule will be created 

from the end of the project to the beginning, with all tasks 
scheduled as close to their late end dates as possible.  
2. Project End Date Extension. Users of the prototype 
often ran into problems when the desired model was too 
ambitious for a solution to be found. This optimization step 
was added to correct for overly optimistic end dates. The 
end date extension attempts to schedule the project with all 
of the constraints except build pitch. If conflicts are found, 
it extends the project end date to try to fix the issues for the 
user. If conflicts still exist, optimization is aborted. At this 
point the planner will need to refer to the conflicts to fix 
the model issues. 
3. Date Optimizer. Once the tasks are backward 
scheduled, assign build order based on the earliest dates 
tasks are assigned to vehicles. That is, if the first task 
assigned to Vehicle A starts on Jan 15 and the first task 
assigned to Vehicle B starts on Jan 18, then A will come 
before B in the build order. The heuristic is that vehicles 
that are needed earlier should be built earlier. Note that this 
optimizer greatly reduces the amount of time available to 
test vehicles built later in the schedule. Due to the same 
issue with ambitious test models as seen in step 2., this 
optimizer will also attempt to extend the project end date if 
conflicts are found once build dates are applied. 
4. Meta Disabler Optimizer. This step uses the 
scheduling engine as part of a greedy search for valid 
schedules that require fewer vehicles. Starting with the 
vehicles created last in the schedule, temporarily disable 
the vehicle and use the scheduling engine to try to create a 
schedule without the vehicle. If this succeeds, permanently 
delete the vehicle. If this fails, restore the vehicle and 
continue. As vehicles are removed, the Date Optimizer is 
used to re-order the build dates of the remaining vehicles. 
5. Set Forward Schedule. Finally each task is returned to 
forward schedule mode and re-scheduled so that all tasks 
try to schedule as close to the project start date as possible. 
This is the preferred output format for downstream 
processes that make use of the schedule created by 
Hotshot.  
 The Resource Analysis dialog was developed to provide 
guidance to new users on how they could improve the 
schedule, either by reducing the number of vehicles 
required or by shortening the project duration. Starting 
from an optimized schedule, the Resource Analysis dialog 
carries out a meta-search process. For each resource  
(vehicle type, personnel, or facility), the dialog will 
perform the optimization process as if another of that 
resource were available. The user is shown the effect of 
adding each resource individually to the schedule in terms 
of project end date and number of cars required. This 
serves as a starting point for discussion on what-if 
scenarios for improving the schedule. 
 The final feature is aimed at making the scheduling 
results easier to use as part of the larger process of 

Figure 3. Optimization dashboard. 



planning for and carrying out tests. Aurora contains a 
variety of highly customizable displays such as the plot 
shown in Figure 4. In this figure the actual vehicle and 
tasks have been simplified and obfuscated. Vehicles are 
shown on the x-axis and time on the y-axis. For example, 
SIX~001 is the first vehicle instance of type SIX. It has the 
task 9_Group2_Test_9 assigned to it from August 9 to 
October 10. The light-purple cell on August 8 to the left of 
the task indicates the vehicle is not yet available for 
scheduling, visualizing the build pitch. The plot has also 
been customized to color code tasks by group and to 
indicate destructive tasks with a yellow tag in the upper 
right corner. However, an existing format of scheduling 
results is already in use as part of the vehicle testing 
process. The deployed version of Hotshot includes custom 
export capabilities to inject the Hotshot results into the 
existing, proprietary system. 
 
Scheduling Component Customization 
The main change for the deployed scheduling system was 
to support irregular tasks that are allowed to complete 
outside of the project start and end dates.  

The scheduling model is based on a hierarchical 
structure with flows and tasks. Flows represent high-level 
projects made up of individual tasks that must be 
scheduled. One of the key constraints on flows and tasks is 
the late end date. Late end date represents that last possible 
date the project or task can be completed. Under normal 
conditions, the late end date of the flow will constrain the 
late end date of any of the tasks that make up the flow. For 
example, Task A has a defined late end date of 12/31/2015. 
Task A is part of Flow “Test Project,” which has a late end 
date of 12/01/2015. The Preprocessor synchronizes the 
end dates of the tasks and the flow that contains the tasks. 
So in the above example, Task A will be updated to have a 

late end date of 12/01/2015 because it is constrained by the 
flow end date. In real-world conditions, the flow late end 
date describes when the bulk of the tasks need to be 
finished by, but there are some tasks that can be safely 
finished after the project is considered complete.  To 
support this, tasks can be marked as override project end 
date. The updated Preprocessor does not change the late 
end dates of these tasks.  

The Hotshot prototype component customization 
focused on three central areas: scheduling direction 
maintenance, special handling for vehicle testing’s unusual 
requirements, and more standard heuristic tailoring for the 
domain. In this paper we focus on the Prioritizer 
component, which was not described in detail previously. 
See Ludwig et al. (2014) for the customization of other 
scheduling components: Preprocessor, Scheduler quality 
criteria, Scheduler, and Post-processor.  

The Prioritizer uses a cascading series of heuristics to 
determine which activities should be scheduled earlier in 
the process. In general, if “difficult” activities in the given 
domain are scheduled earlier in the process, it tends to 
avoid subsequent conflicts in the schedule that would be 
difficult to repair. The heuristic prioritizer considers each 
heuristic in turn, until it can differentiate between two 
prospective activities. If two activities tie on a given 
heuristic (e.g. both are “exclusive use” activities), the 
prioritizer will consider the next heuristic (“long task"), 
and the next, until it can break the tie. The primary 
heuristics in this domain are: 
• Exclusive task: Prefer to schedule activities that 

must have exclusive use of a vehicle earlier in the 
process.  

• Long task: Schedule the long activities early in the 
process and fill in with short activities.  

 

Figure 4. Aurora assignment of tasks to vehicles over time. For example, SIX~001 is the first instance of a vehicle of type SIX. It is 
available for tasks starting August 9th. The first task assigned to this vehicle is 9_Group2_Test_9. 



 
• Destructive task: Some tests involve destroying the 

vehicle. This prevents any activities from 
subsequently making use of the vehicle, so it is 
important to place the destructive tasks - as late in 
the schedule as possible - early in the scheduling 
process.  

• Tight window: This reflects the fact that activities 
with a short window of opportunity tend to be 
harder to place than those with a long window of 
opportunity. In this case, the “tightness” reflects the 
difference between task duration and the projected 
window size. 

• End based: Schedule tasks that must be completed 
first earlier in the process for the forward-schedule 
phase.  

• Load-based: Prefer activities with fewer vehicle 
options and/or more competition for those vehicles.  

• Subsequent duration: Considers the amount of 
follow-on work after the current activity, based on 
ordering constraints. 

Methods 
Based on the prototype results, Hotshot was immediately 
put to work on a large project that had several challenging 
constraints from the start.  The first challenge was that the 
factory in charge of this project had capacity issues and 
was not able to build enough vehicles to satisfy all of the 
testing and development requirements.  As a result, a 
second factory was sourced to make up the shortage of 
vehicles the first factory was unable to produce.  
Developing an optimized test schedule manually for this 
type of build—one that included two build locations, two 
separate build pitches, and two different timelines—had 
not been attempted previously.  

To tackle this challenge, the project leader followed a 
divide and conquer approach. Instead of treating this 
project as one very large schedule, it was divided into two 
medium-sized schedules that were individually optimized. 
To carry this out, the project leader separated the exclusive 
tasks from the non-exclusive tasks.  All exclusive tasks 
were to be scheduled and optimized at the second factory 
while the non-exclusive tasks were to be scheduled and 
optimized at the first factory.   

The second challenge centered on negotiations to create 
schedules that worked for both the testing team and the 
factories building the test vehicles. The schedule that was 
using the first factory, which was to build vehicles for the 
non-exclusive tasks, was created first.  Ongoing 
negotiations took place with this factory with regard to 
build timing and build pitch.  This factory had several 
assignments it was balancing and had to make changes and 

requests in real time during the schedule optimization 
process. These requests were fed back to the project team, 
which utilized Hotshot to update the test schedule. Most of 
the change requests involved when to build certain vehicles 
and how many vehicles to build per week.  The project 
team was able to honor the factory’s requests as well as 
counter-propose options that would help further optimize 
vehicles and schedules.  

After the non-exclusive tasks’ schedule was created, the 
exclusive schedule was started.  The second factory was an 
in-house fabrication department that had different 
requirements and constraints than those of the first factory.  
However, the same process of creating a test schedule was 
used in this case.  Build pitch and build timing were 
considered when performing the optimizations and 
schedule creation.   

Results 
In the end, the team was able to create an optimized 
schedule with a larger number of vehicles (50 – 150) that 
met all of the non-exclusive test groups’ needs.  The 
second exclusive task schedule was created using a smaller 
number (10 – 50) of test vehicles.  In total, a large number 
of vehicles were needed to satisfy the project requirements 
and testing needs, drawing from 30 – 50 different vehicle 
types. This included 4042 days of testing, with over 340 
testing tasks. These tasks were constrained by the 
completion of preceding tasks, by requiring the use of the 
same resources as preceding tasks, and by the availability 
of vehicles, personnel, and testing facilities. In addition to 
successfully scheduling a suite of tests that would have 
been very difficult previously, Hotshot also supported the 
negotiation process and minimized the number of test 
vehicles required. 

Working with the initial prototype, planners 
demonstrated the ability of generating a schedule in under 
two minutes, as opposed to this task requiring days of 
labor. This capability enabled the planners to generate 
numerous “what-if” scenarios. Planners could quantify the 
effect of compressing or extending the schedule in terms of 
how many cars would be required. Planners also 
demonstrated the effects that steeper and shallower build 
pitches have on the number of cars required for a given set 
of tasks and project end dates. Planners were also able to 
negotiate about the vehicle types required by tests. For 
example, a vehicle type requested by one test but not 
usable by other tests stands out in plot as a vehicle with 
very low utilization. The planner can then go back to the 
person in charge of the test and see if a more commonly 
used vehicle type could be substituted. The ability to 
quickly run “what-if” scenarios held true with the larger 
models as well.  The ability to quickly examine these types 



of effects enabled a more efficient negotiation process to 
take place between the test and vehicle production teams 
than during previous challenging projects. 
 Hotshot was also used to minimize the number of test 
vehicles required for this large project. Unfortunately, 
there is no direct comparison to the previous method 
because no manual model was attempted given the 
complexity of the test schedule. The only estimate we can 
give for the number of vehicles saved is based on the 
combined judgment from several members of the project 
team. They estimated that Hotshot created at least six 
fewer vehicles than would have been created with the 
previous method. This represents a 6% reduction in the 
number of vehicles required and a significant cost savings 
in the millions of dollars.   
 Note that this estimate was purposely conservative. The 
prototype version (Ludwig et al., 2014) demonstrated a 
12% reduction in vehicles when directly compared with the 
manually created schedule on a much smaller model. 

Conclusion 
This paper described a complex, real-world scheduling 
problem in automotive vehicle testing prototype 
management. To address this problem, we added domain-
specific heuristics to a general intelligent scheduling 
software framework to create the custom Hotshot 
scheduling software.  
 Hotshot helped solve a very complex scheduling 
challenge in the presented use case.  Solving this challenge 
with the previous, manual method would have been almost 
impossible. As deployed, Hotshot enabled the schedules to 
be created in an efficient manner while also building fewer 
vehicles than the manual method would have needed.  
 Due to the reduction in required vehicles, this use case 
also demonstrates the cost-effective development of a 
customized scheduling system. The savings from the 
reduced vehicles alone in the presented use case greatly 
outweighs development cost, and additional savings are 
generated with each new project. Hotshot has already 
saved the end user millions of dollars in prototype costs 
while increasing transparency of the entire process from 
the implementation level to the executive level. 
 Ongoing work is aimed at scaling Hotshot, and its 
optimization capabilities, to multiple simultaneous 
projects. Currently, Hotshot is used to optimize a single 
project. The functionality around build pitch allows 
constraints caused by vehicle availability for multiple 
projects to be factored into the schedule. However, the 
schedule does not take into account delays that could be 
introduced due to conflicts in using limited personnel and 
testing facilities for different projects being run at the same 
time. The next step in development will assist planners in 

creating a combined schedule for all of the active testing 
projects at any given time. 
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