

Deploying a Schedule Optimization Tool for Vehicle Testing

Jeremy Ludwig, Annaka Kalton, and
Robert Richards

Stottler Henke Associates, Inc.
San Mateo, California

{ludwig, kalton, richards} @ stottlerhenke.com

Brian Bautsch Craig Markusic, and Cyndi Jones
Honda R&D Americas, Inc.

Raymond, OH
{ CMarkusic, Bbautsch, CJones } @ oh.hra.com

Abstract
Whenever an auto manufacturer refreshes an existing car or
truck model or builds a new one, the model will undergo
hundreds if not thousands of tests before the factory line and
tooling is finished and vehicle production begins. These
tests are generally carried out on expensive, custom-made
prototype vehicles because the new factory lines for the
model do not exist yet. The work presented in this paper
describes how an existing intelligent scheduling software
framework was modified to include domain-specific
heuristics used in the vehicle test planning process. The
result of this work is a scheduling tool that optimizes the
overall given test schedule in order to complete the work in
a given time window while minimizing the total number of
vehicles required for the test schedule. The tool was
validated on the largest testing schedule for an updated
vehicle to date. This model exceeded the capabilities of the
existing manual scheduling process but was successfully
handled by the tool. Additionally the tool was expanded to
better integrate it with existing processes and to make it
easier for new users to create and optimize testing
schedules.

Introduction
Vehicle testing is an essential part of building new cars and
trucks. Whether an auto manufacturer refreshes an existing
model or builds a new one, the model will undergo
hundreds if not thousands of tests. Some tests are exciting,
such as a 48 km/h dynamic rollover and measuring the
impact on the crash-test dummies. Other tests are not quite
as sensational but still important, like testing the heating
and air conditioning system.
 What these tests have in common is that they are
generally carried out on hand-built prototype vehicles
because the new factory lines for the models do not exist
yet. These vehicles can each cost as much as an ultra-
luxury Bentley or Lamborghini, which results in pressure
to reduce the number of vehicles. There are two additional
complications with the test vehicles. First, the hand-built
vehicles take time to build and are not all available at once,

Copyright © 2016. All rights reserved.

but instead become available throughout the testing
process based on the build pitch of the test vehicles. An
example of this is one new test vehicle being made
available each weekday. Second, there are many particular
types of a model, and each test might require a particular
type or any of a set of types (e.g., any all-wheel-drive
vehicle). There may be dozens of types of a particular
vehicle model to choose from, varying by frame, market,
drivetrain, and trim.
 At the same time, market forces dictate when new or
refreshed models must be released. The result is additional
pressure to complete testing by certain dates so model
production can begin.
 Finally, testing personnel and facilities are limited
resources. For example, it would be desirable to schedule
all of the crash tests at the very end of the project so other
tests could be carried out on those vehicles first. However
there aren’t enough crash labs or personnel to support this,
so the crashes must be staggered throughout the project.
 To summarize, the constraints placed on creating a valid
schedule in this domain are:
• Temporal: Tests must be scheduled between the

project start and end date; each test has duration and
an optional start date and an optional end date.

• Calendar: Tests can only be scheduled during
working shifts; tests cannot be scheduled on
holidays.

• Ordering: Tests can optionally be assigned to
follow either immediately after another test or
sometime after another test.

• Resource: Each test can only be scheduled on
certain vehicle types; tests may optionally be
required to use the exact same vehicle as another
test; tests may require personnel to be available; and
tests may require facilities to be available.

• Build Pitch: Vehicles are not available for tests
until the date they are created; creation dates follow
a given build pitch schedule with additional
constraints.

• Exclusive: Test indicated as exclusive must be the
first test on the selected vehicle.

• Destructive: Tests indicated as destructive must be
the last test on the selected vehicle.

 The work presented in this paper describes how Aurora,
an existing intelligent scheduling software framework
(Kalton, 2006), was modified to include domain-specific
algorithms and heuristics used in the vehicle test planning
process. The framework combines graph analysis
techniques with heuristic scheduling techniques to quickly
produce an effective schedule based on a defined set of
activities, precedence, and resource requirements. These
heuristics are tuned on a domain-specific basis to ensure a
high-quality schedule for a given domain. The resulting
domain-specific scheduler is named Hotshot.
 The end product of this work is a deployed system that
automatically creates a valid schedule from a set of
constraints provided by the planner. The created test
schedule will complete the work in a given time window
and observe all of the scheduling constraints. The schedule
optimization process includes determining which vehicle
types are built and the order in which they are built and
minimizes the total number of vehicles required for the
entire test schedule.
 Results from the deployed system are presented from
applying the system to a large-scale testing effort for a
vehicle model update. This effort was not considered
manageable using the existing manual scheduling process,
so there is no direct comparison to the pre-existing
scheduling process. Prior work reported elsewhere does
include a direct comparison between Hotshot and the
previous scheduling process with a 12% reduction in
number of vehicles required (Ludwig et al., 2014).
 In the remainder of this paper, we first discuss related
work. Following this we describe the Aurora scheduling
framework and summarize changes made to create the
domain-specific Hotshot scheduling tool, focusing on the
features added to support the transition from prototype to
deployed system. The methods and results sections
contains the details of how the deployed system was
validated by creating one of the largest test schedules for a
single vehicle model to date. Finally, we present future
work in the conclusion.
 The primary contributions of this case study are
describing the customization of an existing general
scheduling framework to solve a specialized and highly
constrained problem and discussing the requirements
included in deploying a scheduling system that both
supports novice planners and integrates with existing
processes.

Background and Related Work
The current version of the software extends the prototype
Hotshot system (Ludwig et al., 2014), which demonstrated
the ability to generate a valid schedule with a significant

reduction in the number of vehicles required relative to the
existing planning process. The deployed version of Hotshot
includes a number of significant improvements to the
initial prototype.
 Schwindt & Zimmerman (2015) provide a thorough
review of related work aimed at creating test schedules that
respect testing constraints and minimize the number of
prototype vehicles required. The work presented in this
paper is most similar to that of Limtanyakul and
Schwiegelshohn (2012, 2007). They use constraint
programming to solve nearly the same problem of creating
a test schedule for prototype vehicles. Both papers work
towards a valid test schedule that meets the same
scheduling constraints described previously (temporal,
resource, ordering, build pitch, etc.), minimizes how many
vehicles are built, determines the vehicle types to build,
and determines the order in which the prototypes should be
built according to a build pitch.
 Bartels and Zimmerman (2007) also worked on the
problem of scheduling tests on prototype vehicles meeting
temporal, resource, and ordering constraints while
minimizing the number of vehicles required. Initially they
use a mixed integer linear program model for smaller
schedules, moving to a heuristic scheduling method to find
solutions for larger schedules. They found that dynamic,
multi-pass heuristics produced the best results. These are
the same type of prioritization heuristics used in Aurora.
 Zakarian (2010) took a different approach in their
prototype scheduling work for General Motors. They
focused on developing a scheduling and decision support
tool that considers the uncertainty in the test process, such
as duration of tests, possibility of failure, and prototype
availability. The tool helps users trade off between
competing goals such as completing the tests according to
schedule, quality of testing, and number of prototype
vehicles required. Similar to their work, Aurora will
highlight conflicted tests that cannot be scheduled because
of insufficient resource availability in the given time
frame.
 One primary difference from previous research is that
our work focuses on domain specific customization of a
general-purpose scheduling framework already in use in
other applications. A scheduling framework takes
advantage of the large degree of commonality among the
scheduling processes required by different domains, while
still accommodating their significant difference. This is
accomplished by breaking parts of the scheduling process
into discrete components that can easily be replaced and
interchanged for new domains.
 Framinan and Ruiz (2010) present a design for a general
scheduling framework for manufacturing. Aurora, used in
our work, is one example of an implemented scheduling
framework (Kalton, 2006). Aurora distills the various
operations involved in most scheduling problems into

reconfigurable modules that can be exchanged, substituted,
adapted, and extended to accommodate new domains (e.g.,
Richards, 2015; Richards, 2010a; Richards, 2010b). The
OZONE Scheduling Framework (Smith et al., 1996) is
another example of a system that provides the basis of a
scheduling solution through a hierarchical model of
components to be extended and evolved by end-
developers. Becker (1998) describes the validation of the
OZONE concept through its application to a diverse set of
real-world problems, such as transportation logistics and
resource-constrained project scheduling.
 Another difference from existing research is that the
scope of the work presented in this paper extends beyond
the prior work, including the Hotshot prototype, in a
number of ways. The work presented in this paper is part
of a deployed system that includes visualization, analysis,
and integration with existing processes; is currently in use
by novice planners; includes methods to identify and
automatically resolve common types of modeling errors
created by novice planners; and includes methods to
transition the testing schedule from planning stage to
execution phase.

Scheduling Framework
Aurora was designed to be a highly flexible and easily
customizable scheduling system. It is composed of a
number of components that can be plugged in and matched
to gain different results. The scheduling system permits
arbitrary flexibility by allowing a developer to specify
what components to use for different parts of
scheduling. Aurora has been successfully applied in a
multitude of domains, including medical, manufacturing,
and aerospace. (Richards, 2015; Richards, 2010a;
Richards, 2010b). The steps in the scheduling process are
described in detail below. All configurable elements are
shown in bold. Elements that were modified for the test
vehicle domain will be discussed further in later sections.

 Additionally, Aurora includes a default user interface
that is further customized for each domain. As shown in
Figure 1, a domain specific wizard to walk the user
through the scheduling process is shown in the center.
Behind this are parts of the standard interface: list of tasks
(left), information on the selected task (center), and a
network diagram (right) showing the ordering constraints
between tasks. Other views include resources and
calendars as well as various reports and graphs.

Scheduling Process
Schedule Initialization
1. Aurora undoes any previous post-processing (to get back
to the “true” schedule result state) and applies the
Preprocessor to the schedule information.
2. Aurora uses the Queue Initializer to set up the queue
that will be used to run the scheduling loop. A standard
Queue Initializer puts some or all of the schedulable
elements—activities, flows, and resources—onto the
queue.
3. The queue uses the Prioritizer to determine the priority
of each element. Depending on the execution strategy,
these priorities may be used to periodically sort the queue
or to schedule the element with the highest priority at each
stage.
4. The Schedule Coordinator triggers the scheduling of the
elements on the queue by starting the Scheduling Loop.

Scheduling loop
1. A schedulable element (task, project, or resource) asks
the Scheduler to schedule it.
2. The Scheduler calls constraint propagation on the
schedulable so as to be sure that all of its requirements and
restrictions are up to date.
3. The Scheduler looks at the element, considers any
Scheduling Method that is associated with it (e.g.,
Forward, Backward). A Scheduling Method determines
how the system goes about trying to schedule an element.
The Scheduler also selects which Quality Criterion to
associate with the selected scheduling method; the Quality
Criterion determines what makes an assignment “good.”
4. The Scheduler calls the Schedule Method on the
schedulable. The process depends a great deal on the
Schedule Method, but the result is that the schedulable
element is assigned to a time window and has resources
selected to satisfy any resource requirements. It also
returns a list of the conflicts resulting from the given
assignment.
5. The Scheduler calls constraint propagation on the
schedulable (again) in order to update all of the neighbors
so that they are appropriately restricted by the newly
scheduled element. This process may result in additional

Figure 1. Aurora scheduling user interface.

conflicts; if so, these are added to the list of conflicts from
scheduling.
6. The Scheduler adds the conflicts to the Conflict
Manager and asks the manager to attempt to resolve those
conflicts.

Schedule Finalization
1. When the queue is empty, Aurora goes through a final
conflict management step, this time at the global level.
2. Aurora calls the Postprocessor on the schedule, so that
any additional analysis may be done before Aurora returns
the schedule results.
3. Aurora sends the schedule results to the GUI for display.

Domain-Specific Customization
Two different types of modifications were made to the
Aurora framework to create the Hotshot tool. First, the user
interface front end was modified to import the testing
model, display and edit domain-specific properties,
perform the optimization to minimize the number of
required vehicles, and to search for additional resources
that could be added to shorten the project schedule.
Second, components in the scheduling back end were
updated specifically for this domain.

User Interface Customization
There are seven features added to the general scheduling
user interface that are specific to the vehicle test domain:
import an Excel model of the testing problem, edit the
build pitch, edit the vehicles and build order, determine
how to handle irregular tasks, minimize the number of
vehicles required, search for additional resources that could
be used to shorten the schedule, and export the schedule to
a client-specific format. Each of these features will be
described in greater detail, highlighting new features and
changes made to existing features as the user base of the
system grew.
 The starting point of the Aurora customization for the
vehicle testing domain is importing the testing tasks, task
constraints, calendars, resources (vehicles, vehicle types,
personnel, facilities), and build pitch information from a
set of Excel spreadsheets. These Excel spreadsheets
represent a model of the overall testing problem. Once
imported, the general user interface supports graphically
viewing and editing the model elements such as tasks,
resource requirements, resources, resource sets,
constraints, and calendars. For the deployment, the primary
additions were in model error checking. In practice,
multiple team leaders specify portions of the overall
model. This leads to situations where models are defined
that are logically impossible to solve. One example is when
there are more days of work indicated than there are days
of vehicles available given the build pitch and end date.

The deployed system looks for common mistakes made
with the prototype and alerts the user to the problem using
familiar terms that they can easily understand.
 The Build Pitch (Figure 2) dialog was added for viewing
and editing the general build pitch per week (number of
vehicles that can be built) as well as a maximum for each
vehicle type per week. For example, 10 test vehicles per
week can be built, but only 5 all-wheel-drive can be built
in a week. Additionally, each vehicle type has a first
available date, which determines the earliest date that a
vehicle of that type could be available. The Manage
Vehicles dialog is related to Build Pitch, allowing the user
to edit the vehicles to be built and their build order. The
build order is assigned automatically during the
optimization process. Build dates are assigned based on the
build order, moving from 1 to n and selecting the first
available date that meets two criteria: number of
vehicles/week is not exceeded and vehicle type per week is
not exceeded.

 While the general build pitch can be used at the start of
the scheduling process, part-way through the test process a
more detailed build pitch is released that gives specific
dates in which vehicles will be available, for example, 3
vehicles on Monday the 1st. Later in the test process, the
information is even more detailed, with specific dates
given to each test vehicle to be built. The deployed version
of Hotshot supports the existing planning process by
including all three of these modes and updating the
schedule as the model transitions from most general to
most specific build pitch.
 Greater use of the system also indicated that an
additional dialog to handle tasks with irregular dates was
needed. The Set Task End Dates dialog was added to
support tasks that were allowed to extend beyond the

Figure 2. Build pitch configuration.

desired project end date. Examples of this include tasks
with a given end date later than the project end date,
individual tasks that are longer than the entire project
duration, and chains of tasks linked with ordering
constraints such that the combined duration exceeds the
entire project duration. In all these cases, the user
determines if the entire project should be extended or if the
task(s) will be allowed to complete at a date past the
project end date.
 The Optimization Dashboard (Figure 3) is used to
minimize the number of vehicles required to schedule the
testing tasks. In Hotshot, optimization is accomplished by
using the scheduling engine to perform a search through
the space of schedules to find a valid schedule that requires
fewer vehicles. The Optimization Dashboard helps
visualize the setup and search process for the user. The
upper left area of Figure 3 summarizes the present state of
the current schedule, showing the number of vehicles
required, the number of destructive and exclusive tasks, the
utilization of vehicles in the testing schedule, and the
actual project end date relative to the initial. The upper
right shows the current status of optimization, which will
change once the Start button is pressed. This portion of the
dialog also provides an estimate of how long the remaining
optimization will take. The central portion of the dialog
contains the five parts of the optimization process. Buttons
for starting and controlling the optimization are found
along the bottom of the dialog.

 There are five steps in the optimization process. The first
three steps prepare the scheduling model for search, the
fourth step carries out the search, and the final step returns
the schedule to the end user format:
1. Set Backward Schedule. Mark all tasks to be backward
scheduled. This means that the schedule will be created

from the end of the project to the beginning, with all tasks
scheduled as close to their late end dates as possible.
2. Project End Date Extension. Users of the prototype
often ran into problems when the desired model was too
ambitious for a solution to be found. This optimization step
was added to correct for overly optimistic end dates. The
end date extension attempts to schedule the project with all
of the constraints except build pitch. If conflicts are found,
it extends the project end date to try to fix the issues for the
user. If conflicts still exist, optimization is aborted. At this
point the planner will need to refer to the conflicts to fix
the model issues.
3. Date Optimizer. Once the tasks are backward
scheduled, assign build order based on the earliest dates
tasks are assigned to vehicles. That is, if the first task
assigned to Vehicle A starts on Jan 15 and the first task
assigned to Vehicle B starts on Jan 18, then A will come
before B in the build order. The heuristic is that vehicles
that are needed earlier should be built earlier. Note that this
optimizer greatly reduces the amount of time available to
test vehicles built later in the schedule. Due to the same
issue with ambitious test models as seen in step 2., this
optimizer will also attempt to extend the project end date if
conflicts are found once build dates are applied.
4. Meta Disabler Optimizer. This step uses the
scheduling engine as part of a greedy search for valid
schedules that require fewer vehicles. Starting with the
vehicles created last in the schedule, temporarily disable
the vehicle and use the scheduling engine to try to create a
schedule without the vehicle. If this succeeds, permanently
delete the vehicle. If this fails, restore the vehicle and
continue. As vehicles are removed, the Date Optimizer is
used to re-order the build dates of the remaining vehicles.
5. Set Forward Schedule. Finally each task is returned to
forward schedule mode and re-scheduled so that all tasks
try to schedule as close to the project start date as possible.
This is the preferred output format for downstream
processes that make use of the schedule created by
Hotshot.
 The Resource Analysis dialog was developed to provide
guidance to new users on how they could improve the
schedule, either by reducing the number of vehicles
required or by shortening the project duration. Starting
from an optimized schedule, the Resource Analysis dialog
carries out a meta-search process. For each resource
(vehicle type, personnel, or facility), the dialog will
perform the optimization process as if another of that
resource were available. The user is shown the effect of
adding each resource individually to the schedule in terms
of project end date and number of cars required. This
serves as a starting point for discussion on what-if
scenarios for improving the schedule.
 The final feature is aimed at making the scheduling
results easier to use as part of the larger process of

Figure 3. Optimization dashboard.

planning for and carrying out tests. Aurora contains a
variety of highly customizable displays such as the plot
shown in Figure 4. In this figure the actual vehicle and
tasks have been simplified and obfuscated. Vehicles are
shown on the x-axis and time on the y-axis. For example,
SIX~001 is the first vehicle instance of type SIX. It has the
task 9_Group2_Test_9 assigned to it from August 9 to
October 10. The light-purple cell on August 8 to the left of
the task indicates the vehicle is not yet available for
scheduling, visualizing the build pitch. The plot has also
been customized to color code tasks by group and to
indicate destructive tasks with a yellow tag in the upper
right corner. However, an existing format of scheduling
results is already in use as part of the vehicle testing
process. The deployed version of Hotshot includes custom
export capabilities to inject the Hotshot results into the
existing, proprietary system.

Scheduling Component Customization
The main change for the deployed scheduling system was
to support irregular tasks that are allowed to complete
outside of the project start and end dates.

The scheduling model is based on a hierarchical
structure with flows and tasks. Flows represent high-level
projects made up of individual tasks that must be
scheduled. One of the key constraints on flows and tasks is
the late end date. Late end date represents that last possible
date the project or task can be completed. Under normal
conditions, the late end date of the flow will constrain the
late end date of any of the tasks that make up the flow. For
example, Task A has a defined late end date of 12/31/2015.
Task A is part of Flow “Test Project,” which has a late end
date of 12/01/2015. The Preprocessor synchronizes the
end dates of the tasks and the flow that contains the tasks.
So in the above example, Task A will be updated to have a

late end date of 12/01/2015 because it is constrained by the
flow end date. In real-world conditions, the flow late end
date describes when the bulk of the tasks need to be
finished by, but there are some tasks that can be safely
finished after the project is considered complete. To
support this, tasks can be marked as override project end
date. The updated Preprocessor does not change the late
end dates of these tasks.

The Hotshot prototype component customization
focused on three central areas: scheduling direction
maintenance, special handling for vehicle testing’s unusual
requirements, and more standard heuristic tailoring for the
domain. In this paper we focus on the Prioritizer
component, which was not described in detail previously.
See Ludwig et al. (2014) for the customization of other
scheduling components: Preprocessor, Scheduler quality
criteria, Scheduler, and Post-processor.

The Prioritizer uses a cascading series of heuristics to
determine which activities should be scheduled earlier in
the process. In general, if “difficult” activities in the given
domain are scheduled earlier in the process, it tends to
avoid subsequent conflicts in the schedule that would be
difficult to repair. The heuristic prioritizer considers each
heuristic in turn, until it can differentiate between two
prospective activities. If two activities tie on a given
heuristic (e.g. both are “exclusive use” activities), the
prioritizer will consider the next heuristic (“long task"),
and the next, until it can break the tie. The primary
heuristics in this domain are:
• Exclusive task: Prefer to schedule activities that

must have exclusive use of a vehicle earlier in the
process.

• Long task: Schedule the long activities early in the
process and fill in with short activities.

Figure 4. Aurora assignment of tasks to vehicles over time. For example, SIX~001 is the first instance of a vehicle of type SIX. It is
available for tasks starting August 9th. The first task assigned to this vehicle is 9_Group2_Test_9.

• Destructive task: Some tests involve destroying the

vehicle. This prevents any activities from
subsequently making use of the vehicle, so it is
important to place the destructive tasks - as late in
the schedule as possible - early in the scheduling
process.

• Tight window: This reflects the fact that activities
with a short window of opportunity tend to be
harder to place than those with a long window of
opportunity. In this case, the “tightness” reflects the
difference between task duration and the projected
window size.

• End based: Schedule tasks that must be completed
first earlier in the process for the forward-schedule
phase.

• Load-based: Prefer activities with fewer vehicle
options and/or more competition for those vehicles.

• Subsequent duration: Considers the amount of
follow-on work after the current activity, based on
ordering constraints.

Methods
Based on the prototype results, Hotshot was immediately
put to work on a large project that had several challenging
constraints from the start. The first challenge was that the
factory in charge of this project had capacity issues and
was not able to build enough vehicles to satisfy all of the
testing and development requirements. As a result, a
second factory was sourced to make up the shortage of
vehicles the first factory was unable to produce.
Developing an optimized test schedule manually for this
type of build—one that included two build locations, two
separate build pitches, and two different timelines—had
not been attempted previously.

To tackle this challenge, the project leader followed a
divide and conquer approach. Instead of treating this
project as one very large schedule, it was divided into two
medium-sized schedules that were individually optimized.
To carry this out, the project leader separated the exclusive
tasks from the non-exclusive tasks. All exclusive tasks
were to be scheduled and optimized at the second factory
while the non-exclusive tasks were to be scheduled and
optimized at the first factory.

The second challenge centered on negotiations to create
schedules that worked for both the testing team and the
factories building the test vehicles. The schedule that was
using the first factory, which was to build vehicles for the
non-exclusive tasks, was created first. Ongoing
negotiations took place with this factory with regard to
build timing and build pitch. This factory had several
assignments it was balancing and had to make changes and

requests in real time during the schedule optimization
process. These requests were fed back to the project team,
which utilized Hotshot to update the test schedule. Most of
the change requests involved when to build certain vehicles
and how many vehicles to build per week. The project
team was able to honor the factory’s requests as well as
counter-propose options that would help further optimize
vehicles and schedules.

After the non-exclusive tasks’ schedule was created, the
exclusive schedule was started. The second factory was an
in-house fabrication department that had different
requirements and constraints than those of the first factory.
However, the same process of creating a test schedule was
used in this case. Build pitch and build timing were
considered when performing the optimizations and
schedule creation.

Results
In the end, the team was able to create an optimized
schedule with a larger number of vehicles (50 – 150) that
met all of the non-exclusive test groups’ needs. The
second exclusive task schedule was created using a smaller
number (10 – 50) of test vehicles. In total, a large number
of vehicles were needed to satisfy the project requirements
and testing needs, drawing from 30 – 50 different vehicle
types. This included 4042 days of testing, with over 340
testing tasks. These tasks were constrained by the
completion of preceding tasks, by requiring the use of the
same resources as preceding tasks, and by the availability
of vehicles, personnel, and testing facilities. In addition to
successfully scheduling a suite of tests that would have
been very difficult previously, Hotshot also supported the
negotiation process and minimized the number of test
vehicles required.

Working with the initial prototype, planners
demonstrated the ability of generating a schedule in under
two minutes, as opposed to this task requiring days of
labor. This capability enabled the planners to generate
numerous “what-if” scenarios. Planners could quantify the
effect of compressing or extending the schedule in terms of
how many cars would be required. Planners also
demonstrated the effects that steeper and shallower build
pitches have on the number of cars required for a given set
of tasks and project end dates. Planners were also able to
negotiate about the vehicle types required by tests. For
example, a vehicle type requested by one test but not
usable by other tests stands out in plot as a vehicle with
very low utilization. The planner can then go back to the
person in charge of the test and see if a more commonly
used vehicle type could be substituted. The ability to
quickly run “what-if” scenarios held true with the larger
models as well. The ability to quickly examine these types

of effects enabled a more efficient negotiation process to
take place between the test and vehicle production teams
than during previous challenging projects.
 Hotshot was also used to minimize the number of test
vehicles required for this large project. Unfortunately,
there is no direct comparison to the previous method
because no manual model was attempted given the
complexity of the test schedule. The only estimate we can
give for the number of vehicles saved is based on the
combined judgment from several members of the project
team. They estimated that Hotshot created at least six
fewer vehicles than would have been created with the
previous method. This represents a 6% reduction in the
number of vehicles required and a significant cost savings
in the millions of dollars.
 Note that this estimate was purposely conservative. The
prototype version (Ludwig et al., 2014) demonstrated a
12% reduction in vehicles when directly compared with the
manually created schedule on a much smaller model.

Conclusion
This paper described a complex, real-world scheduling
problem in automotive vehicle testing prototype
management. To address this problem, we added domain-
specific heuristics to a general intelligent scheduling
software framework to create the custom Hotshot
scheduling software.
 Hotshot helped solve a very complex scheduling
challenge in the presented use case. Solving this challenge
with the previous, manual method would have been almost
impossible. As deployed, Hotshot enabled the schedules to
be created in an efficient manner while also building fewer
vehicles than the manual method would have needed.
 Due to the reduction in required vehicles, this use case
also demonstrates the cost-effective development of a
customized scheduling system. The savings from the
reduced vehicles alone in the presented use case greatly
outweighs development cost, and additional savings are
generated with each new project. Hotshot has already
saved the end user millions of dollars in prototype costs
while increasing transparency of the entire process from
the implementation level to the executive level.
 Ongoing work is aimed at scaling Hotshot, and its
optimization capabilities, to multiple simultaneous
projects. Currently, Hotshot is used to optimize a single
project. The functionality around build pitch allows
constraints caused by vehicle availability for multiple
projects to be factored into the schedule. However, the
schedule does not take into account delays that could be
introduced due to conflicts in using limited personnel and
testing facilities for different projects being run at the same
time. The next step in development will assist planners in

creating a combined schedule for all of the active testing
projects at any given time.

References
Bartels, J.-H., & Zimmermann, J. (2007). Scheduling tests in
automotive R&D projects. European Journal of Operational
Research, 193(3), 805–819.
Becker, M.A. (1998). Reconfigurable Architectures for Mixed-
Initiative Planning and Scheduling. Ph.D. diss., Robotics Institute
and Graduate School of Industrial Administration, Carnegie
Mellon university, Pittsburgh, PA.
Framiñan, J.M., & Ruiz, R. (2010). Architecture of
manufacturing scheduling systems: Literature review and an
integrated proposal. European Journal of Operational Research
205(2): 237-246.
Kalton, A. (2006). Applying an Intelligent Reconfigurable
Scheduling System to Large-Scale Production Scheduling.
International Conference on Automated Planning & Scheduling
(ICAPS) 2006. Ambleside, The English Lake District, U.K. June
6-10, 2006.
Limtanyakul, K., & Schwiegelshohn, U. (2012). Improvements of
constraint programming and hybrid methods for scheduling of
tests on vehicle prototypes. Constraints, 17, 172-203.
Limtanyakul, K., & Schwiegelshohn, U. (2007). Scheduling tests
on vehicle prototypes using constraint programming. In
Proceedings of the 3rd multidisciplinary international scheduling
conference: Theory and applications (pp. 336–343).
Ludwig, J., A. Kalton, R. Richards, B. Bautsch, C. Markusic, J.
Schumacher (2014). A Schedule Optimization Tool for
Destructive and Non-Destructive Vehicle Tests. Proceedings of
the Twenty-Sixth Annual Conference on Innovative Applications
of Artificial Intelligence (IAAI 2014)
Richards, R. (2010a). Critical Chain: Short-Duration Tasks &
Intelligent Scheduling in e.g., Medical, Manufacturing &
Maintenance. Proceedings of the 2010 Continuous Process
Improvement (CPI) Symposium. Cal State University, Channel
Islands. August 19-20, 2010.
Richards, R. (2010b). Enhancing Resource-Leveling via
Intelligent Scheduling: Turnaround & Aerospace Applications
Demonstrating 25%+ Flow-Time Reduction. 2010 PMI College
of Scheduling Conference PMICOS. Calgary, Canada. May 2-5,
2010.
Richards, R. (2015). Packaging Line Scheduling Optimization.
Pharmaceutical Manufacturing Vol 14 no 8 pp 13-15, Oct 2015.
Schwindt, C. & Zimmermann, J. (Eds.). (2015). Handbook on
Project Management and Scheduling Vol. 2. Springer
International Publishing.
Smith, S.F., Lassila, O. and Becker, M. (1996). Configurable,
Mixed-Initiative Systems for Planning and Scheduling. In: Tate,
A. (Ed.). Advanced Planning Technology. Menlo Park, CA:
AAAI Press.
Zakarian, A. (2010). A methodology for the performance analysis
of product validation and test plans. International Journal of
Product Development, 10(4), 369–392.

