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Intelliface Project Goal

Integrate 

state estimation,

planning, and 

execution systems 

quickly and consistently

Improve our understanding of 

the information exchanged 

among subsystems to support 

robust and efficient operations.

Design algorithms and data 

models that simplify the 

4

models that simplify the 

development of models and 

interfaces.

Create a test bed for developing 

and evaluating autonomous 

system integration strategies.



Intelliface/ADAPT Testbed
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Intelliface/ADAPT

Controlled System - ADAPT
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Two Configurations:

ADAPT Hardware Testbed

ADAPT Simulink Simulation



User
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Basic Scenario: Replanning after a Fault
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Intelliface/ADAPT
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Intelliface/ADAPT
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ANML
Action Notation Modeling Language

Language 

Origins

Fluents

Developed by NASA

Inspired by PDDL, NDDL, AML

Expressive, high-level, represent time

Represent the state of world as discrete or 
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Fluents

Actions

Represent the state of world as discrete or 

continuous time-varying variables and functions

Specify effects on world by assigning values to 

fluents

Specify conditions that must be satisfied

Optional decomposition into subactions

Have quantitative duration



Example ANML

Fluent 

Declaration

Action 

Definition

fluent Location atLocation(Robot r);

action recharge(Robot robot) {

[start] batteryLevel(robot) > 0;

[end] batteryLevel(robot) := 100;

}
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Hierarchical 

Actions

}

action takeImage(

Robot robot, Location location) {

duration := 10;

[all] contains

ordered(

calibrateCamera(robot),

getImage(robot, location));

}



Planner

Planning Model Integrated Development Environment (PM/IDE)
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Provides syntax-aware text 

editor and visualizations



PM/IDE

Syntax-Aware Text Editor and Views

Package 

Explorer

Text Editor
Outline

Type 

Call 

Hierarchy 

(not shown) 
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Explorer
Type 
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Search Results



Action Fluents Timeline Summary

shows when a user-selected action reads, writes, or constrains 

the action’s parameters and local and global fluents. 
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PM/IDE

Action Fluents Matrix

One row per action.

Action decomposition 

supported.

One column per fluent.
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Up to 3 overlapping symbols 

at a row-column position 

show whether an action 

reads, writes, or constrains 

the fluent.



PM/IDE

Action Dependency Matrix

Shows pairs of 

actions that are:

1. Upstream / 

Downstream
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or

2. Access Same 

Fluents



Planner

System and Operations Models ���� Planning Domain Model
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Generates ANML from:

system models (subsystems, components) 

operations models (flight rules)



ANML Code Generation Example: 

Support Functions 

Dependency Type table:

=combined with dependency table:
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function boolean loadbankCanSupportLoad(Load l, Loadbank lk);

[all] { 

loadbankCanSupportLoad(r_LGT400,r_LB1) := true;

loadbankCanSupportLoad(r_LGT400,r_LB2) := false;

loadbankCanSupportLoad(r_FAN415,r_LB1) := true;

// etc.

}

…

=generates Support Functions:



ANML Code Generation Example: 

Actions  

action useLoad(Load l) {

duration >= 3;

[all] loadState(l) == operational;

[all] exists (Loadbank lb) {

loadbankUsage(lb) == in_use and 

loadbankCanSupportLoad(l,lb) == true; 

Action 

skeleton 

(always 

Extra 

preconditions 

inferred from 

dependency 

types
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loadbankCanSupportLoad(l,lb) == true; 

}

[all] loadUsage(l) := in_use; 

}

(always 

generated)

Dependency Type table:



Resource Availabilities

• ANML code is generated on the fly by the Execution 
Manager, to reflect real-time resource availabilities.

• Each resource availability maps to a simple ANML 
statement, for example: 

r_LGT400 is operational -> [all] loadState(r_LGT400) := operational;

To Planner: goals + 
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Execution Manager

Diagnosis 

Estimated State

Resource availability 

queries

Diagnosis 

updates

To Planner: goals + 

resource availabilities 

(ANML)



Planner

ANML ���� NDDL Translator
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model to NDDL



ANML ���� NDDL Translator

ANML Fluents ����NDDL Timelines
For each ANML fluent declaration, create a NDDL timeline class 

whose properties correspond to the fluent parameters. The class’ 

"value" token represents the fluent’s value during a period of time.

fluent float [10.0,100.0] batteryLevel(Robot r);
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class batteryLevel extends ANML_Fluent { //ANML_Fluent extends 

Timeline

Robot r;

batteryLevel (Robot _r) {

super();

r = _r;

}

predicate value{float _value;};

predicate value_undetermined {};

}

batteryLevel _batteryLevel_robot1_ = new batteryLevel(robot1);

batteryLevel _batteryLevel_robot2_ = new batteryLevel(robot2);



ANML ���� NDDL Translator

ANML Actions ���� NDDL Timelines
For each ANML action definition, create a NDDL timeline class 

whose properties correspond to the action parameters. An action 

has a token "exe" representing when the action is executed.

action drive (Robot robot, Location location) { … }

class drive extends ANML_Action { //ANML
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class drive extends ANML_Action { //ANML

Robot robot;

Location location;

drive (Robot _robot, Location _location) {

super();

robot = _robot;

location = _location;

}

}

//grounding

drive _drive_robot1_base_ = new drive(robot1,base);

drive _drive_robot1_l1_ = new drive(robot1,l1);

drive _drive_robot2_base_ = new drive(robot2,base);

drive _drive_robot2_l1_ = new drive(robot2,l1);



Intelliface/ADAPT
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Schematic Display
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Timeline: Commands, Sensor Data
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Timeline: Previous and New Plans
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Intelliface/ADAPT
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SimBionic® executes 

augmented finite state 

machines

Adaptive control of each 

action controlled by 1+ FSMs 

Multiple FSMs can run in 

parallel, branch, loop, wait



Adaptive Control Editor (SimBionic)
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Some Problems Not Yet Addressed

Preserve Work Already Performed

Minimize Changes to the Plan

Complex Mappings from Faults to Resource ChangesComplex Mappings from Faults to Resource Changes

Ambiguous Diagnoses

Handle Resource Quantity and Quality

Diagnostic Actions



Summary

Robust autonomy requires integrating State Estimation, 

Planning, and Execution.

Integration imposes additional requirements on models.

Model translation and integration is labor-intensive and 

error-prone

We developed an initial version of a testbed for 

developing and evaluating diverse integration strategies

Generation of models and interfaces can be partially 

automated.


