
Intelliface
Interfacing Planning, Execution, and
State Estimation Systems

Presented at: IEEE Aerospace 2015

Big Sky, MT

March 11, 2015

Robust Autonomy Requires Integration

Planning

Adaptive State

2

Adaptive
Control

State

Estimation

Controlled
System

Pump
Power

Storage
Power

Distribution

Command & Data Handling

Power

Generation

Power

Modeling and Integration Challenges

Complex and

Interdependent

Resources

Power Power

Generation

3

Must Revise Model

When Assumptions

Change

System capabilities and configuration

Resource capacities and usage patterns

Operating rules

Power

Storage

Intelliface Project Goal

Integrate

state estimation,

planning, and

execution systems

quickly and consistently

Improve our understanding of

the information exchanged

among subsystems to support

robust and efficient operations.

Design algorithms and data

models that simplify the

4

models that simplify the

development of models and

interfaces.

Create a test bed for developing

and evaluating autonomous

system integration strategies.

Intelliface/ADAPT Testbed

PlansPlan Requests

Plan Execution

Requests

Execution Status

Updates

Planner (ANML, EUROPA, PM/IDE)

Execution Manager

Goals

User Interface
(DataMontage) Status,

History

Requests Updates

Sensor Data

State Estimates

(Current and Future)

Commands

Adaptive Controller (SimBionic)

State Estimator (HyDE)

Controlled System (ADAPT)

Intelliface/ADAPT

Controlled System - ADAPT

Battery

Load BankConnection

Light

Fan

PumpBattery Pump

Two Configurations:

ADAPT Hardware Testbed

ADAPT Simulink Simulation

User

Execution Manager

Planner

Execution Manager

Adaptive Controller

Controlled System

Basic Scenario: Replanning after a Fault

PlansPlan Requests

Plan Execution

Requests

Execution Status

Updates

State Estimates

(Current and Future)

Planner

Execution Manager

Adaptive Controller

Goals
User

Interface
Status,

History

enters tasks to perform

requests plan

generates plan

sends plan to Adaptive

Controller for execution

executes each plan action by

sending commands.

outputs sensor data.Controlled System

User Interface

User

State Estimator

Execution Manager

Planner

Execution Manager

User Interface

Sensor Data

Commands

State Estimator

Controlled System

outputs sensor data.

displays sensor data and

plan in graphs and timelines.

injects fault

detects, diagnoses fault.

evaluates fault's impact on

the plan. Requests new plan.

generates new plan

sends new plan to Adaptive

Controller for execution

shows new plan and old plan

Intelliface/ADAPT

Execution Manager

PlansPlan Requests

Plan Execution

Requests

Execution Status

Updates

State Estimates

(Current and Future)

Planner (ANML, EUROPA, PM/IDE)

Execution Manager

Adaptive Controller (SimBionic)

Goals

User Interface
(DataMontage) Status,

History

Sensor Data

(Current and Future)

Commands

Adaptive Controller (SimBionic)

State Estimator (HyDE)

Controlled System (ADAPT)
Coordinates activities and

routes information among

other modules.

Intelliface/ADAPT

Planner

PlansPlan Requests

Plan Execution

Requests

Execution Status

Updates

State Estimates

(Current and Future)

Planner (ANML, EUROPA, PM/IDE)

Execution Manager

Adaptive Controller (SimBionic)

Goals

User Interface
(DataMontage) Status,

History,

Plan

Sensor Data

(Current and Future)

Commands

Adaptive Controller (SimBionic)

State Estimator (HyDE)

Controlled System (ADAPT)
Selects and schedules actions

that achieve user goals

ANML
Action Notation Modeling Language

Language

Origins

Fluents

Developed by NASA

Inspired by PDDL, NDDL, AML

Expressive, high-level, represent time

Represent the state of world as discrete or

10

Fluents

Actions

Represent the state of world as discrete or

continuous time-varying variables and functions

Specify effects on world by assigning values to

fluents

Specify conditions that must be satisfied

Optional decomposition into subactions

Have quantitative duration

Example ANML

Fluent

Declaration

Action

Definition

fluent Location atLocation(Robot r);

action recharge(Robot robot) {

[start] batteryLevel(robot) > 0;

[end] batteryLevel(robot) := 100;

}

11

Hierarchical

Actions

}

action takeImage(

Robot robot, Location location) {

duration := 10;

[all] contains

ordered(

calibrateCamera(robot),

getImage(robot, location));

}

Planner

Planning Model Integrated Development Environment (PM/IDE)

PM/IDE

System and Ops

Models ����

Planning Model

Planner

ANML ���� NDDL EUROPA
Planning Problems

ANML

Static Models

actions

constraints

variable declarations

EUROPA Timelines

���� Plans
���� ANML

ANML Dynamic

Models

PlansPlan Requests

goals

resource availabilities

state conditions

variable declarations

Supports editing, review,

analysis, and debugging of

ANML models

Provides syntax-aware text

editor and visualizations

PM/IDE

Syntax-Aware Text Editor and Views

Package

Explorer

Text Editor
Outline

Type

Call

Hierarchy

(not shown)

13

Explorer
Type

Hierarchy

Search Results

Action Fluents Timeline Summary

shows when a user-selected action reads, writes, or constrains

the action’s parameters and local and global fluents.

14

PM/IDE

Action Fluents Matrix

One row per action.

Action decomposition

supported.

One column per fluent.

15

Up to 3 overlapping symbols

at a row-column position

show whether an action

reads, writes, or constrains

the fluent.

PM/IDE

Action Dependency Matrix

Shows pairs of

actions that are:

1. Upstream /

Downstream

16

or

2. Access Same

Fluents

Planner

System and Operations Models ���� Planning Domain Model

PM/IDE

System and Ops

Models ����

Planning Model

Planner

ANML ���� NDDL EUROPA
Planning Problems

ANML

Static Models

actions

constraints

variable declarations

EUROPA Timelines

���� Plans
���� ANML

ANML Dynamic

Models

PlansPlan Requests

goals

resource availabilities

state conditions

variable declarations

Generates ANML from:

system models (subsystems, components)

operations models (flight rules)

ANML Code Generation Example:

Support Functions

Dependency Type table:

=combined with dependency table:

18

function boolean loadbankCanSupportLoad(Load l, Loadbank lk);

[all] {

loadbankCanSupportLoad(r_LGT400,r_LB1) := true;

loadbankCanSupportLoad(r_LGT400,r_LB2) := false;

loadbankCanSupportLoad(r_FAN415,r_LB1) := true;

// etc.

}

…

=generates Support Functions:

ANML Code Generation Example:

Actions

action useLoad(Load l) {

duration >= 3;

[all] loadState(l) == operational;

[all] exists (Loadbank lb) {

loadbankUsage(lb) == in_use and

loadbankCanSupportLoad(l,lb) == true;

Action

skeleton

(always

Extra

preconditions

inferred from

dependency

types

19

loadbankCanSupportLoad(l,lb) == true;

}

[all] loadUsage(l) := in_use;

}

(always

generated)

Dependency Type table:

Resource Availabilities

• ANML code is generated on the fly by the Execution
Manager, to reflect real-time resource availabilities.

• Each resource availability maps to a simple ANML
statement, for example:

r_LGT400 is operational -> [all] loadState(r_LGT400) := operational;

To Planner: goals +

20

Execution Manager

Diagnosis

Estimated State

Resource availability

queries

Diagnosis

updates

To Planner: goals +

resource availabilities

(ANML)

Planner

ANML ���� NDDL Translator

PM/IDE

System and Ops

Models ����

Planning Model

Planner

ANML ���� NDDL EUROPA
Planning Problems

ANML

Static Models

actions

constraints

variable declarations

EUROPA Timelines

���� Plans
���� ANML

ANML Dynamic

Models

PlansPlan Requests

goals

resource availabilities

state conditions

variable declarations

Partial prototype translates ANML

model to NDDL

ANML ���� NDDL Translator

ANML Fluents ����NDDL Timelines
For each ANML fluent declaration, create a NDDL timeline class

whose properties correspond to the fluent parameters. The class’

"value" token represents the fluent’s value during a period of time.

fluent float [10.0,100.0] batteryLevel(Robot r);

22

class batteryLevel extends ANML_Fluent { //ANML_Fluent extends

Timeline

Robot r;

batteryLevel (Robot _r) {

super();

r = _r;

}

predicate value{float _value;};

predicate value_undetermined {};

}

batteryLevel _batteryLevel_robot1_ = new batteryLevel(robot1);

batteryLevel _batteryLevel_robot2_ = new batteryLevel(robot2);

ANML ���� NDDL Translator

ANML Actions ���� NDDL Timelines
For each ANML action definition, create a NDDL timeline class

whose properties correspond to the action parameters. An action

has a token "exe" representing when the action is executed.

action drive (Robot robot, Location location) { … }

class drive extends ANML_Action { //ANML

23

class drive extends ANML_Action { //ANML

Robot robot;

Location location;

drive (Robot _robot, Location _location) {

super();

robot = _robot;

location = _location;

}

}

//grounding

drive _drive_robot1_base_ = new drive(robot1,base);

drive _drive_robot1_l1_ = new drive(robot1,l1);

drive _drive_robot2_base_ = new drive(robot2,base);

drive _drive_robot2_l1_ = new drive(robot2,l1);

Intelliface/ADAPT

User Interface

PlansPlan Requests

Plan Execution

Requests

Execution Status

Updates

State Estimates

(Current and Future)

Planner (ANML, EUROPA, PM/IDE)

Execution Manager

Adaptive Controller (SimBionic)

Goals

User Interface
(DataMontage) Status,

History

Plan

Sensor Data

(Current and Future)

Commands

Adaptive Controller (SimBionic)

State Estimator (HyDE)

Controlled System (ADAPT)

Schematic Display

Battery

Load BankConnection

Light

Fan

Pump

Timeline: Commands, Sensor Data

26

Timeline: Previous and New Plans

27

Intelliface/ADAPT

Adaptive Controller

PlansPlan Requests

Plan Execution

Requests

Execution Status

Updates

State Estimates

Planner (ANML, EUROPA, PM/IDE)

Execution Manager

Adaptive Controller (SimBionic)

Goals

User Interface
(DataMontage) Status,

History,

Plan

Sensor Data

State Estimates

(Current and Future)

Commands

Adaptive Controller (SimBionic)

State Estimator (HyDE)

Controlled System (ADAPT)

SimBionic® executes

augmented finite state

machines

Adaptive control of each

action controlled by 1+ FSMs

Multiple FSMs can run in

parallel, branch, loop, wait

Adaptive Control Editor (SimBionic)

Intelliface/ADAPT

State Estimator - HyDE

PlansPlan Requests

Plan Execution

Requests

Execution Status

Updates

State Estimates

(Current and Future)

Planner (ANML, EUROPA, PM/IDE)

Execution Manager

Adaptive Controller (SimBionic)

Goals

User Interface
(DataMontage) Status,

History,

Plan

Sensor Data

(Current and Future)

Commands

Adaptive Controller (SimBionic)

State Estimator (HyDE)

Controlled System (ADAPT)

Some Problems Not Yet Addressed

Preserve Work Already Performed

Minimize Changes to the Plan

Complex Mappings from Faults to Resource ChangesComplex Mappings from Faults to Resource Changes

Ambiguous Diagnoses

Handle Resource Quantity and Quality

Diagnostic Actions

Summary

Robust autonomy requires integrating State Estimation,

Planning, and Execution.

Integration imposes additional requirements on models.

Model translation and integration is labor-intensive and

error-prone

We developed an initial version of a testbed for

developing and evaluating diverse integration strategies

Generation of models and interfaces can be partially

automated.

