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The ultimate goal of this effort is to improve the ability to determine suspicious radar 
track behavior and suspicious areas to focus attention on. We are developing a framework 
for representing the knowledge and human-quality reasoning required to process large 
quantities of radar data, transforming it into a form that can be efficiently executed in real 
time on an HPC system, and then efficiently executing it given the actual dynamic tactical 
situation. In addition to being scalable up to a large number of pixels and objects, it should 
also be adaptable both in the long term to different HPC configurations and in real time to 
different dynamic computational loads. 

Nomenclature 
AI = Artificial Intelligence 
BTN = Behavior Transition Network 
CBR = Case-Based Reasoning 
CPU = Central Processing Unit 
FL = Fuzzy Logic 
FLOPS = Floating Point Operations per second 
GMTI = Ground Motion Target Indicator 
GPU = Graphics Processing Unit 
HAIF = HPC AI Framework 
HPC = High Performance Computing 
MHR = Multiple Hypothesis Reasoning 
MIC = Many Independent Core 
SAR = Synthetic Aperture Radar 
SIMD = Single Instruction Multiple Data 
SPMD = Single Program, Multiple Data 
TMS = Truth Maintenance System 
UAV = Unmanned Aerial Vehicle 
USV = Unmanned Surface Vehicle 
WAMI = Wide Area Motion Imagery  

I. Motivation And Problem Description  
odern warfare for the United States military is characterized by asymmetric forces and tactics, often operating 
in urban environments to conceal their activities. Cities feature complex structures, dense populations, an 

enormous amount of activity, and many different organizations operating within them. In response to these tactical 
realities, the US Air Force has developed ever-more-capable sensors with finer and finer resolution, broader areas of 
coverage, increased persistence, and multiple types of data being available. Of course, these improved sensors 
produce far more data than previous generations. It is easy to imagine radar systems producing frames requiring 
over 5 Gigabits of throughput for fine spatial resolution and to track thousands of objects. Clearly this is too much 
data for humans to process and an automated system is necessary to cue a human operator’s interest (and/or other 
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sensors or sensor modes) as to specific areas or objects to focus additional information gathering and threat 
assessment on. 
 But such an automated system should bring significant intelligence to bear on the problem. When expert human 
operators have more time and a much smaller area of responsibility (and therefore far less data), they can bring 
significant knowledge and experience to bear, including knowledge of the road system (intersections, stoplights, 
signs, traffic laws, etc.), knowledge of traffic patterns based on time of day, day of week, and season and other 
patterns of normalcy, knowledge of significant locations, and the ability to pay attention to a few possible threat 
vehicles, analyzing their behavior to determine how much of a threat they represent either to friendly forces or to 
protected high-value landmarks. What is required is a way to automate this level of human-quality reasoning. 
 However, processing that quantity of data in real time is not possible with conventional hardware. High 
Performance Computing (HPC) is required, which introduces its own issues. Successful HPC systems are 
heterogeneous, being comprised of conventional X86 Central Processing Units (CPUs) augmented with various 
types of accelerators such as Graphics Processing Units (GPUs), Many Independent Core (MIC) products, etc. Each 
of these has its own strengths and weaknesses as to what type of computations it is best for and within each type 
there are variations that have to be considered. Trying to directly implement cognitive, knowledge-based reasoning 
on an HPC system would be extremely difficult. What’s needed is a framework for representing the knowledge, 
heuristics, and the human-quality reasoning required to process large quantities of radar and/or other sensor data, 
transforming it into a form that can be efficiently executed in real time on an HPC system to process very large 
quantities of data, and then efficiently executing it given the actual dynamic tactical situation, which leads to varying 
number of objects and varying different types of processing and the resulting real-time varying processing load on 
each HPC component.  In addition to being scalable up to a large number of pixels and objects, it should also be 
adaptable both in the long term to different HPC configurations and in real time to different dynamic computational 
load levels. 
 In real time, there should be an intelligent examination of each tracked vehicle’s behavior and other information 
available to determine its likely intent and possibly hostile plans. This analysis takes at least two forms. One is a 
determination of whether, given the time of day, day of week, and the vehicle’s type, location, speed, and relatively 
recent history, its behavior is abnormal. For example, is it typical for a large truck to turn that direction at that 
intersection at that time and day of the week? The second form of analysis is of whether the behavior conforms to 
known hostile tactics, either learned or predefined. 
 With enough personnel and enough time (perhaps, in the extreme, one dedicated to each track), the behavior of 
every track could be analyzed and suspicions raised appropriately for proper situational awareness. Of course, that 
quantity of manpower will never exist. There are far too many tracks and far too few personnel to pay close attention 
to all of them and to remember their previous histories. What is required is for the human expertise described above 
to be implemented in software and effectively replicated for every track. This is the realm of artificial intelligence. 
 In addition to the tactical problem described above, there is also a technical one. To analyze the behavior of each 
vehicle requires that the proper radar tracks associated with each vehicle in different frames be properly associated 
with each other. This problem arises if two or more tracks become close enough that, given the 1 second between 
frames, it is not obvious which is which. If the tracks have been previously tracked (perhaps all the way from their 
point of origin (e.g., a house), which fairly uniquely identifies them), they should now be treated as ambiguous, 
where each can be hypothesized to be either of the original two. Knowledge-based correlation (as described in the 
System Description Section) can normally be used to resolve these types of situations quickly. This data available 
includes dimension estimates for the vehicle, rough shape, and the amplitudes of and relationships among the 
different magnitude scatterers. These will depend on the vehicle, aspect, and how it is currently configured and 
loaded. Normally, between frames, little time has transpired to allow any of these factors to have changed.  
However, if more time has passed (because of occlusions, tunnels, more time between frames due to processing 
limitations, etc.), the aspect may have changed substantially. So the association of radar tracks from different frames 
should be performed using an intelligent approach that considers all the available information. 

II. System Description 

A. Overview  
 The required reasoning is represented in the HPC AI Framework (HAIF) and is translated into forms most 
appropriate for execution by the different types of HPC components, including highly parallelizing the 
computations. During real-time sensor data processing and execution, HAIF monitors the processing performance 
and available capacity of each HPC component and the number of objects and tactical cognitive processing required 
and makes real-time decisions as to what processing is most important to be done (normally in terms of geographical 
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areas and tracked objects) and optimally schedules it on the available HPC resources. Monitoring the available 
capacity allows other, external applications to coexist on the HPC system. Note that the translation process may 
produce more than one executable representation for the same small cognitive inferencing component, one for each 
type of hardware that it could possibly be executed on. This gives the real-time processing scheduler more options to 
more effectively balance the processing load, if needed. 
 The required processing includes vision processing of the pixel data to extract objects and their features, 
knowledge-based correlation to correctly associate objects in one frame with the same object in other frames, 
knowledge-based analysis of the object’s behavior, including comparison to past measures of normalcy, and 
recommendations based on this analysis. Obviously, the better the ability to correctly associate objects in 
consecutive frames, the longer period of time that objects can be reliably tracked, and the longer the tracking time, 
the more information is available for analysis.  So if association performance can be substantially improved, the 
performance of the entire system will be enhanced. 

B. Knowledge-Based Radar Track Correlation 
 To improve correct frame-to-frame object association performance, a significant amount of a priori information, 
knowledge, and inference techniques should be utilized. First and foremost is the road system, including 
intersections, traffic lights, stop signs, and speed limits. A priori maps can be augmented with information learned 
over time such as parking and turn locations beyond the known intersections. Kinematic limits on the vehicles are 
also very useful. Effectively no street legal vehicles can accelerate or decelerate faster than 1 G (32 ft/s2), which 
means that using a vehicle’s velocity from one frame to predict where it will be in the next frame, 1 second later, 
will be within 16 feet of correct (d = ½ a t2), ignoring other errors and noise. Vehicles almost always stay on the 
road network, which means that the Doppler velocity can be translated into the actual velocity vector, using this 
assumption. Furthermore, if the assumption is incorrect (i.e., that the vehicle is leaving the road), then that will 
become evident in the next few frames. Also, given the kinematic limit, the 1 second between frames is not nearly 
long enough for a vehicle to accelerate, pass another vehicle, and decelerate so that two vehicles cannot swap their 
relative positions without an indication beforehand and afterward. Vehicles lined up at stop signs and stop lights 
cannot pass through each other. Performing the correlation of vehicles between frames in the order that the vehicles 
are queued up at an intersection allows a very rapid, one pass correct association of the vehicles.   
  (Using the Doppler velocity with the road system to estimate the velocity vector only breaks down when the 
relevant stretch of road is nearly orthogonal to the object’s relative position vector (from the perspective of the radar 
system). This should only occur for a small percentage of the road segments and the aircraft can position itself to 
ensure that it will not occur for important areas (since in any particular small (especially urban) area, roads are 
normally laid out in an orthogonal grid).) 
 In addition to the detection, position, and Doppler information, the radar will also provide 1-foot pixels. The 
rough size, shape, and scatterer information derivable for each vehicle from these pixels provides supplemental 
correlation information and/or confirmation that the correct objects were associated using the other means described 
above. (Frame to frame, the aspect will change very little, except when making a turn, and this will be indicated as a 
possibility by a slow speed when approaching a potential turn location and confirmed after the fact by the location of 
the object in a later frame.) 

C. Considerations for Real-Time Scheduling of HPC Resources 
 Given the very large number of radar pixels and objects to be tracked; the additional information, knowledge, 
and heuristics that should be intelligently applied to this large amount of data; that a HPC architecture will be used 
to apply the knowledge and heuristics and process the data; and that this HPC architecture will likely consist of 
many specialized processors, some of which will have different capabilities than others, efficiently scheduling which 
processing should be performed, when, and on which specific processors and/or cores, is not a trivial problem. 
 Certain objects and areas will likely be considered more significant than others. And “significance” is a concept 
with many dimensions. One is time. Even if a vehicle is considered likely to be hostile, the time by which action 
needs to be taken, either because in that time the vehicle can cause harm or it can get away, will still vary. (E.g., a 
very hostile vehicle, in the middle of a long desert road, may be important, but there may be plenty of time to do 
something about it.) Another is the magnitude of the capability and intent to do harm, how important the vehicle is 
or how much damage can it inflict. E.g., a large truck filled with enemy troops or explosives may have large 
magnitude as could a small car that happens to have in it the leader of a terrorist organization or its lead bomb 
maker. A final dimension is probability: how likely the importance dimension is to be correct. E.g., there may be 
indications that a truck is filled with explosives and is under the control of a hostile organization, but the probability 
(based on the observed behavior and other evidence) may be high or low. All three factors have to be considered 
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when allocating computing resources to the tracking and analysis of such a vehicle, and how each will be used will 
depend on the degree to which the HPC hardware is currently being overloaded (or not). For example, if HPC 
resources are very tight, such that many areas and objects cannot be fully processed, then objects with a low 
probability of suspicion will likely not be processed. But if more HPC capacity is available, then perhaps processing 
even low-probability, high-magnitude objects makes sense in order to minimize potential damage. 
 Other additional information, useful when determining the suspiciousness of an object, the importance of an 
area, or normalcy of traffic patterns, includes significant locations such as schools, hospitals, houses of worship, 
government buildings, military installations, notable landmarks, and commercial areas. Also useful are areas that 
can be categorized (by ethnicity or socioeconomic status, for example) such as neighborhoods, towns, or areas 
controlled, infiltrated, or sympathetic to specific organizations. 

D. Useful Heuristics for Analyzing radar tracks overlaid onto a road network 
 Generally it makes sense to assume that benign vehicles will move from their departure point to a destination 
point in the most time-efficient or distance-efficient manner, making turns as needed that are not correlated with any 
other vehicles. (There are some exceptions, such as when a wedding party all proceeds together from the place of the 
wedding to a reception location.) Using this fact and knowledge of specific significant locations or areas, vehicle 
behaviors can be automatically analyzed in isolation and in comparison with other vehicles, including friendly 
patrols and other protected assets. Behavior that is suspicious requires greater scrutiny, which could affect the 
processing schedule or the schedule of ID assets (such as other sensors, Unmanned Aerial Vehicles (UAVs), 
Unmanned Surface Vehicles (USVs), manned helicopters, or even to provide a “heads up” to a human at an 
upcoming (from the vehicle’s perspective) checkpoint) to take a closer look. The concept is fairly simple. Basically, 
non-tactical vehicles behave in predictable ways depending on what they are doing—commuting to work, going 
shopping, making deliveries, etc. So whenever a vehicle makes a turn, a quick check is done to see if it might be 
reacting to any other object in the vicinity or if it is contrary to its obvious type and recent behavior. Several 
correlated turns with the same net effect (e.g., following or avoiding) invite suspicion. Additionally, currently 
tracked vehicles' current locations, speed, direction, points of origin, type, etc. could be quickly checked against 
historic norms for the same time of day, day of week, and season to see how abnormal it is. Obviously, abnormality 
tends to evoke suspicion.  
 After radar tracks have been correctly associated to form a single, reasonably reliable, coherent path (of any 
length) for each vehicle, a two-pronged approach can be used to analyze the entire (possibly short) history of that 
path. The first prong, looking for deviations from normal behavior, relies on a database of past track path history. 
 Normal, benign (non-hostile) human activity has daily, weekly, and seasonal rhythms. These can be exploited to 
establish normal traffic patterns and deviations from the norm in several different ways. Given the vehicle gross type 
(e.g., sedan, pickup truck, van, large truck, etc.), location, speed, heading, turn intersection, direction if it just turned, 
time of day, day of week, and month, similar previous tracks can be retrieved (using Case-Based Reasoning (CBR)) 
and statistics calculated as to how normal these parameters are. If a large number of vehicles of this type are often 
heading in a similar direction and speed on this road segment or at this intersection during this time of day and 
week, this would constitute normal behavior. (Knowing the neighborhood where the vehicle originated would 
significantly improve the precision of this step, hence the desire to improve frame-to-frame association 
performance.) If however this combination of parameters is relatively rare, the vehicle should be considered 
suspicious. Similar reasoning can be applied to groups of vehicles close together and following the same path (like a 
convoy) over a short period of time. Based on a current group, past similar groups can be retrieved and examined to 
determine if any parameters from the current group are abnormal, such as the size of the group. In cases where 
individual vehicles have been tracked from their originating address (which when combined with their type fairly 
uniquely identifies them), past paths involving this same vehicle can be retrieved. What is this vehicle normally 
doing at this time and day of the week? Has it been in this location heading in this direction before? Again, 
deviations should engender suspicion. The degree to which a vehicle or group of vehicles is suspicious can be 
reported in its own right as well as being folded into the analysis, looking for specific evidence of hostile intent or 
specific known enemy tactics. 
 The second prong involves analyzing the behavior of the full history of each vehicle’s path and correlations 
between the vehicle’s turns and path and turns and paths of other vehicles. Correlations between a vehicle’s turns 
and the turns of friendly units or ID assets (such as a helicopter or UAV) may be indications of hostile intent and 
should at least be labeled suspicious. Correlations to look for include following and avoiding. Often attacks of 
several vehicles are initiated from the same location and time. They may proceed together in convoy, at least for 
some time. Some vehicles may trail a moving target while others speed ahead on parallel roads to set up an ambush. 
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E. Efficiently Mapping Computations onto HPC Components 
 The main HPC component types are CPUs, GPUs, and MICs, and each has its own strengths and weaknesses 
and is more or less appropriate for different types of computations. And of course within each category, specific 
products will have individual differences that impact these issues. For example, GPUs can deliver a huge number of 
Floating Point Operations per second (FLOPS) for highly parallel computations executing in a Single Program, 
Multiple Data (SPMD) style. This makes them ideal for processing large numbers of pixels in either computer vision 
or computer graphics applications.  However, they are less suitable for branching logic (loops, conditions, if-thens, 
case statements, etc.), which would be common for the type of high-level reasoning discussed above for both object 
behavior analysis and some of the frame-to-frame object association. CPUs and MIC products, since they are 
essentially many independent general purpose processors, have probably the most general applicability, though are 
not necessarily the fastest at any single type of processing. They could perhaps be the most useful “filling in the 
gaps” when processing of a certain type exceeds the available capacity for the type of processor that is most suited 
for that type of processing. And of course, since all the technologies are parallel in nature, parallelizing the 
computation is an important aspect, though the form of this parallelization differs for each type of HPC component. 
(E.g., effective use of MIC products really only requires that the computation be broken down into enough threads, 
whereas more effort is required to make best use of GPUs.) 
 There are a number of AI and other techniques that will also be used in HAIF. Fuzzy Logic (FL) and behavior 
transition networks (BTNs), which were originally developed to simulate real-time decision making in tactical 
situations, are used to analyze track behavior. These FL rules and BTNs typically utilize various vector operations 
applied to track velocities, relative positions, and other vectors to determine intercepting paths, relative velocities, 
traveling along typical routes, or turning off them. A track’s path history is broken into road segments connected by 
turns. The recognition that a segment has ended and a turn initiated triggers much of the analysis processing. When a 
turn completes, an analysis is conducted relative to recent turns of other tracks to determine whether the new 
segment’s velocity, relative to the velocity of the track before the maneuver in relation to another track that recently 
maneuvered, tends to maintain a nearby parallel course, maintain an intercept, maintain a particular distance, or 
maintain an avoidance path where that avoidance was degraded by the other track’s earlier turn. Multiple turns by a 
track correlated in the same way to another track or group of tracks (e.g., multiple turns of a single vehicle all 
correlated to turns of friendly units that all tended to restore avoidance of the friendly tracks) increase the level of 
suspicion. 
 Some ambiguities may be left after the knowledge-based correlation step. Keeping track of these different 
hypothetical correlations and quickly determining the ramifications when one or more of the most likely ones has to 
be reversed falls in the realm of Multiple Hypothesis Reasoning (MHR), also called Truth Maintenance Systems 
(TMSs). Truth maintenance software already exists that is ready to be translated to HPC hardware and applied to 
this application to manage the multiple possible (parallel) hypotheses resulting from ambiguities in use-type 
classification (especially as relate to consistency with the track’s behavior (e.g., a track with movement patterns 
resembling a delivery truck that has been otherwise classified as either a delivery-type truck or an SUV), multiple 
explanations for an observed behavior, or multiple possible correlations for one vehicle track with multiple others).   
 The off-line component of HAIF includes a knowledge editing environment that provides facilities for entering 
various kinds of tactical reasoning knowledge that will be applied to the processed radar system data. This 
information is the basic input to the Compiling and Translating process, which transforms the knowledge into a form 
that can be rapidly executed on large quantities of data on the HPC system. 
 A major component of the representation framework is anticipated to be BTNs. We have already developed a 
translation mechanism from the graphical BTNs to C++ code. This can be adapted slightly to produce code that 
existing specialized compilers can use to produce GPU-optimized executables. The BTNs are already replicated for 
each object they apply to so they are already in highly parallelized form.   
 Parallelization is an important aspect of efficient HPC utilization as already alluded to. To divide up the 
knowledge-based correlation and behavior processing of objects requires dividing up the objects into non-interacting 
(or minimally interacting) sets. This is most easily done based on proximity to the same intersections. Each 
intersection represents the center of an area that can be approximately completely processed separately from all 
other intersections/areas. (Intersections that are very close together should be grouped together.) Objects should be 
grouped based on the intersection they are closest to with a bias toward favoring intersections in front of their 
direction of travel. This division of objects will minimize interactions of objects across areas during all phases of the 
processing. For example, pixel processing (though not a focus of this effort), is limited in terms of interactions to the 
small number of pixels that make up an object. Similarly, frame-to-frame object correlation inherently involves 
objects very close together, geographically. There is always the possibility that nearby objects could be on opposite 
sides of any area border, but objects tend to be closest when they are stopped at an intersection, so centering the area 
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on the intersection will inherently tend to keep the objects likely to be close together in the same area. This same 
reasoning applies to behavior analysis (i.e., that objects that are influencing the behavior of each other must be 
usually fairly near to each other). 
 Shown below is the ultimate real-time HAIF architecture. It includes an HPC hardware system consisting of 0 to 
many GPUs, CPUs, and MIC chips. The HPC hardware  includes or is interfaced to high-speed memory, which also 
receives data from the radar system. This memory also stores any other data that must be input into the HPC 
components, such as the knowledge transformed into executable form off-line, as described above. Frames of radar 
data are processed in parallel and pipeline fashion as shown below. First, computer vision algorithms process the 
pixels into objects and extract feature data for each object. Second, Knowledge-Based Radar Track Correlation uses 
all available data to associate radar tracks from different frames in order to assemble a coherent path for each 
tracked object as described in Section 1.3. It will likely utilize multiple frames of data. Specifically, when 
associating objects between two adjacent (in time) frames it may also access frames 1, 2, and 3 seconds before or 
after the two frames in question. This way it can easily verify that its assumptions held a short time into the future 
(such as a track travelling on a road and not leaving it in the near future or evidence of starting to decelerate a few 
seconds before turning). 
 Remaining ambiguities are passed to Multi-Hypothesis Reasoning (not shown but used by both Frame-to-frame 
Correlation and Behavior Analysis) to be resolved when possible with additional data. Path analysis examines the 

known paths of vehicles 
and compares them to 
known and learned routes 
and areas (i.e., parking 
lots) and to the paths of 
other vehicles. It also 
associates tracks together 
that appear to be 
cooperating and estimates 
the hostility of each 
track, based on intentions 
inferable from the 
platform’s path. Multi-
Hypothesis Reasoning 
manages the creation of 
hypotheses resulting from 
ambiguous correlations 
and contradictory path 
analyses and performs 
the process of elimination 
reasoning as additional 
data are received in order 
to resolve the ambiguity 
in other, related tracks. 

Figure 1. Real-Time, Online Architecture. 
 Patterns and Retrieval (not shown, a component of Behavior Analysis) determines whether the track is exhibiting 
typical or atypical behavior for similar platforms at similar times in similar locations and uses that estimation to 
provide a level of suspicion. Recommendations/Sensor Cueing/Sensor Manager makes decisions about what should 
be done given the list of suspicious objects and their attributes. Possibilities include increased processing of the 
objects and the areas they are in, highlighting them to a human operator, tasking additional sensors, etc. For 
recommendations involving human operators, a user interface manager acts as switchboard to get the right 
information to the correct operator and to moderate the interaction with each user. 
 All the processing tasks (just an abstract description of them, not the specific data, which would already reside in 
the high-speed memory for efficient access by the HPC components) that could potentially be executed, with 
benefit, on the HPC hardware are sent to the HPC Task Allocator from the modules listed above and it makes the 
real-time decisions as to which HPC resource should perform each task to operate efficiently, get the most important 
processing done, and meet required deadlines. 
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F. Path Analysis 
 Path Analysis exploits the fact that most civilian vehicles proceed in direct routes, using the most direct path 
from their departure to their destination at the speed of surrounding traffic or, if little traffic exists, near the speed 
limit (or learned typical speed for that road segment and time of day). Generally turns are infrequent and predictable.  
They also do not generally react to the movements of other vehicles (other than to queue up at intersections or avoid 
collisions). Unusual turns inherently invite further inspection in the form of looking for correlations between each 
turn and turns and/or locations of other nearby vehicles and ground units. Path Analysis looks at all aspects of the 
vehicle’s path. It typically uses fuzzy logic rules to do this. For example, consider the following fuzzy logic 
statements: 

If Track is Following Friendly-Unit  
 Then  

{ 
Hostility = inversely proportional to distance between them; 

    Magnitude = Size of Track’s Vehicle + Size of other vehicles in Track’s ConvoyGroup (if any) 
   }  
 Following is a fuzzy number between 0 and 1 and is the fraction of the Friendly-Unit’s path that Track has also 
been on. In other words, if Track has traversed 90% of the same path as Friendly-Unit, then Following is 90% and 
Hostility will be 90% of the inverse of the distance between the vehicles. 
 Other fuzzy logic rules check if each track is in the right kind of area or along the right route for its type, where 
“right” is established from the previous traffic and usage patterns. Other relationships between tracks besides 
Following are Heading-Toward and avoidance. These tend to indicate a hostile relationship. Some others involve 
possible cooperation between platforms. These relationships are convoying, rendezvous, same point of origin or 
same stopping location, and having a hostile relationship (i.e., attacking, following, avoidance, etc.) with the same 
other vehicle or unit. Getting hostility information about one track of a cooperating group allows some of the same 
information to be inferred for the other tracks in the group, albeit with lower certainty. The certainty is scaled to the 
degree of certainty in the relationship. For example, two tracks originating from the same location, proceeding 
together in convoy for a relatively long time have a high degree of cooperating certainty. If one is later found to 
have hostile intent, the other will too and with the same high degree of certainty the system has in the relationship.  
A final consideration is that a track hiding behind something where vehicles do not normally go is likely trying to 
engage in deception, which makes it inherently suspicious. 

G. Multiple Hypothesis Reasoning (MHR) 
 Multiple Hypothesis Reasoning (MHR) keeps track of the multiple hypotheses associated with each track and 
their relationships to the hypotheses for other tracks. In particular, it is responsible for resolving identities from 
ambiguities left over from the radar track association process. For each track, it keeps track of the possible 
predecessors and gradually weeds these predecessors out, depending on which are logically consistent with the 
current hypotheses. When only one direct predecessor is left, it sets that predecessor as the associated older track 
and propagates the change to other tracks at the same level. (Resolving one track may allow others to be resolved 
because the just-associated old track is no longer a viable hypothesis for another track.) 
 Uncertainty is represented by a certainty value on the hypothesis between zero and one, where zero means the 
hypothesis is definitely false, and one means the hypothesis is definitely true. When objects in one frame fail to 
associate with certainty with a single object in the next frame, the identity of the new frame objects is ambiguous.  
Suppose tracks T1 and T2 were old tracks that failed to positively associate with any tracks in the new frame and 
that there are two new tracks, T3 and T4, which have not been associated with any old tracks so that T3 and T4 are 
T1 and T2 but that it is unclear whether T3 matches T1 or T2, and the same holds for T4. Besides the identity of T3 
and T4, we may be concerned with hypotheses about various attributes of the tracks, such as level of hostility and 
the vehicle type and/or its neighborhood (or possibly even address) of origination. T3 and T4 will have the 
hypotheses from T1 and T2 until new information disambiguates their identities or updates the hypotheses. The 
certainty module maintains this history of possible associations and updates the track hypotheses. Based on new 
information about T3, for example from a newer frame, the certainty module will attempt to disambiguate whether 
T3 matches T1 or T2.  If so, then T4 will also be updated to have the correct predecessor track.   

H. Patterns and Retrieval 
 If the airborne radar is operating in the same urban area for a long period, traffic patterns can be used to help the 
reasoning process. There are four mechanisms for this. The first is to, given a particular track of possible interest, 
retrieve similar past tracks and calculate various statistics on those similar tracks as a basis for making predictions 
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about the current one. Similarity of tracks includes information immediately sensed by the radar, such as location, 
velocity, size, and rough vehicle type, but also includes additional information that may also be available. If the 
vehicle has been tracked since its current operation started, there will be a specific location (e.g., an address or a 
specific latitude/longitude precise enough to identify a specific building or parking location) and/or an area (such as 
a specific neighborhood or commercial district) where it started. If this is the first operation of the day for the 
vehicle or if it has been continuously tracked (even while parked), then the address and/or location where the vehicle 
spent the night will also be available. This address/location along with the vehicle type/size can be used over weeks 
to automatically learn and classify the usage type of the vehicle as observed by the radar system. Usage types could 
be defined by the workweek and weekend usage pattern. For example, a typical usage pattern (which we might call 
“commuter”) a high percentage of the time during the workweek starts in the morning with a trip from the home 
address in a residential section to the same work location every workday; ends with a trip from the work location to 
the home address; and includes small local (errand-running) trips on the weekends at outside of work hours. Other 
typical usage patterns would exist for different types of commercial vehicles (taxis, delivery trucks for a single 
business, government and commercial mail package delivery trucks, long-haul trucking, etc.) and different types of 
personal usage. Note the size and rough vehicle type can be extracted from the radar data. In the case of a vehicle 
moving on a road, the long dimension is oriented along the velocity of the vehicle, which is the same as the direction 
of the road, which is known, and since the location of the airborne radar system is precisely known, the aspect of the 
vehicle is also precisely known, meaning that, for most angles, the vehicle’s length, height, and width can be 
calculated along with a rough classification as to its type (e.g., motorcycle or other very small vehicle, small car, 
medium-sized car, SUV/large car/van, pickup truck, commercial-type delivery-type truck/van, 18 wheeler, 
construction equipment (e.g., bulldozer, backhoe, dump truck, etc.), etc.). This additional information is optional to 
the processing. If it exists it will be utilized to more precisely retrieve patterns and make predictions. If it is not 
available, the same mechanisms apply; they will just tend to be less sensitive to subtleties. For example, if a vehicle 
is spotted at 3 AM at high speed on a section of road where this is unusual (based on retrieved 3 AM data for this 
section of road), and no other information about the vehicle exists, it will still be flagged as suspicious. But if it is 3 
PM, and no other information exists, it is likely that retrieved patterns will show nothing unusual. However, if it is a 
large vehicle and this is unusual for this location and direction then that could be flagged. Or if the vehicle’s 
nighttime location is a neighborhood from which vehicles rarely come to the current location, this could be flagged.  
Or if the vehicle is large (which by itself is not unusual), and its usage type is commercial delivery (which by itself 
is not unusual), and the vehicle type is a large delivery truck (as expected), and the location of its home address is a 
specific commercial district where the businesses are typically owned and frequented by a specific ethnic group (and 
this, by itself, is not unusual either) but the combination of all these factors together IS unusual, then this could be 
flagged as suspicious, if all this information were available.  
 The second mechanism is to make use of groups of vehicles. There are two kinds of groups. One is just the mix 
of vehicles and speeds heading in the same direction on a specific segment of road. The second kind of group is a set 
of vehicles that have been tracked together for some time and appear to be a convoy. In either case, a current group 
can be compared to retrieved past similar groups. The degree to which it conforms to past patterns of activity can be 
used to determine a level of suspicion that is appropriate. For example, if a specific segment of a specific road 
contains a very unusual percentage of some type or size of vehicle, then that could be flagged as suspicious. Or if a 
large convoy of personal-type cars often leaves a specific location (perhaps a church) on Saturdays, then that might 
be typical (for weddings, say) but might be flagged on a Wednesday or in the middle of the night. 
 The third mechanism is to short circuit the retrieval and statistical processing of past similar groups by having 
the software look at patterns in the groups and then create pattern objects that correspond to found patterns. Current 
groups can then be matched directly to the pattern objects. A fourth mechanism, if possible based on the attributes of 
the current radar track under consideration (probably because it currently has been tracked since its departure from 
its “home”), is to retrieve the specific vehicle’s previous patterns of activity.  
 In general the philosophy is that any time a track or group fits a pattern of activity, it is useful to help predict 
intent and behavior where the prediction is based on the statistically most common data of the past tracks that fit the 
pattern. When a track or group defies a pattern, it is useful for warning that something atypical (and therefore 
suspicious) is occurring. Typical examples of defying a pattern are: a vehicle being at an unusual location for the 
current day/time and its vehicle type, size, and/or neighborhood of origin or making an unusual turn; similar criteria 
for a group; and that a group’s number or composition is unusual (again, given the location and day/time). 
 To determine if a group or track is unusual, a similarity search can be applied to whatever information exists for 
the track or group (location, heading, speed, rough vehicle type, size, area of origin, etc.). The statistics for the 
retrieved past tracks or groups can be computed and compared to the current track to determine level of typicality 
and therefore suspicion.   
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 Group retrieval primarily addresses volume of traffic and convoy composition/timing. When a current group is 
created, similar past groups are retrieved and statistics calculated for the retrieved groups. Similarity is based on 
location (or point of origin), heading, time of day, average speed, etc. If the current group conforms to the retrieved 
groups, those statistics can be used to compare to the current group’s composition. If the current group has a similar 
number and similar types of vehicles on the same day of the week at the same time of the day, then the current group 
is very likely benign (or as hostile as these types of groups statistically tend to be). However, if the current group has 
far more vehicles or very different types of vehicles, then this is a cause for suspicion perhaps that an attacking 
group is hiding in the normal traffic. Similarly, if the tracks in the past group almost always followed the same route 
to roughly the same location, but several of the tracks in the current group suddenly turned in an usual direction then 
this would be a cause for additional suspicion. 
 Pattern objects are created by analyzing the past groups, off-line. A pattern is a series of similar groups that 
repeats with high probability. For example, every weekday, if morning rush hour traffic would create similar road 
segment groups at the same road segments (in terms of vehicle composition, speed, etc.) then pattern objects would 
be created to capture these facts for each road segment. A current group could then be compared to the pattern and 

predictions and warnings made, similarly to the 
process described in the paragraph above. 

I. Behavior Transition Networks (BTNs) 
 Behavior Transition Networks (BTNs) are used 
to create intelligent behaviors by dividing the 
behavior hierarchically into tasks connected with 
transitions. They are very similar to Finite State 
Machines. The current task executes until one of its 
outgoing transitions becomes true, then control 
transitions to the task indicated by the true 
transitions arrow. Tasks with a heavy outline are 
themselves BTNs that are further expanded.  
Different Tasks and BTNs can communicate with 
each other using a variety of means. Generally 
small groups of BTNs cooperate to fulfill some role 
and are replicated many times, once each for the 
objects that they will operate on. This makes them 
highly parallelizable. 

Figure 2. BTN to Segment Each Vehicle’s Trajectory. 
 Two example BTNs are shown below. Each would 
be replicated for each tracked vehicle. Each begins in the 
green start state and immediately transitions to the next 
state. In the BTN immediately below, Segments grow 
until they end (because a turn or stop away from an 
intersection is detected) and then a new turn or 
maneuver is begun and continues until the maneuver 
ends because the vehicle is proceeding straight on a road 
again. Whenever a maneuver ends, end of maneuver 
processing is initiated, which is its own BTN which is 
shown further below, expanded out. 

J. Truth Maintenance 
 Truth Maintenance refers to techniques relating to 
keeping track of multiple competing hypothesis, 
multiple sets of consistent hypotheses (sometimes called 
“worlds”), and the dependencies between hypotheses.  
Truth maintenance systems use nonmonotonic logic, 
where facts are not just added to the logical structure but  

Figure 3. End of Maneuver Processing BTN. 
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also retracted. (The fact that the number of facts sometimes decreases, i.e., does not monotonically increase, leads to 
the name.) Very general truth maintenance systems are computationally intensive. However, for the radar tracking 
problem, we utilize the fact that dependencies between hypotheses are only of two kinds. The most obvious is the 
exclusivity principle—a track can only be one of the competing hypotheses for a track. The second type of 
dependency between hypotheses is based on the fact that if, because of an ambiguous correlation, there are two new 
tracks that must each be one of two old tracks but which-is-which is unknown and if one of the new tracks becomes 
known, then the other new track must be its remaining hypothesis (process of elimination reasoning). The system 
also makes use of the fact that there will be a relatively small number of these leftover ambiguous situations active 
at any one time. It is quite easy to create situations that are too complex for a human to reason through in real-time 
but for which the logic draws conclusions instantly. In tracking applications, typically only the hypotheses for small 
groups of tracks interact so that each small group can be processed in parallel.  

K. Case-Based Reasoning (CBR) 
 Case-Based Reasoning (CBR) is the field of artificial intelligence (AI) that attempts to solve a current problem 
by retrieving a previously encountered similar problem and adapting that problem's solution to the current situation. 
In this domain, CBR is used to estimate hostility (in order to focus attention) based on similar, retrieved, past tracks 
and groups of tracks. By storing past tracks and additional associated information (when available), previous tracks 
can be retrieved, when faced with similar circumstances, and these can be used as a basis for understanding what 
typical behavior for such tracks is and to make statistics-based predictions of the hostility and threat level of the 
current tracks. Reference 1  describes how this retrieval can be performed essentially instantaneously (constant 
time), if the appropriate index has been indexed. The algorithms have executed on casebases with millions of cases. 
While this only represents perhaps a single day’s worth of cases (10,000 objects, each representing a new case about 
every six minutes), the retrieval time doesn’t grow with the size of the case base, and very similar or identical sets of 
cases can be merged into groups and patterns. CBR can be performed in parallel for each track or group since there 
is no interaction.  

L. Fuzzy Logic (FL) 
 One type of rule representation that seems well suited to tactical problems, especially sensor data interpretation, 
is Fuzzy Logic (FL). In FL, rules are captured that reference qualitative, inexact, or fuzzy values such as High, Low, 
and Medium. For example, a fuzzy rule might state: 

  If there are two Tracks who have made the same set of N turns and their relative positions are Close 
 Then Assume the Tracks are in the same Group (e.g., a convoy) 

 An FL system operates on quantitative data—such as sensor data; and through a process called fuzzification, it 
converts that data to a set of qualitative values with associated fuzzy membership values. The rules referencing these 
qualitative values are each fired to the degree indicated by the membership values. The results of several competing 
rules are then combined, making fuzzy assignments of qualitative values. These can be used directly or defuzzified 
into quantitative data.  

M. Intelligent Scheduling 
 The HPC Task Allocator, which optimally distributes the parallel computing tasks to the HPC resources, will be 
assembled in an existing intelligent scheduling system architecture, which provides for customization of each 
decision point in the scheduling processing and provides for the functionality common across different scheduling 
systems. For example, it handles resource usage profiles and resource type requirements, provides for pluggable 
resource/time window selection methods and satisfaction of temporal, spatial, and arbitrary constraints, and includes 
the notion of scheduling cycles, an evolving schedule, and the need for a separate preprocessing module. 
 Scheduling systems take as input a description of the scheduling problem including the tasks to be scheduled, the 
resources available, and the constraints. However, mere transmittal of the task to the scheduler does not ensure that 
the required resources can be found to execute it. Whether enough resources exist to schedule all requested tasks is 
based on the number of resources available (and the optimality of the scheduling algorithm, of course). Associated 
with each task are its resource requirements and temporal, spatial, and other constraints. For this problem, a “task” 
will be a required computation and the separate ways it can be accomplished. These separate options would each 
require resources in the form of one or more HPC components for some length of time or for some number of 
FLOPs (or other measure of needed computation). A typical temporal constraint, for example, is that one particular 
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task must be complete before another can begin (e.g., object and feature extraction from the pixels for a specific 
frame must be accomplished before each of the objects can be associated with objects from the last frame) or that a 
specific task must be completed by a certain time (e.g., the level of suspicion on a specific track must be determined 
by behavior analysis of the path of that track within 60 seconds). Constraints may exist associated with tasks, 
resources or both. Examples include a constraint that a particular task must use a specific resource, that a specific 
resource is unavailable (or partly unavailable due to it being used by another application), or that certain tasks 
should always (or never) occur at the same time. The scheduler conceptually takes as input the tasks, HPC resources, 
and constraints, and produces, as output, the assignments to resources of the tasks for specific time windows that 
meet the constraints for execution on the HPC hardware. Aurora has proven itself adept, in numerous domains, at 
applying human-quality reasoning to difficult scheduling problems extremely rapidly. It mimics human scheduling 
cognitive processes in software but executes those processes far faster than a human could. High-quality scheduling 
involves optimization of various criteria under resource and time limitations and a large number of constraints and 
considerations. 

III. Prototype Description 
 Select portions of the above system were prototyped to prove the concept and to collect rough estimates of the 
type of acceleration that could be expected from different HPC configurations. Owing to the data that was available 
for the initial study, and with consideration as to which capabilities would be of most immediate benefit in an 
operational system, the prototype focused on intelligently analyzing the behavior of radar tracks. The data available 
was simulated correlated Ground Motion Target Indicator (GMTI) data of vehicles moving fairly randomly in a 10 
km by 10 km area of Dayton, Ohio.  The road system the vehicles moved on was an accurate recreation of Dayton’s 
roads down to the most specific, detailed, local streets. The simulated data consisted of various simulation runs with 
500, 1000, 2000, and 5000 vehicles and about 500 seconds in length each with location and velocity data twice each 
second.  A relatively dense area was also extracted from the 5000 vehicle case to create a 525 vehicle scenario. 
 The prototype analyzed this movement data in simulated real-time against an open source data set representing 
the road network of Dayton, determining whether each vehicle was on a road or not and which one. As shown in 
Fig. 2, as the vehicle data comes in, the prototype first divides the vehicle trajectories into “segments” and “turns” 
where “turns” effectively represent decisions by the vehicle operator. These decisions are turns from one road to 
another, turning off the road into a known off-road location, like a parking lot, or unknown off-road location, or 
stopping in the middle of a road segment, without apparent reason. 
 Three specific behaviors are looked for. One is convoying, that two or more vehicles are travelling in relative 
proximity for an extended period of time. Another is following, that one vehicle is making a high percentage of the 
same turns (from the same road onto the same cross-street and in the same direction) as another, at a later point in 
time. This requires looking for correlations of turns between each vehicle to all the other vehicles within the same 
vicinity (an O(N2) computation). The final behavior looked for is called the IED behavior and consists of two parts.  
The first looks for a vehicle stopping in the middle of a road segment (i.e., not near an intersection) for a few 
minutes. This by itself is inherently suspicious. If that vehicle (or one associated with it, such as having been in a 
convoy relationship previously) then proceeds to a different location that provides an overlook opportunity (line of 
sight) to the initial stopping location, suspicions of an IED behavior are further increased. 
 The Open Source BTN graphical editing and runtime execution tool, SimBionic, was used to represent the BTNs 
for the intelligent examination of the vehicle behavior. Figs. 3 and 4 represent the main BTNs that segmented each 
trajectory and called the individual behavior analysis BTNs. Then there were three BTNs that looked for each of the 
three behaviors described above. Processing 500 seconds of the 525 vehicle scenario on a standard desktop 
processor, without trying to optimize the code, took 2.5 hours of processing time (about 9000 seconds or about 18x 
slower than real-time). Simply setting appropriate compiler flags reduced this time to 28 minutes (1700 seconds or 
3.4x slower than real-time).  Analysis of the computation requirements of different parts of the software revealed 
that an effective parallelization strategy primarily related to distributing the calculations relating to separate vehicles 
to separate cores. As long as the number of cores that could be efficiently used was less than the number of vehicles, 
this would provide a parallelization speed-up proportional to the number of cores (divided by the processing speed 
slow-down of the individual cores, of course).  
 Three HPC platforms were targeting with each port building on the previous. First, we ported to multi-core 
CPUs with OpenMP. This platform typically has between 16 and 32 cores operating at between 2.4 and 3.2 GHz. 
This simple parallelization revealed which data structures needed to be duplicated or protected by locks so that they 
can be shared between threads. Speedup depended on minimizing the number of synchronization points between 
threads. As a bonus, the OpenMP parallelized code worked without modification on the Intel Xeon Phi (aka MIC). 
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The MIC has approximately 60 cores at about 1GHz, each supporting at most four threads, for a maximum 240 
OpenMP threads (240 entities processed at once). The MIC can run OpenMP codes at a very high thread count so 
running on the MIC gave us a good idea about the code's scalability. Once OpenMP parallelization was complete, 
we planned to perform a CUDA parallelization targeting NVIDIA GPUs.  We had several GPUs we could test with, 
including an NVIDIA Kepler K20 with 2496 cores at about 0.7 GHz. Past experience indicates that an irregular code 
like the prototype would see a 4x speedup compared to the CPU parallelization. Speedup would depend on 
distributing the application's data in memory in a way that most effectively uses the GPU's multi-tiered 
memory hierarchy. 

IV. Results 
 The first HPC implementation resulted in a 12x speedup and thus executed significantly faster than real-time 
(500 seconds of data processed in 115 seconds). The MIC implementation actually executed slower than the desktop 
(2700 seconds).  This was because each vehicle is processed with the same logic but that logic quickly branches in 
separate directions so that Single Instruction Multiple Data (SIMD) processing was not possible preventing effective 
use of the MIC’s Vector Processing Unit.  Furthermore, few of the computations were actually arithmetic, the 
analysis better characterized as symbolic reasoning. For these reasons, translation to the GPU platform was not 
attempted.   
 Of course this represented a fraction of the desired analysis.  Implementing additional intelligent analysis BTNs 

to look for more behaviors would require more processing, but 
not linearly more as a higher and higher percentage of the 
calculations already being performed can be reused. With these 
factor considered, it is likely that the first HPC configuration 
could at least keep up with the required set of BTNs. That would 
leave pixel processing, frame-to-frame correlation, and 
comparison to previous normal traffic to be processed on 
additional HPC resources.  These would be more applicable to the 
MICs and GPUs, so the fuller set of functions represents a better 
mix of processing types. 
 As expected, the convoy analysis found a handful of vehicle 
pairs out of the 525 
vehicle scenario 
that happened to 
stay close together.  
Two pairs are 
highlighted in 
brown in the figure 
to the left. 

                     
Figure 4. Two Convoys. 
 As expected given the random turns, there were no cases in the 
scenario data of one vehicle following a large percentage of the same 
turns as another. Therefore, independently of the programming team, 
an example of one vehicle following another was inserted into one of 
the scenario files. This was found with a high score as shown to the 
right. The follower is highlighted yellow and the “followee” is in 
green.   

 Figure 5. Following. 
 Similarly, the simulated data was generated in such a way that no vehicle stopped in the middle of a road 
segment so a vehicle with this event was inserted in the data. The vehicle then takes a roundabout route to an 
overlook location. The first vehicle stop lasted 2 minutes and is shown below in red. The later overlook by the same 
vehicle is also shown below in the last figure in red. The second figure shows an intermediate point on the vehicles 
route between the IED plant location and the overlook position. 
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Figure 6. Planting IED.           Figure 7. Driving to Overlook. 
 In all three of the above cases, no human being spotted the patterns from the real-time vehicle displays. It was 
effectively impossible in real-time for a human being to spot any of these types of suspicious activity, which very 
effectively illustrated the benefit of automatic processing.  Interestingly even the vehicle stopped away from an 
intersection was difficult to notice. 

V. Future Work 
 Because of the large diversity of different aspects of this work, there are a large number of additional research 

avenues to pursue. Perhaps the most obvious is to implement 
additional intelligent vehicle behavior analysis BTNs. By 
implementing a higher percentage of the requirements, more 
reliable estimates of total HPC processing required could be 
developed. Furthermore, this would provide additional data 
into another aspect only begun to be addressed, the automatic 
parallelization of the intelligent processing. In the initial 
effort, the parallelization process was effectively performed by 
hand, but did point to the likely benefits and feasibility of 
parallelizing the computations across the different vehicles.  
So far, how this process could be automated is clear and 
straightforward, for the BTNs implemented to date, since it is 
based on individual vehicles. Additionally some minor 
restrictions on the use of SimBionic are also required and 
would need to be enforced by minor changes to the 
SimBionic’s open source graphical editor and runtime.  
Whether this would continue to hold for the full set of BTNs 
remains to be seen. 
 

Figure 8. Overlook. 
 Learning normal traffic patterns requires past data in order to establish normalcy for different times of the day, 
different days of the week, and during different times of the year. Using publicly available traffic data, we plan to 
investigate the usefulness of the four CBR techniques described in the Patterns and Retrieval Section (retrieval 
based on specific vehicle type, group, learned patterns, and specific vehicle ID) to detect interesting deviations from 
normal behavior. The real-time retrieval component should be highly parallelizable based on the individual vehicles 
and individual groups. I.e., we will be able to retrieve similar past data for current vehicles and current groups in 
parallel with each other. Past work1 has already shown than a index can be built off-line to make individual similarly 
retrievals very fast. We believe that the process of building these indices off-line could be radically accelerated with 
HPC hardware. Incrementing the index for individual vehicles and groups can be performed in parallel across 
vehicles and groups and across different instances of time. Furthermore, if required, different parts of the index 
corresponding to different geographic locations, times, velocities, and/or combinations of symbolic feature values 
can be assigned to different cores and performed in parallel. 
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 In the next phase of the effort, using simulated radar GMTI we will investigate the ability to improve tracking 
performance (average correct tracking time per vehicle) based on the knowledge-based, frame-to-frame object 
correlation described in the System Description section. To make this practical in near real-time will require 
substantial parallelization. Unfortunately unlike all of the computations described so far, parallelizing the 
computations across the set of objects is not entirely straightforward. This is because multiple objects in one frame 
may compete for association with multiple objects in an earlier frame; the computations are not independent of each 
other. Fortunately, the large majority of objects can possibly associate with exactly one object in a previous frame, 
and for these cases, the computations can be parallelized. (Even more fortunate is the fact that the calculations to 
determine this are exactly the same for all objects and so can be easily parallelized on SIMD GPUs). The small 
fraction of objects that don’t fall into this category will have to be processed on the same CPU, or perhaps 
parallelized into non-overlapping sets of competing objects. 
 Other possible future research endeavors include correlating the GMTI tracks with Synthetic Aperture Radar 
(SAR) data. Radar GMTI tracks inherently will break down at very slow speeds or when stopped. Meanwhile SAR 
images provide good pictures for stationary objects but moving objects will not be visible. When a GMTI radar track 
stops for a long enough period of time, a SAR image of it should exist. Correlating these events in the different 
products would provide significant additional data on these objects. Similarly, fusing the GMTI track data with other 
intelligence products such as optical or IR Wide Area Motion Imagery (WAMI) would provide significant benefits. 
It is likely that these calculations could be parallelized based on geographic location. 
 It is not our intention to pursue research efforts directed toward processing the raw and low-level radar data to 
produce the individual GMTI tracks or SAR images. However, it is likely that such processing would share the same 
HPC hardware as the intelligent processing described throughout this paper and therefore our approach must allow 
for it. This relates to the Intelligent Scheduling described in the System Description Section where real-time 
scheduling of processing tasks on HPC resources is performed based on the current tactical situation. In particular, 
all of the intelligent processing must be allocated to the various diverse CPUs, GPUs, and MICs based on their 
current availability (i.e., some radar signal processing outside the scope described here may be occurring on some of 
the HPC elements) and the priorities and deadlines of the processing tasks, themselves based on the tactical 
situations. Although simple priority-based and deadline-based scheduling schemes have been shown to be severely 
suboptimal in many domains, they may be reasonable for this domain. A few of these should be implemented and 
compared to more intelligent (but still computationally efficient) approaches such as bottleneck avoidance2. 

VIII. Conclusions 
 This work showed the effectiveness, feasibility and benefits of intelligently processing radar track data to 
automatically spot suspicious behavior and to perform those calculations on massive data sets in faster than real-
time on HPC hardware. Mechanisms to automatically perform the parallelization and porting from a single thread to 
massively parallel the computations on HPC resources were indicated. The overall design for a complete system was 
described along with the results from a prototyping and HPC fielding effort. Several avenues for future work were 
presented. 
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