
 1

An AI Modeling Tool for Designers and Developers
Dan Fu, Ryan Houlette, and Jeremy Ludwig

Stottler Henke Associates, Inc.
951 Mariners Island Blvd, Suite 360

San Mateo, CA 94404
{fu, houlette, ludwig}@stottlerhenke.com

Abstract—We describe an AI modeling tool meant to be

used by both designers and developers. The method for

authoring is visual and meant to convey decision logic in a

more intuitive manner while retaining expressiveness. This

data-driven approach features an AI runtime engine which

incorporates several augmentations which make it suitable

for use across a wide array of deployed systems. 1 2

TABLE OF CONTENTS

1. INTRODUCTION..1
2. SIMBIONIC OVERVIEW ...2
3. INTERFACE AND RUNTIME ENGINE4
4. AUTHORING APPLICATION5
6. RELATED WORK ...6
7. CONCLUSION ...7
REFERENCES ...7
BIOGRAPHY ...7

1. INTRODUCTION

The creation of artificial intelligence (AI) is a common

construction task, usually handled by technical developers.

In recent years we have been working on techniques to open

the process of writing AI behavior to a wider audience.

One important aspect of our effort is to make an authoring

tool that makes entity behavior accessible not only to

developers, but to the rest of the team as well. These include

designers and analysts who also possess most of the domain

knowledge. They work with developers to ensure the

entities behave appropriately. Unfortunately, a less efficient

interaction occurs on the team when the designer

communicates the desired behavior in a written document,

waits while a developer implements the behavior, and then

tests and revises the design based on the outcome. There

are two reasons why this bottleneck happens. First, the

implementation details are often hidden from the rest of the

team. There are usually few developers who are responsible

for the implementation, and while they ensure the AI works

with the simulation engine, it is often not necessary for their

code portion to be accessible to any other members on the

team. The second reason is that even if the implementation

details were available, their portrayal is often a body of

programming code or AI representation bearing little

resemblance to the design documents that specify their

intended characteristics. As a result, improvements to the

AI must go through developers [10].

1
1 1-4244-0525-4/07/$20.00 ©2007 IEEE.
2 IEEEAC paper #1001, Version 6, Updated July 1, 2006

In this paper, we discuss our ongoing efforts to build a tool

called SimBionic that bridges the gap between team

members, empowering them to participate in varying

degrees in both design and implementation. The central

challenge of this work is to arrive at a tool that is easily

comprehensible, yet powerfully expressive.

SimBionic features a graphical editor which uses finite-state

machines (FSM's) as a basic way of depicting behavior [1,

2]. FSM’s look similar to flowchart diagrams where states

and transitions are drawn as rectangles and arrows. This

method of representation is ubiquitous enough to be one of

the nine diagrams employed by the Unified Modeling

Language (UML) for software engineering design and

communication [3].

FSM’s are most well known as a construct from computer

science theory, defined as a set of states, an input

vocabulary, and a transition function which maps a state and

an input to another state. A single initial state is the

designated start state. There are zero or more “accepting”

states. After the FSM processes all input, whether the

ending state is an accepting state dictates the machine

accepting the input or not. More practically as a control

model, we can view the FSM as a way for an AI entity to

change its state (which corresponds to behavior) over time.

The transition from theoretical to practical use happens in

three ways. First, it’s appealing to consider each state as

representing some desired behavior or action. Each state has

corresponding code so that as the entity’s state changes, its

behavior changes accordingly. Second, each state’s set of

transitions are conditions under which the entity behavior

will change. Third, the notion of an accepting state is

generally interpreted as the end of execution for the FSM;

that is, the FSM has achieved some desired task or goal.

Adopting the practical use of an FSM model for our tool has

two appealing properties; namely simple visual depiction

and efficiency. FSM’s have the most straightforward “what

you see is what you get” kind of behavior representation,

oftentimes better communicated as pictures. They have the

positive computational properties of being simple, compact,

and efficient. For these reasons we adopted FSM’s as our

basic depiction method. Still, for what is gained in

comprehension, visual parsimony, and computational

efficiency, finite state machines can grow to be visually

cluttered while remaining computationally weak as they are

composed of only states and transitions. To address these

two unappealing properties of visual clutter and

computational weakness, we created new augmentations

 2

that seek to support more computational power while

maintaining a simple, intuitive interface.

The remainder of this paper is organized as follows. First,

we provide an overview of SimBionic. This is followed by a

discussion of key augmentations. Second, we describe the

interface to a simulator or robot. Third, we show the

SimBionic authoring application that supports the

computational augmentations while striving to be as easy to

use as possible. We then discuss software and robotics work

related to SimBionic.

2. SIMBIONIC OVERVIEW

SimBionic is composed of two major components:

authoring tool and runtime engine. The authoring tool

component is responsible for having users describe the

behavior for an entity. This specification is fed to the

second component—the runtime engine—which creates

behavior in the interfaced simulation based on the

specification. Figure 1 shows a high level view of

SimBionic. In the authoring portion, the user defines a

vocabulary of actions and conditions which correspond to

FSM notions of states and transitions, respectively. We

refer to a constructed FSM as a “behavior.” Users construct

behaviors by linking actions with conditions.

The authoring portion does not actually implement

behavior; rather, the product is a description or specification

for the runtime engine. On the right side of Figure 1, see

that the vocabulary has an analog. This is where the actions

and conditions take real form. One can think of an action as

a primitive effector that operates in the world, be it

simulated or actual, while a condition can be thought of as

depending on sensor information predicates. Since

behaviors are synthesized from conditions and actions, the

runtime engine will reference them and invoke the

appropriate effector or sensor. This happens in the interface

with the world.

The runtime engine functions by first invoking the action at

the current state, and then determining a valid transition to

the next state. Valid transitions are calculated by evaluating

conditions. This fundamental two step process then repeats.

Key Augmentations

There are four augmentations made to SimBionic’s

computational model: expressions, hierarchical behaviors,

interruptible behaviors, and polymorphism. The first

improvement is arbitrary expression evaluation. The

authoring tool is able to define the condition vocabulary,

such as “FrontSonarReading()” or “RightSonarReading()”

which return the number of feet an obstacle is detected in

front or right of the robot, or “WaypointReached()” which

returns whether the traveling entity has arrived at a

waypoint yet. These vocabulary elements can be combined

to form true or false statements for purposes of evaluating

transitions. For example, there may be a behavior to travel

forward until there is an obstacle blocking forward

movement. The transition away from moving forward to

stopping might be “FrontSonarReading() < 2” which would

translate to “keep moving forward until the number of feet

in front of the robot is less than two”. In this way, the ability

to synthesize arbitrary expressions and to evaluate them

comprises the first major augmentation. As well, the results

of expressions can be stored as variables for later use, or

passed as parameters.

The second augmentation is a conversion to hierarchical

states where a single state could refer another FSM. In

SimBionic terms, the action could either remain as an

action, or refer to another behavior. There are two reasons

for this augmentation. First, when authoring there

SimBionic Authoring SimBionic Runtime

SimBionic

Editor

Interface

Designers &
Developers

SimBionic

Engine
Behavior

Library

Condition &

Action

Declarations

Condition &

Action Code

Thin Glue Layer

World Simulator

Figure 1- SimBionic Authoring Tool and Engine

 3

frequently arises a need to invoke a recurring pattern of

actions and conditions. The author can decide to

continually repeat the pattern across several behaviors, or to

modularize the pattern as a behavior that can be invoked

when needed. This hierarchical computational model is

stack-based, where each time the engine invokes a behavior,

a reference to it is pushed onto the stack. The engine then

pays attention to the behavior at the top of the stack,

popping off behaviors that reach an “accepting” action.

This augmentation results in a method similar to a push

down automata or Von Neumann architecture, except that

all transitions on the stack are evaluated, starting at the

bottom. The reason is that the behaviors on the lower stack

frames are thought of as taking precedence. For example,

the world could change such that whatever task the robot is

currently engaged in, for which it is doing a primitive action

of turning, is no longer worth pursuing. So while the turning

action is in a behavior at the top of the stack, the particular

behavior lower down in the stack where the task is deemed

pointless needs to pursue something else. This conclusion

would entail popping off all behaviors above it as a result of

following a transition to a different behavior.

The third augmentation is the ability to interrupt behaviors.

Frequently in robotic three layer architectures [4], there can

exist several tasks or goals that the robot tries to achieve, or

there may be unexpected or improvised events for which the

robot should act immediately and appropriately. Though

there are hierarchical behaviors in SimBionic that could

handle impromptu events, they would require the current

task to be abandoned by popping off behaviors from the

stack. Thus, there exists the need for an “interrupt

transition” which is a special transition for cases where the

original behavior is not abandoned, but just temporarily

suspended while the new behavior executes. When the new

behavior finishes, control returns to the original behavior,

which picks up where it left off. For example, a radio

communication event arrives from a teammate. There may

be a behavior to process incoming messages, but we would

not want the current task to be abandoned (and eventually

reinstantiated) as processing the message should only be a

brief interruption. The “radio handling behavior” would be

pushed onto the stack. Transitions on stack frames below

this radio behavior would not be evaluated until the

behavior has concluded. Typically, interrupts are meant to

be handled quickly. Understanding error handling

Another type of interrupt handles errors which occur in the

underlying code that implements an action or predicate.

SimBionic provides a built-in facility, modeled after Java’s

exception-handling mechanism, for handling these types of

run-time errors in a graceful and consistent fashion within

behaviors. To use this facility, particular exceptions must be

thrown within the action and predicate code. SimBionic

provides two error-handling constructs and three core

actions devoted to error recovery:

A “catch” action is the core error-handling construct that

catches exceptions, much like the catch block of a try-catch

statement in Java. When an exception is thrown during the

execution of a behavior containing the catch action, the

catch becomes the current action or behavior for that

behavior, and the execution mode for the behavior is set

temporarily to non-interruptible because error recovery

should be treated as a critical section. Execution continues

normally from that point, executing the catch and any

subsequent actions.

The “always” action ensures that certain operations are

always executed at a behavior’s termination. It is very

similar to the “finally” block of a try-catch statement in

Java. Whenever a behavior is about to be popped from the

stack for any reason, the always action becomes the current

action or behavior of the behavior, and the execution mode

for the behavior is set temporarily to non-interruptible.

Execution continues normally from that point, executing the

always rectangle and any subsequent actions until

completion.

The “retry, resume, and rethrow” core actions help recover

from an error. Common uses might be to select an alternate

execution path, clean up any “loose ends” left behind by the

error (e.g., open files), or simply to log the error. The

“retry” action causes behavior execution to jump to where

the exception was thrown in this behavior, executing that

action or behavior exactly as if it had just become the

current one in normal fashion. Retry is generally invoked

after attempting to diagnose and fix whatever error

condition caused the exception to be thrown, in the hopes

that the second attempt will be more successful. The

“resume” action causes execution to resume at the point in

the behavior where the exception was thrown without

attempting to retry execution. Resume is typically invoked

when it is not possible to fix the error condition, but it is

still possible to clean up after the error and continue with

the behavior’s normal course of execution. The “rethrow”

action throws the current exception down the stack to the

current behavior’s invoking behavior and then terminates

the current behavior just as if the behavior normally ended.

The invoking behavior then becomes the new current

behavior and must attempt to handle the exception exactly

as if it had been thrown in that behavior. Rethrow is called

when a behavior is unable to recover from an error and

needs to pass responsibility for error recovery on to another

behavior.

The fourth and final augmentation is polymorphism whose

origin comes out of object oriented software development.

As behaviors are created, the author often encounters

situations where it is desirable to create behaviors that differ

only slightly from already-existing behaviors. For example,

an author may decide the expertise of an opposing force is a

descriptor that affects behavior. When the force is in

conflict with friendly forces, the “Combat()” behavior

 4

would dispatch a specialized version of a behavior based on

the entity’s descriptor, say, low expertise.

If we were to create variations without polymorphic

specializations, they would be named something along the

lines of “Combat_LowExpertise(),” prefaced with a

“dispatch” behavior that would examine the entity’s

descriptors and choose the right version of behavior. This

works fine, but results in some visual clutter before arriving

at the new specialization for Combat. To simplify the

construction of specialized behaviors, polymorphism was

introduced. In this extended representation, a single

behavior can now possess multiple versions. Exactly which

version of a behavior gets invoked depends on a set of

entity descriptors defined by the author. In this case,

“expertise” is the only descriptor introduced. It serves as the

root of its own descriptor hierarchy. An author specializes,

or indexes, a behavior graph by associating it with exactly

one node per descriptor tree. We could have a tree with

“expertise” as the root and three children “low”, “medium”,

and “high” as children. Selection of any one of these four

nodes serves to index a behavior.

The engine, given, a set of descriptors for an entity, will

always pick the most specific behavior version according to

the degree of match between the entity and behavior

indices. For example, if the entity has a descriptor “low” for

experience, then the behavior version of Combat() indexed

with “low” experience would be the best match. A behavior

with the root “expertise” chosen would be the second best

match. Behaviors indexed using roots of descriptor

hierarchies are “default” behaviors because they are the

most general. Any behaviors for “medium” or “high”

expertise could never be chosen unless the entity’s

descriptor changed accordingly. This method of indexing

affords the author the flexibility to specialize any behavior

depending on particular attributes of the entity being

controlled.

Entities may change their descriptors at any time. This

change affects all behavior invocations from that point on.

For example, an opposing force that switches its expertise

from low to high would select a different version of the

Combat () behavior, and hence would perform differently in

the simulation. Changes to an entity’s descriptors do not,

however, affect any behavior that that entity might already

be executing.

Augmentation Discussion

All augmentations but the first seek to simplify the visual

representation of behavior. The first consists of expressions

which can be fairly complex. Syntax for the expressions is

similar to the programming language C where variables,

functions (conditions), and numbers can be used.

The second augmentation encapsulates a commonly used

pattern of actions and conditions into a behavior. For

authoring, there are three benefits. First, the visual depiction

is simplified by being able to refer to a behavior as an

invokable abstract “action.” Whatever the behavior

accomplishes can be viewed as a separate behavior graph.

This recursive simplification of behavior allows one to

author or design behavior at a high level, but eventually

ground behavior into real action. Second, since the author is

not forced to spread identical sub-graphs across several

behaviors, there is less visual clutter. Third, the author can

make a single change in a behavior and have it affect all

behaviors that make use of it.

The third augmentation, interrupt transitions, provides a

way for entities to attend to other tasks before resuming

their suspended activity. This engine feature is meant for

transient tasks—most often for bookkeeping—where the

additional processing minimally affects the overall behavior

of the entity. For other tasks of primary importance, the

evaluation of transitions based on stack frames provides a

way for an entity to shift completely away from a current

task to attend to one more urgent.

The last augmentation is polymorphism. This provides a

way to specialize a particular task according to entity

attributes. The alternate way of combining all

specializations into a single behavior graph would require

extra dispatch conditions, ultimately leading to a more

complex graph for authoring. Polymorphism allows an

author to selectively specialize behavior, and focus on that

particular version. Together with the hierarchical references

to and invocation of behaviors, the visual representation is

vastly simplified. The only tradeoff made is the implicit

dispatch: matching the entity’s descriptors to the most

specific behavior. This is accomplished in the runtime

engine, but controlled indirectly through the author’s

attachment of descriptors to entity.

3. INTERFACE AND RUNTIME ENGINE

Between the runtime engine and the world there exists an

interface which connects the actions and conditions to their

respective effectors and sensors. Figure 1 shows a “thin

glue layer” separating the interface from the “world

simulator.” The glue layer is simply mapping the action and

condition calls to actual action and perception as defined in

an API for the simulation or robot controller. Figure 2

shows the relationship between the runtime engine and the

world as illustrated through a UML sequence diagram.

There are two types of interactions illustrated. The top most

portion shows the straightforward execution of an action.

The “DoAction” function essentially takes the action

identification number—assigned by the authoring tool when

the action was declared—and invokes the corresponding

entity effector in the world. This is essentially a simple

mapping from the action declared to execution of the action

 5

in the world. This function must be defined by the

developer.

The lower portion of Figure 2 shows the interaction to

calculate the next action via expression evaluation. This is

considerably more complicated as there are transitions in

each stack frame, interrupt transitions, variable settings,

potentially several expressions to evaluate, and behaviors to

push onto the stack. The engine searches for the next valid

transition by examining interrupt transitions, transitions

from the current behavior on the lower stack frames, and

transitions from the current action on the top most frame.

For each condition in a transition, there are likely to be calls

to entity sensors, comparison operators, references to

variable values, or numbers. For entity sensors, there must

be a “DoPredicate” function defined which is an analog of

the function for action by mapping from the sensor declared

to execution of the perception in the world. Incidentally,

for Java-based entities or simulations, it is easy to connect

effectors and sensors to the runtime engine by assigning the

appropriate class methods. This affords the developer the

ability to make a direct mapping in the authoring tool

instead of writing the two dispatch functions separately.

4. AUTHORING APPLICATION

The authoring tool’s job is to enable users to define the

vocabulary of actions and conditions. Using those as

primitive building blocks, behavior graphs can be

constructed. These behavior graphs can be indexed via a

descriptor hierarchy for polymorphic selection of behavior.

Behaviors themselves can invoke each other. Figure 3 is a

screenshot of the authoring tool. The left most project pane

shows the vocabulary of conditions and actions as well as

the behaviors. Clicking on a behavior shows its

corresponding definition in the canvas pane to the right. The

lower output pane shows status information.

The project pane has two tabs: catalog and descriptors. The

catalog hosts a palette of condition and action declarations,

the behaviors built, and any variables for the entity. The

author uses this pane to declare, modify, or use items. The

descriptor tab, whose contents are not shown here, enables

the author to create several tree hierarchies. For each

behavior created, its initial index will be the root of each

tree. The author can create specializations by creating or re-

indexing a behavior according to the descriptors in the trees.

The canvas pane shows the definition of a behavior which

consists of rectangles, directed lines, and ovals.

Computationally, rectangles correspond to states in an FSM,

while ovals correspond to conditions for transitions. Each

rectangle contains a reference to an action or behavior.

References to behaviors appear as bold, outlined rectangles.

Anything appearing in parentheses is a parameter.

Conditions are logical formulas that evaluate to true or

false. Numbers on directed lines determine the order of

evaluation of conditions. Dashed lines denote an interrupt.

There are three types of states when interpreting a behavior

at runtime. The current state denotes the action or behavior

the entity is currently carrying out; a behavior can have

exactly one current state at a time. The initial state is simply

the rectangle in which the behavior starts. There can be only

one initial state per behavior. When a final state is reached,

DoPredicate(entity, predicate, args)

Glue Layer
Effectors &

Sensors
AI Entity

ExecuteCurrentAction(action, args)

DoAction(entity, action, args)

EvaluateTransitionCondition()

while

loop

Scheduler

UpdateEntity()
Update()

[while transitions are unsatisfied]

predicate result

loop [for each predicate in expression]

transition result

current action

Figure 2- Sequence Diagram of Entity and World Interface

 6

we consider the behavior to have finished. An action

appearing in a rectangle will interact with the game engine

through the interface layer.

Figure 3 shows a simple behavior definition for

MoveToLocationTimed which moves the controlled entity

towards a location. The behavior finishes when the entity

either reaches the location or times out. The green rectangle

is the starting rectangle. The text in brackets are variables

being assigned as a result of expression evaluations. There

is no action. The main action of the behavior is

MoveToLocation. The first transition evaluated checks

whether the entity’s current location is within an acceptable

distance to the location. If so, there will be a transition to

the StopMovement action. If not, there is an alternate path

where the engine evaluates the second transition to check

whether the current time exceeds the allotted time. If neither

of the two transitions are satisfied, then the variable holding

the distance to the location is updated, and the

MoveToLocation action will remain the current action; i.e.,

the next action to be executed. After the StopMovement

action the next action is a final or accepting state which

indicates the end of the behavior.

At the bottom of the canvas are two tabs. Each tab shows

the indices chosen from the descriptor hierarchy. The tab on

the left is the “default” behavior as its indices are the

respective roots. The other tab, whose contents we

discussed, shows an index to a “Relaxed” combat state and

an “Inexperienced” experience level.

The output pane shows status information such as: results

from compilation, interactive debugger information, and

results from searching.

6. RELATED WORK

SimBionic has enjoyed continuous development since 1996

and has been fielded in a wide range of software systems,

including military simulation and training systems. Its

origin has two roots: a Navy training system and robotics

research. In 1996, a Navy project [5] to develop a training

system for tactical action officers began. This project

included requirements not only on the behavior of friendly,

hostile, and neutral force, but also on the evaluation criteria

of student actions within the simulation. The resulting

software to satisfy these requirements was a simple state

machine editor which featured variable assignment, but

lacked the other three augmentations mentioned in this

paper. Entity behavior was authored for all forces, while the

evaluations were the result of creating a state machine to

process event information from a simulation run. Training

principles would be tested against student performance.

In 2000, SimBionic’s editor and runtime engine received

numerous augmentations, such as stack-based execution.

The work was informed by robotics research of the era

which included three tier sequencers such as RAPs [6] and

Hap [7]. RAPs employs task networks where each network

strives to reach a success criterion. It is assumed that a

planner has resolved any thorny interactions among goals.

The focus, then, is on robust execution because the

environment dynamically changes and the entire world state

is not always known. Robust execution must be adaptive to

those changes as well as new sensor information. Hap

shares several architectural similarities, but was used for

interactive fiction and virtual reality. SimBionic’s focus has

been on simulation and decision logic for training.

There are several similarities between each system’s

architectural organization. RAPs uses “tasks” and

“methods” as its main organization while Hap uses “goals”

and “plans” instead. Here, tasks and goals are used as

references for invocation while methods and plans describe

what should be done to accomplish the task or goal.

SimBionic uses behaviors for its main organization with the

corresponding visual definition as its method or plan. The

visual definition makes fewer constraints on the

organization of a behavior. For example, a cycle can easily

be constructed in a behavior, while both RAPs and Hap

specify partially ordered plans (directed acyclic graphs)

instead. The partial ordering allows for arbitrary execution

of some plan steps. For a robotic system where several

pieces of hardware are operating concurrently, parallel

execution is a nice benefit. In SimBionic there is no direct

support for parallel execution though in practice one can

create multiple execution stacks and rely on built-in

communications actions to coordinate activity. For example,

the ability to move is often best handled as a dedicated

behavior while the decision logic of where to move or what

to do while moving is handled in one or more separate

behaviors.

The notion of behavior polymorphism can be loosely

compared to the context conditions which indicate the

method or plan’s applicability to a given situation.

However, SimBionic is agnostic as this is just one potential

way of deciding a behavior’s applicability.

Although the origin of RAPs started with a simulated

“Truck World”, it has enjoyed deployment in actual robots

[8] as well as Deep Space 1 [9]. Hap was created for the Oz

project. SimBionic, though it started in a Navy training

system for both entity control and student evaluation, has

evolved into more of a generic design and development

tool, as exemplified by several deployed systems ranging

from teaching students how to interpret NASA satellite

data, to research testbeds for examining the military

effectiveness of a given command and control structure.

Another deep vein of related work exists in the construction

of embedded controllers (e.g., [11]). Frequently, FSM’s are

 routinely used to articulate the control logic. Two example

languages are Argos [12] and Esterel [13]. They provide a

 7

combination of graphical and textual FSM representations.

The emphasis is on the construction, simplification, and

formal verification of controllers which can provably work.

7. CONCLUSION

We described an AI authoring tool SimBionic: its visual

depiction of behavior, features of behaviors and how they’re

implemented in an AI runtime engine, and the interface to a

simulator or world. Finite-state machines were the original

basis for describing behavior, but four major augmentations

were created to provide both visual expressiveness and

computational efficacy. The augmentations were:

expression evaluation, hierarchical or stack-based

execution, behavior interrupt handling, and polymorphism.

Their subsequent visual depiction was described.

REFERENCES

[1] Ryan Houlette, Dan Fu, and David Ross, “Towards an

AI Behavior Toolkit for Games,” AAAI 2001 Spring

Symposium on AI and Interactive Entertainment, 2001.

[2] Dan Fu and Ryan Houlette, “Putting AI in

Entertainment: An AI Authoring Tool for Simulation and

Games,” IEEE Intelligent Systems, pp 81-84, July-August

2002.

[3] Martin Fowler, UML Distilled: A Brief Guide to the

Standard Object Modeling Language, Addison-Wesley,

2000.

[4] Erann Gat, “On Three-Layer Architectures,” in Artificial

Intelligence and Mobile Robotics, D. Kortenkamp, R. P.

Bonnasso and R. Murphy (eds.), AAAI Press, 195—210,

1998.

[5] Richard H. Stottler and LCDR Michael Vinkavich,

“Tactical Action Officer Intelligent Tutoring System,”

Proceedings of the Industry/Interservice, Training,

Simulation & Education Conference, 2000.

[6] R. James Firby, “An Investigation into Reactive Planning

in Complex Domains,” AAAI-87, pp. 202-206, Seattle,

WA, 1987.

[7] A. Bryan Loyall and Joseph Bates, “Hap: A Reactive,

Adaptive Architecture for Agents,” Technical Report

CMU-CS-91-147, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, June 1991.

 [8] R. James Firby, “Task networks for controlling

continuous processes,” Proceedings of the Second

International Conference on AI Planning Systems, AAAI

Press, 1994.

[9] Brian C. Williams and P. Pandurang Nayak, “A Model-

based Approach to Reactive Self-Configuring Systems,”

Workshop on Logic-Based Artificial Intelligence,

Washington, DC, June 14-16, 1999.

[10] Douglas J. Pearson and John E. Laird, “Redux: Example-

driven diagrammatic tools for rapid knowledge

acquisition,” Behavior Representation in Modeling and

Simulation, Washington, D.C., 2004.

[11] Nicholas Halbwachs, Synchronous Programming of

Reactive Systems, Springer, 2001.

[12] F. Maraninchi, “The Argos language: Graphical

representation of automata and description of reactive

systems,” IEEE Workshop on Visual Languages,

October 1991.

[13] Gérard Berry, “Esterel v7: From Verified Formal

Specification to Efficient Industrial Designs,” in 8th

International Conference, FASE 2005, Held as Part of the

Joint Conferences on Theory and Practice of Software,

ETAPS 2005, Maura Cerioli (ed.), 2005.

BIOGRAPHY

Dan Fu joined Stottler Henke in 1998

and has worked on several AI

systems including authoring

tools, wargaming toolsets, immersive

training systems, and AI for

simulations. Dan was principal

investigator on the intelligent agents

project to create AI middleware for simulations and

videogames. The result was SimBionic, which enables users

to graphically author entity behavior for a simulation or

videogame. Dan holds a B.S. from Cornell University and a

Ph.D. from the University of Chicago, both in computer

science.

Ryan Houlette holds a Master's

Degree in Computer Science with a

concentration in Artificial

Intelligence from Stanford

University and a Bachelor of Arts

Degree in Computer Science from

DePauw University. He has been

with Stottler Henke since 1998 and

is the lead architect of the SimBionic product line. He

currently manages a project develop a next generation

adversary modeling engine for the U.S. Air Force.

–

 8

Jeremy Ludwig joined Stottler

Henke in the fall of 2000 after

completing his Master’s Degree in

Computer Science, with a

concentration in Intelligent Systems,

at the University of Pittsburgh.

Currently, Mr. Ludwig is the

technical lead on a simulation

construction toolkit called SimVentive. He is also the

technical lead for a simulation and training project,

currently deployed at NAS North Island, for the Navy’s

common cockpit helicopter. Other research includes

building cognitive models with the ACT-R, EPIC, and Soar

cognitive architectures as well as simple models in

CogTool.

Figure 3- Screenshot of Authoring Tool

