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Abstract—We describe an AI modeling tool meant to be 

used by both designers and developers. The method for 

authoring is visual and meant to convey decision logic in a 

more intuitive manner while retaining expressiveness. This 

data-driven approach features an AI runtime engine which 

incorporates several augmentations which make it suitable 

for use across a wide array of deployed systems. 1 2 
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1. INTRODUCTION 

The creation of artificial intelligence (AI) is a common 

construction task, usually handled by technical developers.  

In recent years we have been working on techniques to open 

the process of writing AI behavior to a wider audience.  

One important aspect of our effort is to make an authoring 

tool that makes entity behavior accessible not only to 

developers, but to the rest of the team as well. These include 

designers and analysts who also possess most of the domain 

knowledge.  They work with developers to ensure the 

entities behave appropriately.  Unfortunately, a less efficient 

interaction occurs on the team when the designer 

communicates the desired behavior in a written document, 

waits while a developer implements the behavior, and then 

tests and revises the design based on the outcome.  There 

are two reasons why this bottleneck happens.  First, the 

implementation details are often hidden from the rest of the 

team.  There are usually few developers who are responsible 

for the implementation, and while they ensure the AI works 

with the simulation engine, it is often not necessary for their 

code portion to be accessible to any other members on the 

team.  The second reason is that even if the implementation 

details were available, their portrayal is often a body of 

programming code or AI representation bearing little 

resemblance to the design documents that specify their 

intended characteristics.  As a result, improvements to the 

AI must go through developers [10]. 
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In this paper, we discuss our ongoing efforts to build a tool 

called SimBionic that bridges the gap between team 

members, empowering them to participate in varying 

degrees in both design and implementation. The central 

challenge of this work is to arrive at a tool that is easily 

comprehensible, yet powerfully expressive. 

SimBionic features a graphical editor which uses finite-state 

machines (FSM's) as a basic way of depicting behavior [1, 

2]. FSM’s look similar to flowchart diagrams where states 

and transitions are drawn as rectangles and arrows. This 

method of representation is ubiquitous enough to be one of 

the nine diagrams employed by the Unified Modeling 

Language (UML) for software engineering design and 

communication [3]. 

FSM’s are most well known as a construct from computer 

science theory, defined as a set of states, an input 

vocabulary, and a transition function which maps a state and 

an input to another state. A single initial state is the 

designated start state. There are zero or more “accepting” 

states. After the FSM processes all input, whether the 

ending state is an accepting state dictates the machine 

accepting the input or not. More practically as a control 

model, we can view the FSM as a way for an AI entity to 

change its state (which corresponds to behavior) over time.  

The transition from theoretical to practical use happens in 

three ways. First, it’s appealing to consider each state as 

representing some desired behavior or action. Each state has 

corresponding code so that as the entity’s state changes, its 

behavior changes accordingly. Second, each state’s set of 

transitions are conditions under which the entity behavior 

will change. Third, the notion of an accepting state is 

generally interpreted as the end of execution for the FSM; 

that is, the FSM has achieved some desired task or goal. 

Adopting the practical use of an FSM model for our tool has 

two appealing properties; namely simple visual depiction 

and efficiency.  FSM’s have the most straightforward “what 

you see is what you get” kind of behavior representation, 

oftentimes better communicated as pictures.  They have the 

positive computational properties of being simple, compact, 

and efficient.  For these reasons we adopted FSM’s as our 

basic depiction method.  Still, for what is gained in 

comprehension, visual parsimony, and computational 

efficiency, finite state machines can grow to be visually 

cluttered while remaining computationally weak as they are 

composed of only states and transitions. To address these 

two unappealing properties of visual clutter and 

computational weakness, we created new augmentations 



 2 

that seek to support more computational power while 

maintaining a simple, intuitive interface. 

The remainder of this paper is organized as follows. First, 

we provide an overview of SimBionic. This is followed by a 

discussion of key augmentations. Second, we describe the 

interface to a simulator or robot. Third, we show the 

SimBionic authoring application that supports the 

computational augmentations while striving to be as easy to 

use as possible. We then discuss software and robotics work 

related to SimBionic. 

2. SIMBIONIC OVERVIEW 

SimBionic is composed of two major components: 

authoring tool and runtime engine. The authoring tool 

component is responsible for having users describe the 

behavior for an entity. This specification is fed to the 

second component—the runtime engine—which creates 

behavior in the interfaced simulation based on the 

specification. Figure 1 shows a high level view of 

SimBionic. In the authoring portion, the user defines a 

vocabulary of actions and conditions which correspond to 

FSM notions of states and transitions, respectively.  We 

refer to a constructed FSM as a “behavior.” Users construct 

behaviors by linking actions with conditions. 

The authoring portion does not actually implement 

behavior; rather, the product is a description or specification 

for the runtime engine. On the right side of Figure 1, see 

that the vocabulary has an analog. This is where the actions 

and conditions take real form. One can think of an action as 

a primitive effector that operates in the world, be it 

simulated or actual, while a condition can be thought of as 

depending on sensor information predicates. Since 

behaviors are synthesized from conditions and actions, the 

runtime engine will reference them and invoke the 

appropriate effector or sensor. This happens in the interface 

with the world. 

The runtime engine functions by first invoking the action at 

the current state, and then determining a valid transition to 

the next state. Valid transitions are calculated by evaluating 

conditions.  This fundamental two step process then repeats. 

Key Augmentations 

There are four augmentations made to SimBionic’s 

computational model: expressions, hierarchical behaviors, 

interruptible behaviors, and polymorphism.  The first 

improvement is arbitrary expression evaluation. The 

authoring tool is able to define the condition vocabulary, 

such as “FrontSonarReading()” or “RightSonarReading()” 

which return the number of feet an obstacle is detected in 

front or right of the robot, or “WaypointReached()” which 

returns whether the traveling entity has arrived at a 

waypoint yet. These vocabulary elements can be combined 

to form true or false statements for purposes of evaluating 

transitions. For example, there may be a behavior to travel 

forward until there is an obstacle blocking forward 

movement. The transition away from moving forward to 

stopping might be “FrontSonarReading() < 2” which would 

translate to “keep moving forward until the number of feet 

in front of the robot is less than two”. In this way, the ability 

to synthesize arbitrary expressions and to evaluate them 

comprises the first major augmentation. As well, the results 

of expressions can be stored as variables for later use, or 

passed as parameters. 

The second augmentation is a conversion to hierarchical 

states where a single state could refer another FSM. In 

SimBionic terms, the action could either remain as an 

action, or refer to another behavior. There are two reasons 

for this augmentation.  First, when authoring there 
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frequently arises a need to invoke a recurring pattern of 

actions and conditions.  The author can decide to 

continually repeat the pattern across several behaviors, or to 

modularize the pattern as a behavior that can be invoked 

when needed. This hierarchical computational model is 

stack-based, where each time the engine invokes a behavior, 

a reference to it is pushed onto the stack. The engine then 

pays attention to the behavior at the top of the stack, 

popping off behaviors that reach an “accepting” action. 

This augmentation results in a method similar to a push 

down automata or Von Neumann architecture, except that 

all transitions on the stack are evaluated, starting at the 

bottom. The reason is that the behaviors on the lower stack 

frames are thought of as taking precedence. For example, 

the world could change such that whatever task the robot is 

currently engaged in, for which it is doing a primitive action 

of turning, is no longer worth pursuing. So while the turning 

action is in a behavior at the top of the stack, the particular 

behavior lower down in the stack where the task is deemed 

pointless needs to pursue something else. This conclusion 

would entail popping off all behaviors above it as a result of 

following a transition to a different behavior. 

The third augmentation is the ability to interrupt behaviors. 

Frequently in robotic three layer architectures [4], there can 

exist several tasks or goals that the robot tries to achieve, or 

there may be unexpected or improvised events for which the 

robot should act immediately and appropriately. Though 

there are hierarchical behaviors in SimBionic that could 

handle impromptu events, they would require the current 

task to be abandoned by popping off behaviors from the 

stack. Thus, there exists the need for an “interrupt 

transition” which is a special transition for cases where the 

original behavior is not abandoned, but just temporarily 

suspended while the new behavior executes.  When the new 

behavior finishes, control returns to the original behavior, 

which picks up where it left off.  For example, a radio 

communication event arrives from a teammate.  There may 

be a behavior to process incoming messages, but we would 

not want the current task to be abandoned (and eventually 

reinstantiated) as processing the message should only be a 

brief interruption. The “radio handling behavior” would be 

pushed onto the stack. Transitions on stack frames below 

this radio behavior would not be evaluated until the 

behavior has concluded. Typically, interrupts are meant to 

be handled quickly. Understanding error handling 

Another type of interrupt handles errors which occur in the 

underlying code that implements an action or predicate. 

SimBionic provides a built-in facility, modeled after Java’s 

exception-handling mechanism, for handling these types of 

run-time errors in a graceful and consistent fashion within 

behaviors. To use this facility, particular exceptions must be 

thrown within the action and predicate code. SimBionic 

provides two error-handling constructs and three core 

actions devoted to error recovery: 

A “catch” action is the core error-handling construct that 

catches exceptions, much like the catch block of a try-catch 

statement in Java. When an exception is thrown during the 

execution of a behavior containing the catch action, the 

catch becomes the current action or behavior for that 

behavior, and the execution mode for the behavior is set 

temporarily to non-interruptible because error recovery 

should be treated as a critical section. Execution continues 

normally from that point, executing the catch and any 

subsequent actions.  

The “always” action ensures that certain operations are 

always executed at a behavior’s termination. It is very 

similar to the “finally” block of a try-catch statement in 

Java. Whenever a behavior is about to be popped from the 

stack for any reason, the always action becomes the current 

action or behavior of the behavior, and the execution mode 

for the behavior is set temporarily to non-interruptible.  

Execution continues normally from that point, executing the 

always rectangle and any subsequent actions until 

completion. 

The “retry, resume, and rethrow” core actions help recover 

from an error. Common uses might be to select an alternate 

execution path, clean up any “loose ends” left behind by the 

error (e.g., open files), or simply to log the error. The 

“retry” action causes behavior execution to jump to where 

the exception was thrown in this behavior, executing that 

action or behavior exactly as if it had just become the 

current one in normal fashion. Retry is generally invoked 

after attempting to diagnose and fix whatever error 

condition caused the exception to be thrown, in the hopes 

that the second attempt will be more successful. The 

“resume” action causes execution to resume at the point in 

the behavior where the exception was thrown without 

attempting to retry execution. Resume is typically invoked 

when it is not possible to fix the error condition, but it is 

still possible to clean up after the error and continue with 

the behavior’s normal course of execution. The “rethrow” 

action throws the current exception down the stack to the 

current behavior’s invoking behavior and then terminates 

the current behavior just as if the behavior normally ended. 

The invoking behavior then becomes the new current 

behavior and must attempt to handle the exception exactly 

as if it had been thrown in that behavior. Rethrow is called 

when a behavior is unable to recover from an error and 

needs to pass responsibility for error recovery on to another 

behavior. 

The fourth and final augmentation is polymorphism whose 

origin comes out of object oriented software development. 

As behaviors are created, the author often encounters 

situations where it is desirable to create behaviors that differ 

only slightly from already-existing behaviors.  For example, 

an author may decide the expertise of an opposing force is a 

descriptor that affects behavior.  When the force is in 

conflict with friendly forces, the “Combat()” behavior 



 4 

would dispatch a specialized version of a behavior based on 

the entity’s descriptor, say, low expertise. 

If we were to create variations without polymorphic 

specializations, they would be named something along the 

lines of “Combat_LowExpertise(),” prefaced with a 

“dispatch” behavior that would examine the entity’s 

descriptors and choose the right version of behavior. This 

works fine, but results in some visual clutter before arriving 

at the new specialization for Combat.  To simplify the 

construction of specialized behaviors, polymorphism was 

introduced. In this extended representation, a single 

behavior can now possess multiple versions. Exactly which 

version of a behavior gets invoked depends on a set of 

entity descriptors defined by the author. In this case, 

“expertise” is the only descriptor introduced. It serves as the 

root of its own descriptor hierarchy. An author specializes, 

or indexes, a behavior graph by associating it with exactly 

one node per descriptor tree. We could have a tree with 

“expertise” as the root and three children “low”, “medium”, 

and “high” as children. Selection of any one of these four 

nodes serves to index a behavior. 

The engine, given, a set of descriptors for an entity, will 

always pick the most specific behavior version according to 

the degree of match between the entity and behavior 

indices. For example, if the entity has a descriptor “low” for 

experience, then the behavior version of Combat() indexed 

with “low” experience would be the best match. A behavior 

with the root “expertise” chosen would be the second best 

match. Behaviors indexed using roots of descriptor 

hierarchies are “default” behaviors because they are the 

most general. Any behaviors for “medium” or “high” 

expertise could never be chosen unless the entity’s 

descriptor changed accordingly. This method of indexing 

affords the author the flexibility to specialize any behavior 

depending on particular attributes of the entity being 

controlled. 

Entities may change their descriptors at any time. This 

change affects all behavior invocations from that point on. 

For example, an opposing force that switches its expertise 

from low to high would select a different version of the 

Combat () behavior, and hence would perform differently in 

the simulation. Changes to an entity’s descriptors do not, 

however, affect any behavior that that entity might already 

be executing. 

Augmentation Discussion 

All augmentations but the first seek to simplify the visual 

representation of behavior. The first consists of expressions 

which can be fairly complex. Syntax for the expressions is 

similar to the programming language C where variables, 

functions (conditions), and numbers can be used.  

The second augmentation encapsulates a commonly used 

pattern of actions and conditions into a behavior. For 

authoring, there are three benefits. First, the visual depiction 

is simplified by being able to refer to a behavior as an 

invokable abstract “action.” Whatever the behavior 

accomplishes can be viewed as a separate behavior graph. 

This recursive simplification of behavior allows one to 

author or design behavior at a high level, but eventually 

ground behavior into real action. Second, since the author is 

not forced to spread identical sub-graphs across several 

behaviors, there is less visual clutter. Third, the author can 

make a single change in a behavior and have it affect all 

behaviors that make use of it.  

The third augmentation, interrupt transitions, provides a 

way for entities to attend to other tasks before resuming 

their suspended activity. This engine feature is meant for 

transient tasks—most often for bookkeeping—where the 

additional processing minimally affects the overall behavior 

of the entity. For other tasks of primary importance, the 

evaluation of transitions based on stack frames provides a 

way for an entity to shift completely away from a current 

task to attend to one more urgent. 

The last augmentation is polymorphism. This provides a 

way to specialize a particular task according to entity 

attributes. The alternate way of combining all 

specializations into a single behavior graph would require 

extra dispatch conditions, ultimately leading to a more 

complex graph for authoring. Polymorphism allows an 

author to selectively specialize behavior, and focus on that 

particular version. Together with the hierarchical references 

to and invocation of behaviors, the visual representation is 

vastly simplified. The only tradeoff made is the implicit 

dispatch: matching the entity’s descriptors to the most 

specific behavior. This is accomplished in the runtime 

engine, but controlled indirectly through the author’s 

attachment of descriptors to entity. 

3. INTERFACE AND RUNTIME ENGINE 

Between the runtime engine and the world there exists an 

interface which connects the actions and conditions to their 

respective effectors and sensors.  Figure 1 shows a “thin 

glue layer” separating the interface from the “world 

simulator.” The glue layer is simply mapping the action and 

condition calls to actual action and perception as defined in 

an API for the simulation or robot controller.  Figure 2 

shows the relationship between the runtime engine and the 

world as illustrated through a UML sequence diagram. 

There are two types of interactions illustrated. The top most 

portion shows the straightforward execution of an action. 

The “DoAction” function essentially takes the action 

identification number—assigned by the authoring tool when 

the action was declared—and invokes the corresponding 

entity effector in the world. This is essentially a simple 

mapping from the action declared to execution of the action 
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in the world. This function must be defined by the 

developer. 

The lower portion of Figure 2 shows the interaction to 

calculate the next action via expression evaluation. This is 

considerably more complicated as there are transitions in 

each stack frame, interrupt transitions, variable settings, 

potentially several expressions to evaluate, and behaviors to 

push onto the stack. The engine searches for the next valid 

transition by examining interrupt transitions, transitions 

from the current behavior on the lower stack frames, and 

transitions from the current action on the top most frame. 

For each condition in a transition, there are likely to be calls 

to entity sensors, comparison operators, references to 

variable values, or numbers.  For entity sensors, there must 

be a “DoPredicate” function defined which is an analog of 

the function for action by mapping from the sensor declared 

to execution of the perception in the world.  Incidentally, 

for Java-based entities or simulations, it is easy to connect 

effectors and sensors to the runtime engine by assigning the 

appropriate class methods. This affords the developer the 

ability to make a direct mapping in the authoring tool 

instead of writing the two dispatch functions separately. 

4. AUTHORING APPLICATION 

The authoring tool’s job is to enable users to define the 

vocabulary of actions and conditions.  Using those as 

primitive building blocks, behavior graphs can be 

constructed.  These behavior graphs can be indexed via a 

descriptor hierarchy for polymorphic selection of behavior. 

Behaviors themselves can invoke each other.  Figure 3 is a 

screenshot of the authoring tool.  The left most project pane 

shows the vocabulary of conditions and actions as well as 

the behaviors.  Clicking on a behavior shows its 

corresponding definition in the canvas pane to the right. The 

lower output pane shows status information. 

The project pane has two tabs: catalog and descriptors. The 

catalog hosts a palette of condition and action declarations, 

the behaviors built, and any variables for the entity. The 

author uses this pane to declare, modify, or use items. The 

descriptor tab, whose contents are not shown here, enables 

the author to create several tree hierarchies.  For each 

behavior created, its initial index will be the root of each 

tree. The author can create specializations by creating or re-

indexing a behavior according to the descriptors in the trees. 

The canvas pane shows the definition of a behavior which 

consists of rectangles, directed lines, and ovals. 

Computationally, rectangles correspond to states in an FSM, 

while ovals correspond to conditions for transitions. Each 

rectangle contains a reference to an action or behavior. 

References to behaviors appear as bold, outlined rectangles. 

Anything appearing in parentheses is a parameter. 

Conditions are logical formulas that evaluate to true or 

false. Numbers on directed lines determine the order of 

evaluation of conditions. Dashed lines denote an interrupt. 

There are three types of states when interpreting a behavior 

at runtime. The current state denotes the action or behavior 

the entity is currently carrying out; a behavior can have 

exactly one current state at a time. The initial state is simply 

the rectangle in which the behavior starts. There can be only 

one initial state per behavior. When a final state is reached, 

DoPredicate(entity, predicate, args)

Glue Layer
Effectors &

Sensors
AI Entity

ExecuteCurrentAction(action, args)

DoAction(entity, action, args)

EvaluateTransitionCondition()

while

loop

Scheduler

UpdateEntity()
Update()

[while transitions are unsatisfied]

predicate result

loop [for each predicate in expression]

transition result

current action

Figure 2- Sequence Diagram of Entity and World Interface 
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we consider the behavior to have finished. An action 

appearing in a rectangle will interact with the game engine 

through the interface layer. 

Figure 3 shows a simple behavior definition for 

MoveToLocationTimed which moves the controlled entity 

towards a location.  The behavior finishes when the entity 

either reaches the location or times out.  The green rectangle 

is the starting rectangle. The text in brackets are variables 

being assigned as a result of expression evaluations. There 

is no action. The main action of the behavior is 

MoveToLocation. The first transition evaluated checks 

whether the entity’s current location is within an acceptable 

distance to the location. If so, there will be a transition to 

the StopMovement action. If not, there is an alternate path 

where the engine evaluates the second transition to check 

whether the current time exceeds the allotted time. If neither 

of the two transitions are satisfied, then the variable holding 

the distance to the location is updated, and the 

MoveToLocation action will remain the current action; i.e., 

the next action to be executed. After the StopMovement 

action the next action is a final or accepting state which 

indicates the end of the behavior. 

At the bottom of the canvas are two tabs. Each tab shows 

the indices chosen from the descriptor hierarchy. The tab on 

the left is the “default” behavior as its indices are the 

respective roots. The other tab, whose contents we 

discussed, shows an index to a “Relaxed” combat state and 

an “Inexperienced” experience level. 

The output pane shows status information such as: results 

from compilation, interactive debugger information, and 

results from searching. 

6. RELATED WORK 

SimBionic has enjoyed continuous development since 1996 

and has been fielded in a wide range of software systems, 

including military simulation and training systems.  Its 

origin has two roots: a Navy training system and robotics 

research. In 1996, a Navy project [5] to develop a training 

system for tactical action officers began. This project 

included requirements not only on the behavior of friendly, 

hostile, and neutral force, but also on the evaluation criteria 

of student actions within the simulation. The resulting 

software to satisfy these requirements was a simple state 

machine editor which featured variable assignment, but 

lacked the other three augmentations mentioned in this 

paper. Entity behavior was authored for all forces, while the 

evaluations were the result of creating a state machine to 

process event information from a simulation run. Training 

principles would be tested against student performance. 

In 2000, SimBionic’s editor and runtime engine received 

numerous augmentations, such as stack-based execution. 

The work was informed by robotics research of the era 

which included three tier sequencers such as RAPs [6] and 

Hap [7]. RAPs employs task networks where each network 

strives to reach a success criterion. It is assumed that a 

planner has resolved any thorny interactions among goals. 

The focus, then, is on robust execution because the 

environment dynamically changes and the entire world state 

is not always known. Robust execution must be adaptive to 

those changes as well as new sensor information. Hap 

shares several architectural similarities, but was used for 

interactive fiction and virtual reality. SimBionic’s focus has 

been on simulation and decision logic for training. 

There are several similarities between each system’s 

architectural organization. RAPs uses “tasks” and 

“methods” as its main organization while Hap uses “goals” 

and “plans” instead. Here, tasks and goals are used as 

references for invocation while methods and plans describe 

what should be done to accomplish the task or goal.  

SimBionic uses behaviors for its main organization with the 

corresponding visual definition as its method or plan. The 

visual definition makes fewer constraints on the 

organization of a behavior. For example, a cycle can easily 

be constructed in a behavior, while both RAPs and Hap 

specify partially ordered plans (directed acyclic graphs) 

instead. The partial ordering allows for arbitrary execution 

of some plan steps. For a robotic system where several 

pieces of hardware are operating concurrently, parallel 

execution is a nice benefit. In SimBionic there is no direct 

support for parallel execution though in practice one can 

create multiple execution stacks and rely on built-in 

communications actions to coordinate activity. For example, 

the ability to move is often best handled as a dedicated 

behavior while the decision logic of where to move or what 

to do while moving is handled in one or more separate 

behaviors. 

The notion of behavior polymorphism can be loosely 

compared to the context conditions which indicate the 

method or plan’s applicability to a given situation. 

However, SimBionic is agnostic as this is just one potential 

way of deciding a behavior’s applicability.  

Although the origin of RAPs started with a simulated 

“Truck World”, it has enjoyed deployment in actual robots 

[8] as well as Deep Space 1 [9]. Hap was created for the Oz 

project. SimBionic, though it started in a Navy training 

system for both entity control and student evaluation, has 

evolved into more of a generic design and development 

tool, as exemplified by several deployed systems ranging 

from teaching students how to interpret NASA satellite 

data, to research testbeds for examining the military 

effectiveness of a given command and control structure. 

Another deep vein of related work exists in the construction 

of embedded controllers (e.g., [11]). Frequently, FSM’s are 

 routinely used to articulate the control logic. Two example 

languages are Argos [12] and Esterel [13]. They provide a 
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combination of graphical and textual FSM representations. 

The emphasis is on the construction, simplification, and 

formal verification of controllers which can provably work. 

7. CONCLUSION 

We described an AI authoring tool SimBionic: its visual 

depiction of behavior, features of behaviors and how they’re 

implemented in an AI runtime engine, and the interface to a 

simulator or world. Finite-state machines were the original 

basis for describing behavior, but four major augmentations 

were created to provide both visual expressiveness and 

computational efficacy. The augmentations were: 

expression evaluation, hierarchical or stack-based 

execution, behavior interrupt handling, and polymorphism. 

Their subsequent visual depiction was described. 
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Figure 3- Screenshot of Authoring Tool 


