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ABSTRACT:  We describe a visual framework that simplifies authoring of simulated behavior.  This framework 
consists of a canvas depicting behavior as a finite state machine (FSM) graph, a palette of geometric objects and glyphs, 
and a dictionary of actions and predicates.  The user defines a basic vocabulary of actions and predicates which appear 
as textual and geometric shapes on the canvas.  The actions correspond to states in an FSM.  Predicates are used to 
determine valid transitions between states.  The basic model is extended in two major ways.  First, behaviors are 
hierarchical in that they may invoke each other.  Second, each behavior may have a number of specializations indexed 
through a descriptor hierarchy.  These two extensions serve to encapsulate functionality, and to selectively specialize 
behavior whenever necessary without arduous re-modification of existing behavior. 
 
1. Introduction 

In this paper we describe a visual approach for 
simplifying the formalization and implementation process 
involved in developing an executable behavior model for 
a given domain.  Even in domains where modeled entities 
require little or no demonstrable cognitive capabilities, 
there is still a significant challenge in the task of behavior 
codification.  A subject matter expert may have a strong 
understanding of a given domain and a clear notion of 
what the behaviors should be and how they should 
operate, but still face a bottleneck at the implementation 
step.  This bottleneck is often a result of the gaps in 
domain familiarity and functional vocabulary between 
subject matter experts and programmers.  As a result, 
relatively simple behaviors can be difficult to implement 
and test in the targeted simulation or control environment. 

Complex behavior in domains with complex cognitive 
requirements may be best implemented with tools that 
provide native support for many of the artifacts of human 
reasoning, decision-making, knowledge representation, 
and behavior in general.  However, simple behaviors 
should be simple to implement, and this paper describes 
an approach for accomplishing this with a methodology 
supported by software.  Still, an important design 
consideration with this approach is the objective of 
supporting a scalable hierarchical development model.  
Scalability is important so that even behaviors that are 
initially implemented as simple models can be arbitrarily 

enhanced and extended as the subject matter expert may 
see fit, without requiring complete code overhauls. 

We will give an overview of the approach and the main 
functional mechanisms involved.  This paper assumes a 
basic familiarity with the traditional finite state machine 
(FSM) model which has historically been applied in many 
instances for the control of autonomous entities.  
Therefore we will limit the discussion of FSM concepts to 
the context of how our visual authoring paradigm and 
execution model represents extensions to the basic FSM.  
Although there is considerable precedent for an FSM-
based behavior definition approach, this is often in the 
context of coded implementation as opposed to visual 
construction in an environment that can be intuitive for 
different kinds of users.  This is the key innovation that 
this paper seeks to highlight, along with an architecture 
that allows for easy integration of behaviors constructed 
in this way.  We will provide a simple example from a 
specific simulation domain to illustrate the differences 
between implementation using traditional programming 
and implementation using the visual methods prescribed 
by our approach.   

This will be followed with a discussion of the support for 
hierarchical behaviors and polymorphism in this 
methodology, to facilitate easy authoring of more 
complex and adaptive behavior.  Although the approach 
we describe incorporates these various extensions to the 
basic FSM model in order to increase the power and 



 

applicability of the visual toolset, it was an intentional 
design decision to not frontload the authoring 
environment with features targeted toward specific tasks 
such as cognitive modeling or knowledge representation.  
As mentioned earlier, there are other existing tools that 
already provide extensive feature-sets for constructing 
complex behaviors based on more complex human 
modeling.  Our visual framework targets a spectrum of 
users, including programmers and non-programmers as 
well as subject matter experts, who may be familiar with a 
given domain but not with the methods of cognitive 
psychology. 

2. Overview 

In our methodology, behaviors for simulation entities are 
articulated in terms of four basic constructs: actions, 
which define all the different actions an entity can 
perform; other behaviors previously created (any 
behavior can invoke any other behavior, which allows for 
the construction of a library of behaviors that can lead to 
increased efficiency in the form of easy reuse); 
conditions, which specify the circumstances under which 
each action and behavior will happen; and connectors, 
which control the order in which conditions are evaluated 
and actions and behaviors take place. These four 
constructs allow subject matter experts to create AI 
behavior that mimics the behavior experienced or 
observed in the real world.  

Programming code is essentially created by “drawing” it 
as flow-chart-like diagrams in an editing window. 
Specifically, actions are represented as rectangles, 
behaviors as boldfaced rectangles, conditions as ovals, 
and connectors as lines.  Each element accommodates as 
many variable assignments, complex expressions, and 
explanatory comments as desired. 

This intuitive visual approach allows subject matter 
experts to see a behavior’s logic at a glance, and quickly 
spot potential flaws, bugs or other difficulties.  A visual 
flowcharting paradigm is consistent with design and 
specification methods naturally used in many domains, 
and helps to enforce a structured approach to developing 
the preliminary formalization that experts normally sketch 
out in the behavior modeling process. 

Behaviors created visually are then interfaced with a 
simulation or control software by a runtime engine.  
Figure 1 shows the high level architecture for this 
approach. 
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Figure 1: High level architecture. 

The authoring component generates a behavior library for 
a simulation entity; the runtime component contains the 
engine which controls entities within the simulation.  The 
Behavior Editor provides the visual environment for 
building behaviors from a basic vocabulary of predicates 
and actions.  These may include primitives that are 
available or easily implemented from the simulation API.  
The runtime component references the Behavior Library 
to direct entities in the Simulation via an Interface module 
that provides a common communication layer with the 
Simulation API. 

3. Example Problem 

For the purposes of an example, we will refer to behaviors 
developed for a simulation of individual combatants in a 
first-person 3D environment, which is intended to be used 
as a trainer for coordination among team members in an 
urban combat setting.  As such, the combat behaviors for 
the simulated opponents need not exhibit advanced 
cognitive modeling, but they need to meet a minimum 
baseline level of realism. 

3.1 Visual behavior representation 

The methodology we present for visual behavior 
representation utilizes the concept of behavior transition 
networks (BTNs), which are generalizations of finite state 
machines (FSMs). BTNs have current states and 
transitions like finite state machines, but also 
hierarchically decompose, can have variables, 
communicate to each other through a blackboard, and can 
execute arbitrary perceptual or action-oriented code.  A 
large number can run in parallel. 

Figure 2 below shows a sample BTN containing actions, 
conditions, and connections.  The visual artifacts 
(rectangles, ovals, and connectors) are the same as those 
used in standard flowcharting, and also map directly to 
the visual elements provided to subject matter experts 
making use of our approach. 



 

 
Figure 2: Visual representation of CombatPatrol behavior.

This BTN describes a fairly simple combat patrol 
behavior that causes a simulated soldier to move toward a 
specified destination, keeping an eye out for enemy 
soldiers.  If an enemy is seen or heard, the entity will 
engage and attempt to kill him; if injured, the entity will 
take cover. 

With a very simple visual paradigm, the user can quickly 
assemble behaviors with varying degrees of complexity 
for different levels of operations.  Often the author seeks 
to define a specific ordering for the evaluation of different 
conditions, and this is the motivation for the simple visual 
specification of numbers for evaluation ordering.  The 
BTN in this example contains simple primitive actions 
like TurnTo(sound), as well as references to other 
behaviors defined elsewhere, such as TakeCover().   

The TakeCover() sub-behavior is non-trivial in itself 
because it involves an assessment of the source of the 
threat which just caused an injury to the current entity, as 
well as an analysis of the surrounding physical 
environment in the simulation in order to find useful 
cover.  But these are independent activities that lend 
themselves well to abstraction, so that they may be 
applied elsewhere as components of other behaviors.  By 
doing so, the combat behavior can use the abstracted 
TakeCover() sub-behavior, resulting in a simpler visual 
representation, which is easier for a new reader to 
understand. 

3.2 Traditional programming implementation 

The C code below shows an example of implementing the 
same behavior in a standard programming language. 

void CombatPatrol() 
{ 
 do 
 { 
  FollowPath(); 
  Entity enemy; 
  SoundEvent sound; 
  if ((enemy=SeeEnemy()) != NULL) 
   KillEnemy(enemy); 
  else if (Injured()) 
   TakeCover(); 
  else if (Hear(sound)) 
  { 
   TurnTo(sound); 
   if ((enemy=SeeEnemy()) != NULL) 
    KillEnemy(enemy); 
  } 
 } 
 while (!AtDestination()); 
} 
 
void KillEnemy(Entity enemy) 
{ 
 do 
 {  
  Shoot(enemy); 
  if (IsDead(enemy)) 
   break; 
  if (OutOfAmmo()) 
   Reload(); 
 } 
 while ((enemy=SeeEnemy()) != NULL); 
} 

 



 

Examining this C-code implementation of the behavior, 
we see that its interpretation demands a very different set 
of mental skills than does its visual counterpart – skills 
which are typically gained through programming 
experience.  This is partly due to the fact that while code 
is by its nature essentially linear, proceeding from 
statement to statement one step at a time, behaviors often 
are not.  In particular, the linear quality of code obfuscates 
the branching structures that are characteristic of making 
a decision between several possible actions (consider the 
FollowPath() rectangle in Figure 2).   

Another difficulty with code-based behavior 
representations is that they make no ready distinction 
between the control elements that direct execution flow 
and the commands that invoke entity actions in the 
simulated world.  Both are represented by textual 
keywords.  As a result, the reader is forced to parse each 
line of code to determine whether it directly affects the 
entity’s behavior in the simulation (by invoking a 
hypothetical FireWeapon() action, for example) or is 
involved in controlling execution flow.  The visual 
representation in Figure 2, on the other hand, denotes 
entity actions clearly with rectangles, which are instantly 
graphically distinguishable from the ovals and lines that 
make up the control framework. 

Of course, on top of these semantic difficulties, code also 
poses a syntactic challenge to the  nonprogrammer. 
Comprehending a hard-coded behavior requires 
knowledge of the keywords, symbology, and grammar 
that make up the particular implementation language; 
without at least minimal linguistic familiarity, interpreting 
behaviors written in code can be challenging.  For a 
subject matter expert whose expertise lies in the 
complexities of a domain and the human behaviors 
common to that domain, as opposed to the constructs and 
syntax of computer science methods, this challenge often 
represents a frustrating barrier to effective behavior 
modeling. 

4. Extended Functionality 

4.1 Hierachical behavior structure 

The visual behavior representation we have described 
permits the construction of arbitrarily intricate sequences 
of actions and decisions.  As with most complex systems, 
however, it is generally good - for reasons of both 
maintainability and understandability - to break large 
behaviors down into smaller, more easily digestible 
subcomponents. For this reason, our representation 
supports a hierarchical behavior model wherein each 

behavior is free to invoke other behaviors in the library 
just as it would invoke an action. 

By taking advantage of this capability, an author can 
decompose an overly-complex behavior into a few high-
level behaviors, each of which encapsulates some distinct 
and functionally consistent portion of the original 
behavior.  The result is a set of nested behaviors that is 
much easier to understand and modify.  

Hierarchical behaviors have other advantages as well.  By 
permitting authors to break behaviors down into their 
logical functional components, hierarchicalism promotes 
reuse rather than reinvention. Once a behavior has been 
added to the behavior library, it is henceforth available as 
a ready-made building block for other, future behaviors. 
And since each particular bit of functionality need only be 
implemented once in the library, sweeping modifications 
to a simulated entity's behavior can be made by editing a 
single low-level behavior (effectively propagating to all 
higher-level behaviors that invoke it). 

The hierarchical structure is also effective for embedding 
a form of goal representation into behavior models.  
During execution, the implicit priorities of a modeled 
entity are reflected in the level of the call stack at which a 
given execution condition or simulation state is evaluated.  
When a condition in a high level BTN is satisfied, the call 
stack containing lower level behaviors can be interrupted 
temporarily or permanently depending on how the author 
has defined the high level behavior [1].  This is a 
powerful mechanism which does not have a direct 
counterpart in most non-visual programming 
environments. 

4.2 Polymorphism 

While behaviors provide modular building blocks out of 
which which users can construct new, more complex 
behaviors, their long-term use introduces a proliferation 
of similar behaviors, often with minor changes introduced 
for new types of entities.  Because of the references made 
in a behavior to other behaviors as part of a behavior 
hierarchy, these minor changes introduced at an abstract 
level often entail necessary changes in lower-level 
behaviors. For example, a user may decide to model the 
morale and fatigue of an opposing force and have those 
attributes affect behavior.  Thus, when the force is in 
conflict with friendly forces, the CombatPatrol() behavior 
would then dispatch a specialized version of a behavior 
based on, say, low morale and high fatigue.  The invoked 
behavior, then, would be named 
“Combat_LowMorale_HighFatigue().”  Likely, the 
lower-level behaviors will also need specialized versions 



 

as well.  The unfortunate result is a bigger behavior 
library with no particular way for the user to simplify it 
through refactoring. 

To handle the growth of the behavior library while at the 
same time simplifying the construction of specialized 
behavior, we created a polymorphic extension so that a 
single CombatPatrol() behavior could entertain multiple 
versions.  Exactly which version gets invoked depends on 
a set of hierarchical entity descriptors defined by the 
author.  In this case, “Morale” and “Fatigue” descriptors 
are introduced, each with the possible values shown in 
these two trees: 

 

A user specializes, or indexes, a behavior graph by 
associating it with exactly one node per tree.  In this 
example, there are twelve possible specializations. 

Each entity possesses a set of descriptors as well.  In the 
case of the opposing force, that entity has “low” morale 
and “high” fatigue.  Behavior selection for an entity 
proceeds by always picking the most specific version 
according to the degree of match between the entity and 
behavior indices. For example, if there is a behavior 
version of CombatPatrol() indexed with “low” morale 
and “high” fatigue, then that version will be selected for 
the opposing force.  Note that if no more specific match 
can be found, the “default” behavior indexed by the root 
of the descriptor tree (e.g., “Morale”) will be selected.   

Although here a total of twelve behavior specializations 
may be defined, in practice not all of these will actually 
be used.  The descriptor tree affords the ability to 
selectively customize behavior through the structured tree 
hierarchies.  In the above example, if a user wants to 
define only one version of the CombatPatrol() behavior, 
it would be indexed using the two roots.  The opposing 
force would use this version of the behavior because a 
more specific version cannot be found.  If the user wants 
to define a special case relevant only when morale is low, 
then he indexes the behavior by picking “low” from the 
first tree, and the root for the second.  The opposing force 
would then use this version instead. 

Note that these trees may be of arbitrary height and mirror 
the notion of “multiple class inheritance” in object-

oriented programming.  Indexing behavior under this 
scheme allows us to condense the behavior library while 
at the same time freeing us to selectively specialize 
behavior. 

Entities may change their descriptors at any time.  This 
change affects all behavior invocations from that point on.  
For example, an opposing force that switches its morale 
from low to high and its fatigue from high to medium 
would select a different version of the CombatPatrol() 
behavior, and hence would perform differently in the 
simulation.  Changes to an entity’s descriptors do not, 
however, affect any behavior that that entity might 
already be executing. 

By constructing behaviors using polymorphic indexing, 
users can easily change entity indices to effect consistent 
behavior.  If an operator wanted to “turn up the 
aggression” in a simulation, only a simple change in 
indices is required. 

5. User Feedback 

This approach has been validated with usability studies 
we have conducted in previous research.  In a project 
conducted for the Navy [2], we adapted the technology to 
provide Navy instructors with a tool for creating 
intelligent agent based behaviors for use in a simulation 
trainer.  Subject matter experts used the visual behavior 
definition environment provided by the tool to specify 
software agents to control enemy platforms as well as 
simulated team members within the simulation.  A 
usability study was conducted with the end users, who 
reported quick authoring times and overall satisfaction as 
a result of the ability to author and modify simulation 
behaviors without relying on programmers.  Another 
common response was that without this option, they 
simply could not have devoted the time to learn to use a 
more complex tool, and would therefore have been forced 
to rely on a collaborative implementation process with 
programmers. 

We also recently performed an informal study in which 
we made available on the Web a free version of our 
authoring software customized for the popular computer 
game Neverwinter Nights™.  Neverwinter Nights™ 
features a C-like scripting language that knowledgeable 
players can use to create their own game content.  Our 
tool was intended to make scripting possible for players 
with little or no programming experience.  We collected 
feedback from over a dozen users, including  samples of 
scripts developed using our tool.  This feedback indicated 
that users with no knowledge of C programming were 
quickly able to learn to use the tool to create complicated 
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scripts that would have otherwise been beyond their 
means. 

In addition, our own use of the authoring tool on in-house 
simulation projects has enabled us to reduce the time 
required to define complex finite state machine logic by 
as much as seventy percent compared to standard code-
based implementations.  More significantly, once the 
FSMs had been created in the visual tool, modifications to 
their logic required approximately ten percent of the time 
that would have been needed to make similar changes in 
code.  This indicates that even for programmers, the use 
of visual authoring environments can result in substantial 
time savings. 

6. Related Work 

The notion of having a visual representation of AI 
behavior is not new.  Von der Lippe et al. [3] describe the 
CBT project which employs a similar visual 
representation, but focused on command and control for 
teams of entities.  Thus, the behavior definition is of a 
composite behavior.  Specialization of behavior happens 
through “behavior roles” so that a set of entities may be 
participating in the same mission, each with its own role 
in the simulation. 

MacKenzie et al. [4] describe the MISSIONLAB system 
that allows an end user to specify the behavior of multiple 
robots.  The user does this visually using hierarchical state 
and transition links. 

UML state charts are a well-recognized standard for 
formally describing finite state machines.  A number of 
commercially-available object-oriented analysis and 
design (OOA&D) tools, such as Rational Rose and 
Together, offer a visual interface for the creation of UML 
state chart diagrams.  These tools do not, however, 
provide the capability to actually execute state charts 
created by the user, which limits their applicability to 
requirements and design specification.   
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