

A Visual Environment for Rapid Behavior Definition

Daniel Fu
Ryan Houlette
Randy Jensen

Stottler Henke Associates, Inc.
1660 S. Amphlett Blvd., Suite 350

San Mateo, CA 94402
650-655-7242

fu@stottlerhenke.com, houlette@stottlerhenke.com, jensen@stottlerhenke.com

Keywords:
Behavior visualization, polymorphism

ABSTRACT: We describe a visual framework that simplifies authoring of simulated behavior. This framework
consists of a canvas depicting behavior as a finite state machine (FSM) graph, a palette of geometric objects and glyphs,
and a dictionary of actions and predicates. The user defines a basic vocabulary of actions and predicates which appear
as textual and geometric shapes on the canvas. The actions correspond to states in an FSM. Predicates are used to
determine valid transitions between states. The basic model is extended in two major ways. First, behaviors are
hierarchical in that they may invoke each other. Second, each behavior may have a number of specializations indexed
through a descriptor hierarchy. These two extensions serve to encapsulate functionality, and to selectively specialize
behavior whenever necessary without arduous re-modification of existing behavior.

1. Introduction

In this paper we describe a visual approach for
simplifying the formalization and implementation process
involved in developing an executable behavior model for
a given domain. Even in domains where modeled entities
require little or no demonstrable cognitive capabilities,
there is still a significant challenge in the task of behavior
codification. A subject matter expert may have a strong
understanding of a given domain and a clear notion of
what the behaviors should be and how they should
operate, but still face a bottleneck at the implementation
step. This bottleneck is often a result of the gaps in
domain familiarity and functional vocabulary between
subject matter experts and programmers. As a result,
relatively simple behaviors can be difficult to implement
and test in the targeted simulation or control environment.

Complex behavior in domains with complex cognitive
requirements may be best implemented with tools that
provide native support for many of the artifacts of human
reasoning, decision-making, knowledge representation,
and behavior in general. However, simple behaviors
should be simple to implement, and this paper describes
an approach for accomplishing this with a methodology
supported by software. Still, an important design
consideration with this approach is the objective of
supporting a scalable hierarchical development model.
Scalability is important so that even behaviors that are
initially implemented as simple models can be arbitrarily

enhanced and extended as the subject matter expert may
see fit, without requiring complete code overhauls.

We will give an overview of the approach and the main
functional mechanisms involved. This paper assumes a
basic familiarity with the traditional finite state machine
(FSM) model which has historically been applied in many
instances for the control of autonomous entities.
Therefore we will limit the discussion of FSM concepts to
the context of how our visual authoring paradigm and
execution model represents extensions to the basic FSM.
Although there is considerable precedent for an FSM-
based behavior definition approach, this is often in the
context of coded implementation as opposed to visual
construction in an environment that can be intuitive for
different kinds of users. This is the key innovation that
this paper seeks to highlight, along with an architecture
that allows for easy integration of behaviors constructed
in this way. We will provide a simple example from a
specific simulation domain to illustrate the differences
between implementation using traditional programming
and implementation using the visual methods prescribed
by our approach.

This will be followed with a discussion of the support for
hierarchical behaviors and polymorphism in this
methodology, to facilitate easy authoring of more
complex and adaptive behavior. Although the approach
we describe incorporates these various extensions to the
basic FSM model in order to increase the power and

applicability of the visual toolset, it was an intentional
design decision to not frontload the authoring
environment with features targeted toward specific tasks
such as cognitive modeling or knowledge representation.
As mentioned earlier, there are other existing tools that
already provide extensive feature-sets for constructing
complex behaviors based on more complex human
modeling. Our visual framework targets a spectrum of
users, including programmers and non-programmers as
well as subject matter experts, who may be familiar with a
given domain but not with the methods of cognitive
psychology.

2. Overview

In our methodology, behaviors for simulation entities are
articulated in terms of four basic constructs: actions,
which define all the different actions an entity can
perform; other behaviors previously created (any
behavior can invoke any other behavior, which allows for
the construction of a library of behaviors that can lead to
increased efficiency in the form of easy reuse);
conditions, which specify the circumstances under which
each action and behavior will happen; and connectors,
which control the order in which conditions are evaluated
and actions and behaviors take place. These four
constructs allow subject matter experts to create AI
behavior that mimics the behavior experienced or
observed in the real world.

Programming code is essentially created by “drawing” it
as flow-chart-like diagrams in an editing window.
Specifically, actions are represented as rectangles,
behaviors as boldfaced rectangles, conditions as ovals,
and connectors as lines. Each element accommodates as
many variable assignments, complex expressions, and
explanatory comments as desired.

This intuitive visual approach allows subject matter
experts to see a behavior’s logic at a glance, and quickly
spot potential flaws, bugs or other difficulties. A visual
flowcharting paradigm is consistent with design and
specification methods naturally used in many domains,
and helps to enforce a structured approach to developing
the preliminary formalization that experts normally sketch
out in the behavior modeling process.

Behaviors created visually are then interfaced with a
simulation or control software by a runtime engine.
Figure 1 shows the high level architecture for this
approach.

Simulator

Authoring Runtime

Runtime
Engine

Interface

Behavior
Editor

Predicate &
Action

Declarations

Behavior
Library

Predicate &
Action

Definitions

Figure 1: High level architecture.

The authoring component generates a behavior library for
a simulation entity; the runtime component contains the
engine which controls entities within the simulation. The
Behavior Editor provides the visual environment for
building behaviors from a basic vocabulary of predicates
and actions. These may include primitives that are
available or easily implemented from the simulation API.
The runtime component references the Behavior Library
to direct entities in the Simulation via an Interface module
that provides a common communication layer with the
Simulation API.

3. Example Problem

For the purposes of an example, we will refer to behaviors
developed for a simulation of individual combatants in a
first-person 3D environment, which is intended to be used
as a trainer for coordination among team members in an
urban combat setting. As such, the combat behaviors for
the simulated opponents need not exhibit advanced
cognitive modeling, but they need to meet a minimum
baseline level of realism.

3.1 Visual behavior representation

The methodology we present for visual behavior
representation utilizes the concept of behavior transition
networks (BTNs), which are generalizations of finite state
machines (FSMs). BTNs have current states and
transitions like finite state machines, but also
hierarchically decompose, can have variables,
communicate to each other through a blackboard, and can
execute arbitrary perceptual or action-oriented code. A
large number can run in parallel.

Figure 2 below shows a sample BTN containing actions,
conditions, and connections. The visual artifacts
(rectangles, ovals, and connectors) are the same as those
used in standard flowcharting, and also map directly to
the visual elements provided to subject matter experts
making use of our approach.

Figure 2: Visual representation of CombatPatrol behavior.

This BTN describes a fairly simple combat patrol
behavior that causes a simulated soldier to move toward a
specified destination, keeping an eye out for enemy
soldiers. If an enemy is seen or heard, the entity will
engage and attempt to kill him; if injured, the entity will
take cover.

With a very simple visual paradigm, the user can quickly
assemble behaviors with varying degrees of complexity
for different levels of operations. Often the author seeks
to define a specific ordering for the evaluation of different
conditions, and this is the motivation for the simple visual
specification of numbers for evaluation ordering. The
BTN in this example contains simple primitive actions
like TurnTo(sound), as well as references to other
behaviors defined elsewhere, such as TakeCover().

The TakeCover() sub-behavior is non-trivial in itself
because it involves an assessment of the source of the
threat which just caused an injury to the current entity, as
well as an analysis of the surrounding physical
environment in the simulation in order to find useful
cover. But these are independent activities that lend
themselves well to abstraction, so that they may be
applied elsewhere as components of other behaviors. By
doing so, the combat behavior can use the abstracted
TakeCover() sub-behavior, resulting in a simpler visual
representation, which is easier for a new reader to
understand.

3.2 Traditional programming implementation

The C code below shows an example of implementing the
same behavior in a standard programming language.

void CombatPatrol()
{
 do
 {
 FollowPath();
 Entity enemy;
 SoundEvent sound;
 if ((enemy=SeeEnemy()) != NULL)
 KillEnemy(enemy);
 else if (Injured())
 TakeCover();
 else if (Hear(sound))
 {
 TurnTo(sound);
 if ((enemy=SeeEnemy()) != NULL)
 KillEnemy(enemy);
 }
 }
 while (!AtDestination());
}

void KillEnemy(Entity enemy)
{
 do
 {
 Shoot(enemy);
 if (IsDead(enemy))
 break;
 if (OutOfAmmo())
 Reload();
 }
 while ((enemy=SeeEnemy()) != NULL);
}

Examining this C-code implementation of the behavior,
we see that its interpretation demands a very different set
of mental skills than does its visual counterpart – skills
which are typically gained through programming
experience. This is partly due to the fact that while code
is by its nature essentially linear, proceeding from
statement to statement one step at a time, behaviors often
are not. In particular, the linear quality of code obfuscates
the branching structures that are characteristic of making
a decision between several possible actions (consider the
FollowPath() rectangle in Figure 2).

Another difficulty with code-based behavior
representations is that they make no ready distinction
between the control elements that direct execution flow
and the commands that invoke entity actions in the
simulated world. Both are represented by textual
keywords. As a result, the reader is forced to parse each
line of code to determine whether it directly affects the
entity’s behavior in the simulation (by invoking a
hypothetical FireWeapon() action, for example) or is
involved in controlling execution flow. The visual
representation in Figure 2, on the other hand, denotes
entity actions clearly with rectangles, which are instantly
graphically distinguishable from the ovals and lines that
make up the control framework.

Of course, on top of these semantic difficulties, code also
poses a syntactic challenge to the nonprogrammer.
Comprehending a hard-coded behavior requires
knowledge of the keywords, symbology, and grammar
that make up the particular implementation language;
without at least minimal linguistic familiarity, interpreting
behaviors written in code can be challenging. For a
subject matter expert whose expertise lies in the
complexities of a domain and the human behaviors
common to that domain, as opposed to the constructs and
syntax of computer science methods, this challenge often
represents a frustrating barrier to effective behavior
modeling.

4. Extended Functionality

4.1 Hierachical behavior structure

The visual behavior representation we have described
permits the construction of arbitrarily intricate sequences
of actions and decisions. As with most complex systems,
however, it is generally good - for reasons of both
maintainability and understandability - to break large
behaviors down into smaller, more easily digestible
subcomponents. For this reason, our representation
supports a hierarchical behavior model wherein each

behavior is free to invoke other behaviors in the library
just as it would invoke an action.

By taking advantage of this capability, an author can
decompose an overly-complex behavior into a few high-
level behaviors, each of which encapsulates some distinct
and functionally consistent portion of the original
behavior. The result is a set of nested behaviors that is
much easier to understand and modify.

Hierarchical behaviors have other advantages as well. By
permitting authors to break behaviors down into their
logical functional components, hierarchicalism promotes
reuse rather than reinvention. Once a behavior has been
added to the behavior library, it is henceforth available as
a ready-made building block for other, future behaviors.
And since each particular bit of functionality need only be
implemented once in the library, sweeping modifications
to a simulated entity's behavior can be made by editing a
single low-level behavior (effectively propagating to all
higher-level behaviors that invoke it).

The hierarchical structure is also effective for embedding
a form of goal representation into behavior models.
During execution, the implicit priorities of a modeled
entity are reflected in the level of the call stack at which a
given execution condition or simulation state is evaluated.
When a condition in a high level BTN is satisfied, the call
stack containing lower level behaviors can be interrupted
temporarily or permanently depending on how the author
has defined the high level behavior [1]. This is a
powerful mechanism which does not have a direct
counterpart in most non-visual programming
environments.

4.2 Polymorphism

While behaviors provide modular building blocks out of
which which users can construct new, more complex
behaviors, their long-term use introduces a proliferation
of similar behaviors, often with minor changes introduced
for new types of entities. Because of the references made
in a behavior to other behaviors as part of a behavior
hierarchy, these minor changes introduced at an abstract
level often entail necessary changes in lower-level
behaviors. For example, a user may decide to model the
morale and fatigue of an opposing force and have those
attributes affect behavior. Thus, when the force is in
conflict with friendly forces, the CombatPatrol() behavior
would then dispatch a specialized version of a behavior
based on, say, low morale and high fatigue. The invoked
behavior, then, would be named
“Combat_LowMorale_HighFatigue().” Likely, the
lower-level behaviors will also need specialized versions

as well. The unfortunate result is a bigger behavior
library with no particular way for the user to simplify it
through refactoring.

To handle the growth of the behavior library while at the
same time simplifying the construction of specialized
behavior, we created a polymorphic extension so that a
single CombatPatrol() behavior could entertain multiple
versions. Exactly which version gets invoked depends on
a set of hierarchical entity descriptors defined by the
author. In this case, “Morale” and “Fatigue” descriptors
are introduced, each with the possible values shown in
these two trees:

A user specializes, or indexes, a behavior graph by
associating it with exactly one node per tree. In this
example, there are twelve possible specializations.

Each entity possesses a set of descriptors as well. In the
case of the opposing force, that entity has “low” morale
and “high” fatigue. Behavior selection for an entity
proceeds by always picking the most specific version
according to the degree of match between the entity and
behavior indices. For example, if there is a behavior
version of CombatPatrol() indexed with “low” morale
and “high” fatigue, then that version will be selected for
the opposing force. Note that if no more specific match
can be found, the “default” behavior indexed by the root
of the descriptor tree (e.g., “Morale”) will be selected.

Although here a total of twelve behavior specializations
may be defined, in practice not all of these will actually
be used. The descriptor tree affords the ability to
selectively customize behavior through the structured tree
hierarchies. In the above example, if a user wants to
define only one version of the CombatPatrol() behavior,
it would be indexed using the two roots. The opposing
force would use this version of the behavior because a
more specific version cannot be found. If the user wants
to define a special case relevant only when morale is low,
then he indexes the behavior by picking “low” from the
first tree, and the root for the second. The opposing force
would then use this version instead.

Note that these trees may be of arbitrary height and mirror
the notion of “multiple class inheritance” in object-

oriented programming. Indexing behavior under this
scheme allows us to condense the behavior library while
at the same time freeing us to selectively specialize
behavior.

Entities may change their descriptors at any time. This
change affects all behavior invocations from that point on.
For example, an opposing force that switches its morale
from low to high and its fatigue from high to medium
would select a different version of the CombatPatrol()
behavior, and hence would perform differently in the
simulation. Changes to an entity’s descriptors do not,
however, affect any behavior that that entity might
already be executing.

By constructing behaviors using polymorphic indexing,
users can easily change entity indices to effect consistent
behavior. If an operator wanted to “turn up the
aggression” in a simulation, only a simple change in
indices is required.

5. User Feedback

This approach has been validated with usability studies
we have conducted in previous research. In a project
conducted for the Navy [2], we adapted the technology to
provide Navy instructors with a tool for creating
intelligent agent based behaviors for use in a simulation
trainer. Subject matter experts used the visual behavior
definition environment provided by the tool to specify
software agents to control enemy platforms as well as
simulated team members within the simulation. A
usability study was conducted with the end users, who
reported quick authoring times and overall satisfaction as
a result of the ability to author and modify simulation
behaviors without relying on programmers. Another
common response was that without this option, they
simply could not have devoted the time to learn to use a
more complex tool, and would therefore have been forced
to rely on a collaborative implementation process with
programmers.

We also recently performed an informal study in which
we made available on the Web a free version of our
authoring software customized for the popular computer
game Neverwinter Nights™. Neverwinter Nights™
features a C-like scripting language that knowledgeable
players can use to create their own game content. Our
tool was intended to make scripting possible for players
with little or no programming experience. We collected
feedback from over a dozen users, including samples of
scripts developed using our tool. This feedback indicated
that users with no knowledge of C programming were
quickly able to learn to use the tool to create complicated

Morale Fatigue

highlow highlow medium

scripts that would have otherwise been beyond their
means.

In addition, our own use of the authoring tool on in-house
simulation projects has enabled us to reduce the time
required to define complex finite state machine logic by
as much as seventy percent compared to standard code-
based implementations. More significantly, once the
FSMs had been created in the visual tool, modifications to
their logic required approximately ten percent of the time
that would have been needed to make similar changes in
code. This indicates that even for programmers, the use
of visual authoring environments can result in substantial
time savings.

6. Related Work

The notion of having a visual representation of AI
behavior is not new. Von der Lippe et al. [3] describe the
CBT project which employs a similar visual
representation, but focused on command and control for
teams of entities. Thus, the behavior definition is of a
composite behavior. Specialization of behavior happens
through “behavior roles” so that a set of entities may be
participating in the same mission, each with its own role
in the simulation.

MacKenzie et al. [4] describe the MISSIONLAB system
that allows an end user to specify the behavior of multiple
robots. The user does this visually using hierarchical state
and transition links.

UML state charts are a well-recognized standard for
formally describing finite state machines. A number of
commercially-available object-oriented analysis and
design (OOA&D) tools, such as Rational Rose and
Together, offer a visual interface for the creation of UML
state chart diagrams. These tools do not, however,
provide the capability to actually execute state charts
created by the user, which limits their applicability to
requirements and design specification.

7. References

[1] Fu, D., Houlette, R., and Bascara, O. “An Authoring
Toolkit for Simulation Entities,” in Proceedings of
I/ITSEC 2001.

[2] Stottler, R. H. and Vinkavich M. “Tactical Action
Officer Intelligent Tutoring System (TAO ITS)” in
Proceedings of I/ITSEC 2000.

[3] Von Der Lippe, S., McCormack, J. S., and Kalphat,
M. “Embracing Temporal Relations and Command
and Control in Composable Behavior Technologies”
in Proceedings of the Ninth Conference on

Computer Generated Forces and Behavioral
Representation, 2000.

[4] MacKenzie, D., Arkin, R.C., and Cameron, J.
“Multiagent Mission Specification and Execution”
Autonomous Robots, 4(1):29-57, 1997.

8. Acknowledgements

This research is supported in part by Air Force Research
Laboratory grant F30602-00-C-0036.

Author Biographies

DANIEL FU is a project manager and software engineer
at Stottler Henke Associates, Inc. His research interests
are in Artificial Intelligence (AI) autonomous agents and
planning. While at Stottler Henke, he has applied AI
techniques to a number of intelligent tutoring systems and
autonomous agents projects. Dan holds a Ph.D. in
computer science from the University of Chicago.

RYAN HOULETTE is a project manager and software
engineer at Stottler Henke. His primary interests lie in the
areas of intelligent interfaces, autonomous agents, and
interactive narrative. Mr. Houlette is currently leading a

project to develop a mixed-initiative scheduling system
that will include as a core component a rich capacity for
human interaction and collaboration. He holds an M.S. in
computer science from Stanford University.

RANDY JENSEN is a project manager and software
engineer at Stottler Henke. He has developed numerous
intelligent tutoring systems for Stottler Henke, as well as
authoring tools, simulation controls, and assessment logic
routines. Mr. Jensen also participated in authoring
autonomous “bot” behaviors for a multiplayer game
environment. He holds a B.S. in symbolic systems from
Stanford University.

