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Intelligent Space Surveillance Network (SSN) Scheduling  
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Stottler Henke Associates, Inc., San Mateo, CA, 94404 

This paper presents a description of the difficulties for automatic optimized scheduling 
for the Space Surveillance Network (SSN) and then describes a design and algorithm to 
overcome those difficulties.  These difficulties includes a large number of objects to track, 
which requires an even larger number of observations to schedule, different types of 
observation tasks, different regimes of space (near earth and deep space) and different types 
of requirements for the different types of objects (e.g., some have frequent visit 
requirements).  The solution must therefore be similarly multifaceted with different 
algorithms appropriate for the different types of regimes while still being combined into a 
single whole. 

Nomenclature 

DS = Deep Space 
EO = Electro Optic 
CBR = Case-Based Reasoning 
FOV = Field of View 
FR = Frequent Revisits 
GEO = Geosynchronous/Geosynchronous Earth Orbit  
HEO = Highly Elliptical Orbit 
LEO = Low Earth Orbit 
LOS = Line of Sight 
MEO = Medium Earth Orbit 
RCS = Radar Cross Sections 
SOI = Space Object Identification 
SSN = Space Surveillance Network 
SST = Space Surveillance Telescope 
XML    =    eXtensible Markup Language  

I. Problem Description 
here are many challenges to managing and scheduling the Space Surveillance Network (SSN), including 
impaired communications and antiquated and unique computer hardware and software that requires local 

scheduling at the sensor for most of the SSN. This prevents the automated ability to provide real-time responses to 
requests during the 24-hour execution cycle and requires that a human at the sensor site manually respond to such 
requests. It also prevents (or at least hinders) globally optimized scheduling. Other challenges are that there are non-
dedicated sensors, which are shared with other missions such as ballistic missile defense and non-taskable sensors 
(e.g., space fences), which gather track data without being explicitly requested to do so. There is a requirement to 
balance competing needs of different functional uses of the same sensors such as the need to gather complementary 
information on each object, including complementary orbit metric data, complementary Space Object Identification 
(SOI) data such as radar and optical images and signature data (such as Radar Cross Section (RCS) at different radar 
frequencies and different spectral intensities). The tasking is probabilistic in the sense that a sensor may or may not 
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attempt to track the object requested and if it does attempt it, it may or may not be successful. The sensors are 
heterogeneous and complementary (radar: accurate range/range rate; EO: accurate angles and angle rate) and orbit 
accuracy requires different sensors and/or sensing different parts of the object’s orbit. 

The current scheduling process, using the current Tasker software, takes as input the current Space Catalog of 
about 20,000 objects. Based on the characteristics of each object, the specifics of each SSN sensor, and the geometry 
of each object’s orbit with respect to each sensor site, a maximum probability of detection is calculated. Based on 
each object’s priority, number of tracks and observations needed, and the maximum detection probabilities, the 
current Tasker tasks each sensor to track each object a specific number of times. A scheduler at each sensor site 
determines which opportunities and when within each opportunity to track (i.e., it schedules), without reference to 
which other sensors are tracking the same object (and when) and which orbit metrics will contain the most and least 
errors. It does not necessarily schedule the same time or even the same opportunity that corresponds with the 
maximum probability of detection. 

There are several issues with the current process. The schedule is not globally optimized since scheduling occurs 
only locally without reference to what is assigned or scheduled at other sensor sites. A globally optimized schedule 
would typically have more tracks with the same resources. Furthermore, by considering the effects of other 
observations of the same object by other sensors at different parts of the orbit, specific sensors at specific times can 
be chosen that provide complementary observations of the object that will reduce the object’s orbit metric error 
covariance matrix1. A simple example is that radar tends to be most precise in sensing the range and range rate 
whereas optical sensors are very accurate with respect to the angles and angular rates. Two nearby observations by 
these two different types of sensors will provide far more precise state information (and therefore smaller 
covariances) than two nearby radar observations would. The same effect applies to different parts of the orbit of a 
single object. The concept of complementary observations to minimize covariances is not currently utilized.  

There are other problems with the current process. As noted earlier there is no ability to provide automated 
responses to sensor requests, whatever their priority, during the 24-hour execution cycle that also prevents an 
automated feedback loop solution. New sensors are being developed that can’t be tasked by the old tasking software, 
including surveillance-based systems such as the S-band Fence and the Space Surveillance Telescope (SST). 
Frequent Revisit (FR) objects are handled with an all-passes code, which tasks every sensor every pass, which is 
duplicative and wasteful. Specifically there is little time separation between tracks when a Low Earth Orbit (LEO) 
object passes over the continental United States, providing little benefit. Worse, three sensors that are unique in their 
capability to track small debris objects waste time and energy on these Low Earth Orbit (LEO) FR objects. Finally, 
as new sensors are developed that provide the ability to track smaller and smaller objects, the number of objects in 
the space catalog will grow beyond the current system's ability to task for them. 

For the purposes of this discussion we will term the requirements to track objects, “requests” where, specifically, 
a single request is the requirement to track one specific object once or to search a specific volume of space for a 
specific amount of time. Constraints on assigning resources to requests typically involve Line of Sight (LOS) 
(timing) issues involving orbital mechanics and also generally include a probability of detection calculations 
involving range, angles, cross section, and sensor sensitivity and precision. The Space Catalog is generally divided 
between Deep Space (DS) and LEO objects with the dividing line being a period of 225 minutes. It is generally 
assumed that one set of sensors is used for LEO objects and a separate set is used for DS objects although this is not 
completely true. Highly Elliptical Orbit (HEO) objects may qualify as DS objects but pass near enough to the Earth 
at perigee that LEO sensors can track them then. Due to their greater distance, DS objects require sensors of greater 
sensitivity and precision, require longer tracking time, and there are fewer of these sensors, hence the greater need 
for highly efficient and complementary scheduling. One especially import part of the DS region is the 
Geosynchronous (GEO) belt. (GEO can also refer to “Geosynchronous Earth Orbit.”) Within each category (LEO, 
GEO, HEO, and DS) the timing constraints are similar. LEO objects orbit several times a day, have relatively 
narrow (10-15 minutes) time windows with LOS to specific locations on the ground, and are relatively near to those 
locations. The set of locations that a LEO object has LOS with is small and rapidly changing. GEO objects orbit 
once per day, meaning they are essentially fixed in longitude. This means that they have LOS to a large, relatively 
unchanging fraction of the earth all the time but at a long range. Non-GEO DS objects tend to have long time 
windows of LOS to specific locations and the set of those locations changes relatively slowly over time. Sensor 
requests typically inherit the constraints for the types of orbiting object they relate to. Resource management 
involves optimally tasking specific resources to meet the requests while obeying all of the constraints. 
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The schedule and scheduler must be flexible. Various high priority requests, including those related to in-space 
emergencies, may occur, which might require near-instantaneous changes to the schedule. Sensors may also break 
down, requiring real-time schedule changes. A very common occurrence is failure to track the requested object. In 
some cases this might require the scheduling of additional tracking attempts. So the schedule should have some 
built-in flexibility to handle emergencies and other real-time events. In addition, the scheduler must also be flexible 
by being able to reschedule based on these real-time events quickly. Being able to respond within the 24-hour 
execution cycle in order to be responsive implies that scheduling will be done in cycles. A new 24-hour schedule 
might be generated every few hours or it might be rescheduled immediately in response to high priority events. 
Either case however implies that during rescheduling, already scheduled tasks will exist and a decision be made to 
either change them or leave them as-is. The scheduler should also have the long-term flexibility to easily 
accommodate new resources and new types of resources as these are developed. 

Scheduling problems involving meaningful resource selection are NP-Complete, meaning that the computational 
time of any algorithm guaranteed to produce an optimal solution is exponential with the number of those decisions. 
It is straightforward to build bad scheduling systems but difficult to build good ones. I.e., there are relatively simple 
algorithms, such as priority based schemes, which will generate correct schedules but not very good ones in the 
sense that many requests will be rejected that could have been scheduled with a better algorithm and that important 
metrics to optimize (SOIs achieved, average orbit metric covariance, average revisit interval, etc.) will be far from 
optimal. It is relatively difficult to build good scheduling systems because the NP-Completeness necessitates the use 
of good heuristics.  

Many scheduling systems use a naïve approach to assigning resources to requests where the requests are fulfilled 
in priority order. If the current request cannot be scheduled, earlier-processed (and therefore higher priority) requests 
will not be reconsidered in order to try to accommodate the current request. In particular, if the current primary 
request cannot be scheduled, the request will be left unscheduled, even if it had been physically possible to shuffle 
some of the higher-priority scheduled requests to accommodate the current one.  

 

II. Overview of a Solution 
A new generation SSN scheduler must actually consist of a family of interrelated schedulers because different 

parts of the SSN scheduling problem have different performance measures and goals and different sensors are more 
schedulable than others. Therefore, different resource and time selection criteria are appropriate for different kinds 
of observation requests. Scheduling algorithms to optimize LEO frequent revisit sensing should minimize or 
eliminate the use of sensors better utilized on small debris sensing as well as minimizing redundant observations 
from other sensors. Scheduling for DS frequent revisit optimization must utilize predictions of surveillance search 
results and efficiently schedule space-based optical and ground-based radar and optical sensors by considering what 
parts of the GEO belt are in sunlight and which sensors are in solar exclusion. Scheduling of the remaining LEO 
objects should attempt to optimize the number of tracks per day for each object. Scheduling the DS objects should 
optimize some measure of the accuracy of the known position of each object such as the current, combined 
covariance matrix. This will involve seeking complementary measurements. Scheduling SOI requests should 
maximize total (complementary) information collected for each object. The value of each type of observation may 
depend on the attributes of the type of object being identified. 

The use of the Aurora intelligent scheduling framework facilitates this family of interrelated schedulers because 
it allows for mixing and matching of different scheduling algorithms. In particular, different types of requests, can 
use totally different resource and time window selection criteria and methods. An Aurora-based intelligent SSN 
scheduling application would have one ordered queue of observation requests (for both orbit metric and SOI) to 
schedule and one global set of resources to schedule to meet those requests. A preprocessor would initially utilize 
predictions of which untasked sensors would likely track which objects (so that this information can be factored in 
to how many and which observations each object actually needs). The preprocessor considers both these predicted 
future observations and recent previous successful observations to determine a preferred (complementary) 
observation set for each object. Based on this, the preprocessor, using the bottleneck calculation described further 
below, calculates the resources and times of most contention and the requests that most need those resources at those 
times. At the same time, it also roughly calculates, required global resource utilization and the utilization for 
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different types of resources and tasks. This gives an initial prediction of the fraction of requests that are satisfiable. 
(E.g., if the required utilization of sensor resources is 120%, around 20% of the requests can't be met).  This 
information is used to reduce the number of requests for the types, which will definitely not be met. This will be 
done differently based on the type of object (DS/LEO, FR). When reducing the number of requests for an object, its 
priority, recent set of successful observations (and current SOI and metric covariance states), and specific resources 
it could utilize are considered. Obviously, there is no reason to reduce requests for resources that are not over 
contended for. Other considerations are to prevent starvation and preserve requests for higher priority objects and 
those with currently poor (e.g., old) information. 

As mentioned previously, many SSN sensors can only be tasked (i.e., told a desired number of observations and 
priority for each object) and not scheduled (i.e., told to observe a specific object at a specific time) and do make the 
specific scheduling decisions themselves locally. Some degree of scheduling control can be executed over these 
sensors, especially for the LEO case, which is the great majority of them. Through the following scheme, the global 
scheduler can either dictate a single observation opportunity to the sensor or a single specific set of adjacent 
opportunities (e.g., the 3 opportunities in a row constituting the 4th, 5th, and 6th opportunities of the day. The scheme 
is relatively simple. The sensor’s 24-hour day is divided up into time periods corresponding to the shortest LEO 
orbital period, about 90 minutes. The first time period is designated for the objects sent to the sensor with top 
priority (which would not necessarily correspond to their actual priorities as input by the users). The second time 
period would be for all top priority objects requiring 2 observations and second priority objects. The third time 
period would be for all top priority objects requiring 3 observations, all second priority objects requiring 2 
observations, and all third priority objects. The fourth and subsequent time periods and priorities are defined 
similarly. To schedule an object, for example, at the fifth time period, simple give it a priority of 5 and a number of 
observations of 1. Alternatively, to schedule that object in each of the consecutive opportunities, starting in the fifth 
time period, give it a number of observations of 3. For this scheme to work, the global scheduler does need to fill 
each time period with observations. 

There are two main categories of conflicts: those that can be resolved while satisfying the requests, presumably 
by shuffling other resource assignments in allowable ways and those that simply cannot. Resolving the former is 
relatively straightforward but does involve the use of good heuristic algorithms to produce as good a result as 
possible. Resolving the latter requires actually deciding what requests should have their constraints relaxed 
somewhat. These resource contention issues essentially constitute potential bottlenecks where specific resources 
could likely experience a situation in which for specific periods of time they are being requested for more service 
than they can provide. The scheduler should try to make resource and time window selections that avoid these 
bottlenecks.  

Since, like most NP complete problems, generating a schedule is much harder and more time-consuming than 
testing or grading one, it would be possible for the scheduler to include several different scheduling algorithms, all 
of which were independently generating schedules. Relatively simple and quickly executing grading software could 
then evaluate each schedule and select the best one. One algorithm might be the bottleneck avoidance algorithm 
(including swapping out earlier processed, lower priority tasks), described later. In situations where it is possible to 
service all tasks with proper consideration of resource contention, the best solution might be from the bottleneck 
avoidance algorithms. Nevertheless, there may also be some situations when all requests cannot be met in which 
another algorithm might perform better. 

III. Objectives 
The ultimate goal would be to improve the performance of the SSN, including improved space catalog accuracy 

and precision and improved SOI information through more and more complementary observations, better 
responsiveness to real-time observation requests and situation changes, and better tracking of small debris in LEO 
through more efficient use of the sensors that are able to perform this function. Other improvements would include 
more efficient tracking of DS frequent revisit objects, handling increased number of objects and new types of 
sensors, and taking full advantage of improved communication and control when it is available to globally optimize 
the SSN sensor schedule. 

Since many of these techniques and algorithms have already been proven in a prototype1, the next logical step is 
to develop the full-scale family of SSN schedulers and integrate them with the appropriate SSN systems. These 
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include the LEO frequent revisit optimizing scheduler, the DS frequent revisit optimizing scheduler, and the SSN 
Global Optimizing Scheduler. The intent is to eventually have these capabilities deployed in an operational system 
in order to provide improved SSN scheduling, integrate each into the appropriate environment, show superior 
performance on SSN scheduling problems, and demonstrate significant benefit for SSN reactivity and space catalog 
quality.  

IV. System Description 
The High Level Architecture for each of the specific schedulers is shown in Fig. 1 below. The modules can be 

assembled in an existing intelligent scheduling system architecture, which provides for customization of each 
decision point in the scheduling processing. For example, it handles resource usage profiles and visibility 
requirements, provides for pluggable resource/time window selection methods and satisfaction of temporal, spatial, 
and arbitrary constraints, and includes the notion of scheduling cycles, an evolving schedule, and the need for a 
separate preprocessing module. 

An SSN application desiring scheduling provides an eXtensible Markup Language (XML) (or other agreed on 
format) description of the scheduling problem including a description of the tasks to be scheduled, the resources 
available and the constraints. One type of common constraint for SSN applications is visibility. Normally these are 
calculated and stored in a separate file that is merely referenced in the XML description of the scheduling problem. 
However, mere transmittal of the task to the scheduler does not ensure that the required resources can be found to 
execute it. Whether enough resources exist to schedule all requested tasks is based on the number of resources 
available (and the optimality of the scheduling algorithm as shown in the earlier simple scheduling example). 
Associated with each task are its resource requirements and temporal, spatial, and other constraints. A typical 
temporal constraint, for example, is that one particular task must be complete before another can begin (such as 
sensor configuration, mode selection, slewing, and other setup occurring before the sensor event can execute). 
Another example is that a specific task must be completed by a certain time (e.g., a specific tracking task must be 
completed by midnight). Constraints may exist associated with tasks, resources or both. For example, a constraint 
may state that a particular task must use a specific sensor at a specific location.  
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Figure 1. High Level Scheduler Architecture. 
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The roles of the preprocessor in addition to those described above are to call each applicable scheduler, grade 

each returned schedule, and select the best schedule. Emergency requests requiring attention immediately would be 
passed to the Emergency Response Scheduler for immediate scheduling, so that the appropriate tasks can be passed 
back and executed immediately and the rest of the near-term, already-published schedule minimally disturbed. 
Otherwise, or for the remaining requests, the Preprocessor selects one or more appropriate Sub schedulers. These 
Subschedulers will all be independent and therefore would easily fit into a distributed architecture with each 
Subscheduler having its own computing resources, if required. 

The grading scheme for comparing two schedules can be more or less complex and does not have to be uniform 
across the space catalog objects. We anticipate that our metrics for measuring the quality of produced schedules will 
be different for different areas of space and different types of requests. For DS object metric requests, some measure 
of the accuracy of the known position of the object such as the current, combined covariance matrix would be used. 
Formulas or software for this calculation provided by the existing SSN scheduling and/or covariance calculation 
community could be used. For LEO objects, simply the number of tracks per day for each object could be used. 
There are empirical tables that link this simple metric to historically measured errors in tracked objects. For FR 
objects, the maximum and average time between observations would be used.  SOI requests would have their own 
metrics appropriate for them. 

Each Subscheduler conceptually takes as input the tasks, resources and constraints and produces, as output, the 
assignments to the tasks of resources and time windows that meet the constraints. Each task description includes 
what resources it requires and for how long and the constraints that it is involved in. In practice, most of the 
resources needed by tasks will have been predefined with only updates as to their availability being passed in (e.g., 
radar failure) at scheduling time. The Scheduler generally maintains its own record of the availability of each 
resource based on the tasks and the time windows currently assigned or tentatively assigned to them. The constraints 
may be hard (an absolute requirement) or soft (satisfaction is desired but not absolutely necessary) and may be 
temporal, resource-oriented, or of miscellaneous type. 

Each Subscheduler has several decision points, each of which our generic intelligent scheduling architecture 
allows to be customized through selection of existing options or plugging in new software. One major set of 
decisions is what the scheduler should process and in what order to process. One common solution is to process 
tasks in due date or priority order. Another possibility is to process resources in the order in which they become 
available. Still another is to process constraints, the tightest ones first. We expect as described in the algorithm 
description below to process tracking requests, sorted so that the tasks that request the most constrained resources at 
the most constrained times are scheduled first. It is extremely important to note that the order in which processing 
will occur has a very large effect on the quality of the solution and that simple priority or time ordering schemes will 
often produce very poor results in any reasonably complex scheduling situation. Additional heuristics are also 
helpful to include in the ordering decision.  
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Figure 2. Internal Scheduler Architecture. 
 

Another major decision point is assigning to a task the needed resources and time windows, while satisfying the 
applicable constraints. Usually the time window is constrained by the need to get a task done by a certain time while 
having to wait for events or other tasks to finish before they can start. There may be an additional soft constraint to 
have the task finish as soon as possible or to start as late as possible. Usually there is at least some freedom in 
choosing the time window at the same time that the specific needed resources are selected. Choosing the set of 
resources that are available at the same time that best meet the constraints and that are best for the overall plan can 
be difficult. “Greedy” systems that choose what is best for the specific task or resource often produce poor results, 
overall. Some systems use a resource balancing approach whereby the least utilized resource is chosen, under the 
assumption that if a later-processed task needs a specific resource instance, all of them will still be available; but this 
can also run into problems, depending on the processing order, especially in cases like the SSN where resources are 
always tight. A better approach is to choose the resource that other tasks are least likely to need and at the time at 
which they are least likely to need them. This is the approach in the algorithm described below.  

The processing queue is reordered dynamically during the scheduling process and is largely based on contention 
modified by several factors. Contention is calculated by first “probabilistically” allocating each request across the 
possible sensors and time windows (based on LOS calculations), weighted by the quality, complementariness, and 
success probability of the observation and then for each sensor, summing up all possible “probabilistic” allocations.  
As specific scheduling decisions are made these bottleneck calculations have to be updated for the object just 
scheduled. These updates have to take into account that 1) the specific request has now been 100% scheduled at a 
specific sensor and a specific time (and therefore is not “partially” scheduled anywhere else) and 2) the 
complementariness of other possible observations are changed to reflect the data that will likely be gathered by this 
observation. The bottleneck calculation is not just used for the order of processing but is also used to select specific 
resources and times of observations to avoid the bottleneck regions (while still balancing the need for quality, 
complementary, probable observations). 
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track one object at a time. But some SSNs sensors (such as the SST) can opportunistically track more than one 
object with a movable FOV. This capability can be leveraged in one of two ways, depending on how important a 
factor it is. The simplest way to leverage it is simply opportunistically. Whenever a tracking task is scheduled on 
such a sensor, nearby objects are checked to see if the FOV can be changed to include the target object and as many 
others as possible. Any other ones that are captured don’t need to be scheduled in the near future and/or may be able 
to be unscheduled (if they were already scheduled) from a nearby time. 

If this phenomenon is expected to have a large effect, it may make sense to implement a more complicated 
algorithm whereby this issue is used more centrally in the scheduling process2. Briefly the key scheduling task is to 
determine where the sensor should be aimed (i.e., what volume of the sky should be viewed) over time in order to 
ensure that it can obtain as many of the tracks with which they may be potentially tasked as possible and that all the 
highest priority tracks are obtained. This is a difficult optimization problem in a continuous three-dimensional space 
(the coordinates are the azimuth and elevation at which to aim the sensor and the time at which it should be aimed 
there). The objective is to maximize the number of targets visible at any given time in order to satisfy as many track 
requests as possible, while conforming to the requirements concerning priority, number of tracks and number of 
observations per track. The approach from reference 2 to this scheduling task employs a novel data-driven approach 
to discretizing the search space. This approach results in rapid search of a tractable search space containing high-
quality options that maximize the number of tracks that can be scheduled. The approach defines techniques for 
clustering objects whose visibility sets intersect. These intersections are discrete subsets of the search space that are 
then treated as resources in a constraint-based scheduling algorithm. The scheduling algorithm ensures that the final 
selection of aim-points contains fields of view that do not overlap in time and that satisfy as many track requests as 
possible, taking priority into account.  

One major decision point arises when, during the assignment of resources and time window to a task, no 
reasonable assignment can be found. This may involve unsatisfiability of a soft constraint in which case it will most 
likely be ignored but may also involve the inability to satisfy hard constraints or to find needed resources at the 
required time. In one of these latter cases, the appropriate action for the planner depends on the aspects of the 
domain, the way it is modeled, the scheduling time available, and the optimality of the other algorithms in use. For 
example, if an unavailable resource is not completely saturated, it may be appropriate to try to shuffle some of the 
other task assignments to make a "hole" in a resource availability profile for use by this task. Perhaps a lower 
priority or less important task that is already scheduled should be unscheduled to make room for this task. The 
concept of changing the plan in the same cycle brings up the notion of backtracking. A small amount of 
backtracking can be important to optimize a plan in relatively small ways, but overuse of this technique degenerates 
into systematic search, which should be avoided for most complex problems. Often heuristics can be efficiently used 
to handle the problem of resource/time window unavailability. These take two forms. One is that often some of the 
supposed hard constraints or resource requirements have some leeway. For example, a sensor setup task may be 
specified to take 60 seconds but in an extreme situation, 30 seconds might be acceptable if the only alternative is not 
to have the sensor event occur at all. The other form of heuristic is one whereby all resource requests and constraints 
can be met by a clever trick that the human planner has found to be useful in similar situations; e.g., human planners 
have found that GEO and Medium Earth Orbit (MEO) related requests are the most likely to be able to be moved to 
make room for another, more tightly constrained LEO related request. (Of course, our proposed resource assignment 
algorithms already take this into account the first time through.) These latter forms of heuristics are less likely to be 
useful if the ordering and selection algorithms are near optimal. Ultimately it may be necessary to place the task in 
question (or another one swapped out to make room) on an unschedulable list to be dealt with at the end of the cycle. 

After each item has been processed, another decision point is reached: that of optimizing the plan just produced 
before the resource assignment cycle ends. This includes trying to solve the remaining problems and optimizing the 
soft constraints. Recall that it is possible that acceptable resources and time windows could not be found for some 
tasks. Thus, tasks may be on an Unscheduled List or may be scheduled in such a way as to create conflicts and 
otherwise violate constraints. A Case-Based Reasoning (CBR) module exists to suggest conflict resolution strategies 
based on previous similar conflicts. These may be able to be applied by the scheduler itself to fix the conflict or may 
require user approval. Alternatively policy rules may dictate how to resolve conflicts, such as swapping out lower 
priority requests to allow higher priority ones to be satisfied. Currently, human schedulers manually manage 
additional high priority lists to ensure that specific objects are adequately tasked. These human schedulers may 
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continue to be involved in the scheduling process and the reuse of their past directives for solving past conflicts may 
be useful for suggesting solutions to current similar conflicts. 

V. Summary 

Space Surveillance Network sensor scheduling is complex and voluminous with the object and request space 
divided into separate portions with each having its own objectives, metrics, and parameters such that different 
scheduling algorithms are appropriate for the different portions. However, these must be combined into one 
integrated whole since aspects of each portion impact the others. A method and design for accomplishing this and 
descriptions of the algorithms were presented. 
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