
1

American Institute of Aeronautics and Astronautics

Rapid Scheduling of Multi-tracking Sensors for a

Responsive Satellite Surveillance Network

Dick Stottler1, John L.Mohammed, Ph.D.

Stottler Henke Associates, Inc.; 951 Mariner’s Island Blvd., STE. 360, San Mateo, CA. 94404

Satellites currently play a critical role in military operations,

providing functions such as targeting, surveillance, communications and

navigation. The Satellite Surveillance Network (SSN) is a small network of

geographically distributed sites that provides tracking for all orbiting

objects, and maintaining a Space Catalog of their orbits. The SSN currently

tracks over 16,000 objects. For each object there is an associated priority (1

through 5) and a requisite number of tracks to obtain per day. Most SSN

sites consist of sensors that can either track 1 object at a time (such as

mechanically tracked parabolic dish radars) or that have a fixed field of view

and can track many objects at a time such as phased array radars. But there

are also interesting future sensor systems that can track multiple objects at a

time and have a movable field of view. Scheduling of the observations of

these types of assets is the emphasis of this paper. Examples include the

Space Surveillance Telescope (SST) developed by DARPA and MIT/LL

which is wide angle searching and tracking telescope and airborne and

space-based phased array radars. The key scheduling task is to determine

where the sensor should be aimed (i.e., what volume of the sky should be

viewed) over time in order to ensure that they can obtain as many of the

tracks with which they are tasked as possible, and that all the highest

priority tracks are obtained. This is a difficult optimization problem in a

continuous three-dimensional space (the coordinates are the azimuth and

elevation at which to aim the sensor, and the time at which it should be aimed

there). The objective is to maximize the number of targets visible at any

given time so as to satisfy as many track requests as possible, while

conforming to the requirements concerning priority, number of tracks and

number of observations per track. We describe a new approach to this

scheduling task that employs a novel data-driven approach to discretizing

the search space. This approach results in rapid search of a tractable search

space containing high-quality options that maximize the number of tracks

that can be scheduled. Our approach defines techniques for clustering

objects whose visibility sets intersect. These intersections are discrete subsets

of the search space which are then treated as resources in a constraint-based

scheduling algorithm. The scheduling algorithm ensures that the final

selection of aim-points contains fields of view that do not overlap in time, and

that satisfy as many track requests as possible, taking priority into account.

1 Job Title: President; Department Name: N/A; Street Address/Mail Stop: 951 Mariner’s Island Blvd., STE. 360, San

Mateo, CA. 94404; AIAA Member Grade: Regular New

2

American Institute of Aeronautics and Astronautics

Results of testing the algorithm with 100, 250, 1,000 and 10,000 objects with

randomly assigned priorities are presented. In each case, the scheduler

rapidly generated a schedule that satisfied every track request. On a laptop

personal computer, the maximum total time to compute a schedule for 16,960

track requests for 10,000 objects was 15 minutes 34 seconds. Incremental

changes were also fast. The maximum time to add 30 track requests for 5

objects to a schedule for 10,000 objects was 2.9 seconds.

I OVERVIEW OF SOLUTION

In general, scheduling any set of resources is an NP-complete problem. Thus, algorithms to create

schedules often become extremely slow as the problem size grows, and none are guaranteed to produce optimal

schedules. In this situation, the problem is complicated by the fact that the search space is continuous and three-

dimensional. If one is not careful how the three-dimensional space is carved up into discrete chunks, one can make

the discrete space to search too large, making search intractable, or limit the scheduler to choosing among poorly

defined options, resulting in poor quality schedules.

We developed a novel, data-driven approach to discretizing the search space that results in rapid search of a

tractable search space containing high-quality options that maximize the number of tracks that can be scheduled. We
identified “visibility sets” in the azimuth-elevation parameter space as a key representation that enables us to

identify the most efficient aim-points for the sensors, and thus discretize the search space, enabling the schedule to

be computed by a constraint-based scheduling system.

A. Multi-Track Sensor Scheduling

Objects in orbit move across the sky, periodically entering and leaving the potential field of view for a

specific sensor. The potential contacts are especially short and relatively rare for objects in low-earth orbit. If the

sensor’s field of view could encompass the entire sky visible from its location, then scheduling would not be an

issue. However, the sensor’s field of view at any given time is limited to a particular subset of the visible sky, which

can be characterized by a range of azimuth and elevation values. The field of view can also be characterized by an

aim-point that specifies the center of the azimuth and elevation ranges.

A specific object can be tracked if it passes through the sensor’s field of view for a sufficient length of time
to acquire the required number of observations. We can plot the course of the object for a contact in the parameter

space of the polar azimuth and elevation coordinates from the perspective of the sensor. In this space the field of

view of the sensor is represented by a square indicating the range of azimuths and elevations that are visible. We can

ensure that the object can be tracked by placing the visibility square at any point for which a sufficiently long

continuous segment of the object’s track is contained within the square (see Figure 1). For each contact window of

each object we can define the “visibility set” as the set of points that describe the centers of visibility squares that

satisfy the tracking condition. This will in general be a volume surrounding the track in the 3-dimensional space of

azimuth, elevation and time (see Figure 2). Each member of the set would have an associated time range determined

by the period of time that the object intersects the square that the point represents.

For two objects to be visible within the same field of view, their visibility sets must have a non-empty

intersection, and the sensor’s aim-point must be within that intersection. To schedule the sensor, we must select an
appropriate allocation of aim-points as a function of time. To maximize the number of objects tracked, these aim-

point selections should be in the intersection sets for the maximum number of objects. In Figure 2 two times when

several visibility sets intersect are indicated by square planes.

We developed algorithms to determine the most effective selection of aim-points, based on techniques for

clustering objects that have intersecting visibility sets, and on histogram techniques for determining the fields of

view that cover the largest number of the most important objects. These algorithms generate sets of potential aim-

points, which are then treated as resources by a scheduling algorithm (see Figure 3). The scheduling algorithm

3

American Institute of Aeronautics and Astronautics

ensures that the final selection of aim-points contains fields of view that do not overlap in time, and that satisfy the

requirements for the number and spacing of tracks for as many objects as possible, taking into account each object’s

priority.

The scheduling algorithm first allocates aim-points for those objects that have the fewest opportunities for

tracking (in comparison to the number of tracks needed), independent of priority. Then, if the resulting schedule

fails to adequately track any higher priority objects, the algorithm attempts to incorporate the aim-points needed for
the higher priority object in two ways: 1) by removing aim-points that cover lower priority objects and substituting

ones that provide the missing tracks for the higher priority objects, or 2) by shifting existing aim-points slightly so

that they can provide the necessary missing tracks, at the possible expense of losing tracks for lower priority objects.

In fact, the second approach is attempted first, because shifting the aim-point slightly can sometimes incorporate the

missing tracks without losing any already scheduled tracks.

Figure 1. Object track and visibility squares in azimuth, elevation parameter space.

Figure 2. Visibility set volumes for a series of tracks. Each “tube” in the image
represents possible aim-points within which a particular object is visible at any

given time. Places where the visibility sets intersect (such as the places indicated in

the image by planes) represent times and aim-points when several objects are

visible simultaneously.

4

American Institute of Aeronautics and Astronautics

tle-00694,1,5,30

tle-00733,1,5,30

tle-00877,2,5,30

tle-02802,2,5,30

tle-03230,2,5,30

tle-03597,2,5,30

tle-03669,2,5,30

tle-03835,3,4,30

tle-04327,2,5,30

tle-04814,2,5,30

Figure 4. Track Request Input to the Prototype. Each Object is

identified by its two-line element name, and associates with a

priority (1 to 5), a number of requested tracks, and a number of

seconds needed to obtain an appropriate number of observations.

II. THE SCHEDULING PROTOTYPE

We implemented the visibility set clustering algorithm as a Java™2 program. The program accepts as input
a set of targets. Each target has a priority, a number of tracks requested, and the number of seconds on which the

sensor must dwell on the object to receive the appropriate number of observations for each track (Fig. 4.). The name

of each target also identifies a text file containing the ephemerides, in the polar azimuth elevation space for accesses

of the target from a specific ground site. These were generated in AGI’s Satellite ToolKit (STK™3) and are in the

form of one of their reports (

Figure). The program parses these text files to obtain the ephemerides for each possible contact with each

target.

The prototype constructs a visibility set for each contact with each target then employs a clustering

algorithm to compute visibility sets for the intersections of these visibility sets. The clustering algorithm attempts to

determine the times and aim-points for which the largest number of satellites are visible simultaneously. These
visibility sets are employed as resources in a simple constraint-based scheduling algorithm also implemented in

Java™.

2 Java™ is a trademark of Sun Microsystems, Inc.
3 STK™ is a trademark of Analytical Graphics, Inc.

Figure 3. Visibility set clusters. In this figure each cube represents a set of aim-points for

which several objects are visible at the same time (the grey square indicates the azimuth-

elevation plane, and time runs orthogonal to that plane). The green cubes represent visibility

sets from which an aim-point has been selected for inclusion in the schedule, whereas the pink

cubes represent visibility sets not included in the schedule.

5

American Institute of Aeronautics and Astronautics

Two versions of the visibility set computation were implemented. The first version made an unreasonable

assumption regarding the shape of the beam that would be created by the sensor. To simplify computations, the

initial version of the prototype assumes that the beam shape is bounded by planes of constant azimuth or elevation

(see Fig. 6). This implies that at the higher elevations the beam cross-section is smaller and more trapezoidal,

becoming triangular when the uppermost point is at ninety degrees. This is unreasonable from the standpoint of the

physics of the sensor system. The impact of this assumption on the schedule is that the algorithm “prefers” contacts

at lower elevations.

A second version of the computation was then implemented in which the shape is independent of elevation.

This makes computation of visibility set intersections more complex, as it is necessary to compute intersections of

convex great-circle spherical polygons. However, we developed a rapid and numerically stable technique for
computing these intersections, resulting in an efficient algorithm for computing visibility sets with a far more

physically reasonable assumption regarding beam shape (see Fig. 7).

Note that sensors are generally restricted to a field of view that is less than the maximum possible. The

prototype can restrict the overall field of view to meet various constraints. However, we only tested it with the

assumption that its field of view is 360 degrees in azimuth, and from 5 to 90 degrees in elevation.

Figure 5. Ephemerides file. For each target there is a file like this one that specifies the location of the

satellite as a function of time in the polar coordinates of the sensor’s field of view.

 16 Aug 2009 14:27:38
Facility-Facility1-To-Satellite-tle-00694: Inview Azimuth, Elevation, & Range

Facility1-To-tle-00694

 Time (UTCG) Azimuth (deg) Elevation (deg)

 ------------------------ ------------- ---------------

 16 Aug 2009 12:00:00.000 177.790 34.624

 16 Aug 2009 12:00:10.000 174.563 34.324

 16 Aug 2009 12:00:20.000 171.376 33.923

 16 Aug 2009 12:00:30.000 168.246 33.424

Figure 6. Beam-shape determined by planes of azimuth and elevation.

6

American Institute of Aeronautics and Astronautics

III. EVALUATION OF THE PROTOTYPE

Our purpose in constructing and testing the prototype was to demonstrate that it is possible to rapidly

generate valid schedules. To test it we obtained two-line elements (TLEs) from a public website, the Celestrak
NORAD current Space Track data access (http://celestrak.com/NORAD/elements/).

However, for this effort we had to manually construct a set of track requests that randomly assigned

priorities to the satellites. Further, to obtain ephemerides we had to load the TLEs into STK, manually request the

generation of an Azimuth Elevation Range (AER) report for each satellite, and manually save the reports to text

files. Thus, it was not an efficient use of time to perform this preparation for a large number of satellites. We

therefore, for the large number of satellite test cases, made some simplifications in the data. Specifically, although

the priority is independent of the number of tracks per day needed, for the automatically generated test data, the

number of tracks per day for each satellite was simply generated based on its priority.

Initially, we downloaded the “100 Brightest” dataset from that website, and tested the scheduler using this

small dataset. Later we manually prepared an additional 150 satellites, including 96 elements of the Iridium debris,

enabling us to test the scheduler with 250 satellites. To test the ability of the scheduler to scale up to more

realistically sized datasets, we then programmatically replicated the 250 satellites, distributing the copies of each
satellites evenly in time. Replicating each satellite four times gave us a dataset with 1000 satellites, and replicating

each satellite 40 times created a dataset with 10,000 satellites.

For the tests with 100 satellites, we requested that the scheduler insert a track at every opportunity for every

satellite. That is, the scheduler had to satisfy one track request for each satellite for every contact window.

Furthermore, we required that the satellites be visible for 30 seconds worth of observations for each track.

For the tests with 250, 1000 and 10,000 satellites, the number of track requests for each satellite was a

function of the satellite’s priority, and only 10 seconds of observations were required per track. Higher priority

satellites had to have more track requests satisfied, and lower priority satellites required fewer. Table 1 shows the

relationship between satellite priority and number of track requests for these automatically generated test data.

Table 2 shows the distribution of priorities among the satellites. Priorities were assigned randomly, with the

number of satellites assigned each priority being inversely proportional to the priority. Table 1 shows the number of
track requests as a function of priority, as well as the total number of track requests made for each test.

Figure 7. Beam shape invariant to azimuth and elevation.

7

American Institute of Aeronautics and Astronautics

Table 1. Number of track requests as a function of satellite priority.

Priority Number of track requests

1 Every opportunity

2 4

3 3

4 2

5 1

Table 2. Distribution of priorities among satellites.

Priority

Dataset size

100 250 1,000 10,000

1 5 7 28 280

2 9 11 44 440

3 23 30 120 1,200

4 30 55 220 2,200

5 33 147 588 5,880

Table 1. Distribution of Track requests among satellites.

Priority

Dataset size

100 250 1,000 10,000

1 25 34 136 1360

2 42 49 172 1720

3 111 143 360 3600

4 140 258 440 4400

5 166 724 588 5880

Total 484 1208 1696 16960

8

American Institute of Aeronautics and Astronautics

In each case we created a schedule for one 24-hour period, and used the computer’s timer to measure the

amount of time required to create the visibility sets, to create the schedule, and the total time. In each case we ran the

tests four times and computed the minimum, maximum and mean times taken. The tests were run on a laptop

computer with a clock speed of 789 Mhz, and 2 GB of RAM, running the Windows XP™ operating system.

In each case the scheduler was able satisfy all the track requests. Table 4 shows the time it took to compute

and cluster the visibility sets. Table 5 shows the time requires to create the aim-point schedule, and Table 6 shows
the total times. All times are in milliseconds. Figure 8 shows a log-log plot of the mean times to build the schedules.

Table 4. Time to compute visibility set clusters.

Dataset

Size

Test 1 Test 2 Test 3 Test 4 Minimum Maximum Mean

100 1547 1610 1453 1156 1156 1610 1442

250 3438 3500 3422 3438 3422 3500 3450

1000 15969 15984 16485 15938 15938 16485 16094

10,000 816953 778015 791016 773203 773203 816953 789797

Table 5. Time to compute aim-point schedules.

Dataset

Size

Test 1 Test 2 Test 3 Test 4 Minimum Maximum Mean

100 312 359 313 172 172 359 289

250 750 844 766 750 750 844 778

1000 1969 2016 2140 1953 1953 2140 2020

10,000 104078 112641 112062 112281 104078 112641 110266

Table 2. Total time to build schedule.

Dataset

Size

Test 1 Test 2 Test 3 Test 4 Minimum Maximum Mean

100 1859 1969 1766 1328 1328 1969 1731

250 4188 4344 4188 4188 4188 4344 4227

1000 17938 18000 18625 17891 17891 18625 18114

10,000 921031 890656 903078 885484 885484 921031 900062

9

American Institute of Aeronautics and Astronautics

For the 250, 1000 and 10,000 satellite datasets, we also requested that the scheduler update the priority of

some of the satellites, thus adding additional track requests for those satellites. For the 250 satellite dataset, one

additional track was requested for one satellite. For the 1000 and 10,000 satellite datasets, 5 satellites had their

priority increased from 5 (the lowest) to 1 (the highest), thus increasing the number of track requests for each

satellite from 1 to 6 (every opportunity). In each case, the schedule was rapidly updated to include all the newly

requested tracks while still satisfying all previously requested tracks. Table 7 shows the time the scheduler required
to perform these updates.

Table 3. Time to update schedule with additional requests.

Dataset

Size

Test 1 Test 2 Test 3 Test 4 Minimum Maximum Mean

250 0 0 0 16 0 16 4

1000 47 47 63 63 47 63 55

10,000 235 375 360 359 235 375 332

Figure 8. Log-Log plot of mean times in milliseconds to build complete aim-point schedules vs. dataset size

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000

Cluster Vsets

Schedule

Total

10

American Institute of Aeronautics and Astronautics

The scheduler is able to satisfy all the requests because it finds aim-points that maximize the number

satellites that can be tracked simultaneously. Table 8 illustrates the multiplicity of tracked satellites by comparing

the total number of track requests with the total number of aim-points in the schedule.

IV. RELATED WORK

There has been progress on automating the planning and scheduling of unmanned space missions. These are

relevant because of the similarity of the constraints (loss of signal between orbiting objects and ground locations).

Developers at NASA JPL developed an automated planning and scheduling system named ASPEN. ASPEN can

generate a sequence of low-level spacecraft commands from a high-level goal, and manage the scheduling of
spacecraft resources. ASPEN is unique among planners/schedulers specialized to unmanned spacecraft in that it is

modular and so can be adapted to multiple missions1. Unfortunately its typical scheduling paradigm is to develop an

initial schedule quickly then iteratively repair and optimize it. This does not tend to work well in a very full schedule

with many tight constraints, especially when there is very little room within most view periods to move the sensing

event around.

The scheduling system here described is closely related to the three following areas of application for which

automatic scheduling prototypes have been built: the Air Force Satellite Control Network (AFSCN), NASA’s Deep

Space Network (DSN) and Earth Observing Satellites (EOA) scheduling. The AFSCN coordinates communications

to more than 100 satellites via nine ground stations positioned around the world. Customers request an antenna at a

ground station for a specific time window along with possible alternative slots. Typically, 500 requests a day result

in more than 100 conflicts2. The DSN is a multi-national collection of ground-based radio antennas responsible for

maintaining communications with research satellites and deep space probes. The DSN maintains 16 antennas that
provide tracking, navigation, and data transmission services, among others3,4. Earth Observing Satellites (EOA)

employ advanced sensing technology for scientific, mapping, defense and commercial activities5,6.

There are four types of scheduling algorithms applied in these areas: “exact” methods, iterative repair

algorithms, heuristic search, and stochastic search. We next describe these techniques. The exact scheduling

techniques pose the scheduling problem as a Mixed Integer Programming (MIP) problem which is then solved by

linear programming techniques like Branch and Bound, Branch and Cut, etc. For example, Gooley developed a two

phase algorithm to solve the AFSCN scheduling problem7: in the first phase the low altitude requests are scheduled

using MIP. In the second phase, the high altitude requests are inserted in the schedule without rescheduling any of

the low altitude requests.

Iterative repair algorithms generate some initial schedule and then iteratively try to fix existing conflicts in the

schedule. For example, Clement and Johnston4 use ASPEN1 to model a DSN application. ASPEN is a local search,
heuristic iterative repair planner/scheduler: it takes an initial schedule and iteratively adds, removes, reschedules and

refines tasks in the schedule for as long as it is invoked, until all conflicts are resolved, or until a perfect utility is

obtained. DSN heuristics include: (i) half of the time choose the conflict to repair based on a default measure of

badness for the conflict type; otherwise, choose the earliest occurring; (ii) for violated constraints choose the move

Table 4. Track multiplicity.

Dataset Size Total # Track requests Total # aim-points

100 484 326

250 1207 641

1000 1696 553

10,000 16960 2932

11

American Institute of Aeronautics and Astronautics

repair method 70% of the time; abstract and detail 30% of the time; (iii) choose antennas within view ten times more

often than those not in view.

The heuristic search methods apply some domain dependent heuristic to determine the order in which a task

request should be scheduled. Once the order is determined, tasks are scheduled usually using some greedy scheduler.

For instance, in the AFSCN domain a typical heuristic tries to schedule first low altitude requests before high

altitude requests, sorting requests in decreasing order of the ratio of duration of the request to the average length of
its time windows; ties are broken based on the number of alternative resources specified (fewer alternatives

scheduled first). A greedy scheduler will consider the tasks in the given sorted order, and assign the first available

resource to the task. If such resources are not available then the task is left unscheduled2.

The stochastic scheduling techniques determine the order in which tasks are to be scheduled by doing a search

on the space of such orders. A cost/utility function is used to guide the search (e.g., minimize the number of

conflicts in the resulting schedule). Different search techniques can be used. For example, a stochastic Hill

Climbing technique starts with a single random order of tasks. This order (the parent) is mutated to produce a new

permutation (a child) which if it produces a better (more fit) schedule than the parent, replaces the parent. Another

common technique is Genetic Algorithms (GA) where a population of solutions is maintained. At each step of the

algorithm, a pair of parent solutions is selected, and a crossover operator is used to generate a single child solution,

which then replaces the worst solution in the population. GA algorithms have been proposed to solve the EOA

scheduling problem6 and the AFSCN scheduling problem2.

The AFSCN, DNS and EOA applications all have in common the need to schedule the use of communication

antennas during available view periods. They differ in the type of task constraints and resource requirements they

will require, and so not all scheduling algorithms work properly for the three applications. For example, for the

AFSCN, local repair techniques have been found less effective than approaches that make more moves at once2. In

the EOA domain Evolutionary Algorithms have been found more effective than other scheduling techniques, mainly

because in EOA applications constraints are complex and the bottlenecks are not well understood, making it hard to

come up with effective domain scheduling heuristics6. In the DNS application, local heuristic search combined with

systematic search has been proven effective (yet possibly computationally expensive)4.

Most of the above techniques suffer from the same problem: finding a suboptimal scheduling allocation. This

is in part because the decisions to resolve a conflict, or to define the order in which tasks should be allocated, use

local information (a particular task’s requirements) rather than global information about the interactions among tasks
and resources. The system described here employs an architecture where the algorithms to make the main

scheduling decisions (e.g., which task to schedule first, which resource and time window to select, which conflict to

solve next, how to solve this conflict) can be easily customized to fix the particular needs of the domain of

application. For instance, the different types of scheduling techniques described above can be implemented using the

proposed architecture.

James Miller gives a good description of the overall problem of allocating tracks to all the sensors in the SSN,

and the factors that must be considered when deciding satellite priorities and the quality of the schedules8. However,

he does not deal with the issue of second-by-second scheduling of the sensors to satisfy their allotted tracks, noting

that each site must be responsible for its own scheduling. Abbot and Wallace give a detailed account of the

requirements and techniques for tracking objects in geosynchronous orbit9.

The work described here is unique in that it directly addresses the issue of exploiting the multi-track capability

of certain types of sensors in order to maximize the number of track requests satisfied.

V. REFERENCES

1
 Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., Estlin, T., Smit, B., Fisher, F.. Barret, T.,

Stebbins, G. and Tran, D. (2000). ASPEN- Automating Space Mission Operations using Automated Planning and Scheduling.
Presented at SpaceOps 2000, Toulouse, France.

12

American Institute of Aeronautics and Astronautics

2
 Barbulescu, L. , Howe , A., and Whitley, D., “AFSCN Scheduling: How the Problem and Solution Have Evolved,”

Mathematical and Computer Modeling, 2006.

3
 Chien, S., and Gratch, J., “Adaptive Problem-Solving for Large-Scale Scheduling Problems: A Case Study,” Journal Of

Artificial Intelligence Research, 1996.

4
 Clement, B.J. and Johnston, M.D., “The Deep Space Network Scheduling Problems,” Proceeding of the Innovative

Applications of Artificial Intelligence, 2005.

5
 Frank, J., Jonsson, A., Morris, R. and Smith, D., “Planning and Scheduling for Fleets of Earth Observing Satellites,”

Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics, Automation and Space, 2002.

6
 Globus, A. Crawford, J., Lohn, J. and Prior, A. “Scheduling Earth Observing Satellites with Evolutionary Algorithms,”

International Conference on Space Mission Challenges for Information Technology, 2003.

7
 Gooley, T.D., “Automating the Satellite Range Scheduling Process,” Master Thesis, Air Force Institute of Technology, 1993.

8
 Miller, James G., “A new sensor allocation algorithm for the Space Surveillance Network,” 74

th
 MORS Symposium, 2006.

9
 Abbot, R.I., and Wallace, T.P. “Decision Support in Space Situational Awareness,” Lincoln Laboratory Journal, Vol. 16, No.

2, 2007, pp. 297-335.

