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Abstract 

 This paper describes a general, automated scheduling solution to handle resource 
assignment and scheduling challenges for a variety of space mission applications, and how 
this solution is packaged as a general scheduling service provided in a Service Oriented 
Architecture (SOA).  The full design for the system, the various software methods that are 
part of that design, and a recently completed prototype are discussed.  The techniques 
described here have been successfully applied to a variety of space mission application and 
full-scale, operational development of the general scheduling service is proceeding. 
 
 

I.    Problem Description 

 Managing real-time space mission and space situational related activities is a complex task, especially 
when considering all of the resources directly and indirectly involved. Space missions and related activities include 
space-based observations such as commercial overhead imagery, communication link scheduling (both for health 
monitoring and commanding and for communication users of communication satellites), ground based observations 
of space objects, launch support, orbit maneuver support, reacting to space weather events and notifications, and 
military operations. Space-related resources include the space systems themselves such as satellites and their 
components, and terrestrial systems such as ground stations, and communication links. The resources and activities 
to be scheduled are satellite payloads and busses, maneuvering the satellite, modifying the communications, 
processing management, sensor and data collection management, and satellite communication network scheduling.  
Therefore, there are several resource assignment and optimization issues associated with space missions, requiring a 
large number of both separate and integrated scheduling and resource optimization applications. 

  An automated system is clearly called for to handle both the complexity and time constraints. Actions 
resulting from the responses to simultaneous events may interfere with each other or there may be an opportunity for 
synergy. Additionally, new actions to be scheduled may interfere with ongoing and already scheduled operations.  
At a minimum, the new activities are going to require resources. For example, part of the response to a space 
weather event may be to divert activities currently scheduled on satellites with space weather issues to other assets, 
but these ground and space-based resources will have other, competing demands and it is important to optimally 
allocate these assets across all the demands for them. 

 These demands (often called requests) fall into a number of seemingly disparate categories that nonetheless 
can be handled similarly. One category involves activities scheduled on the satellite experiencing space weather 
issues. Actions such as closing shutters, changing operating modes and maneuvering will affect the ability of the 
satellite to perform its mission, i.e. its current set of tasks. Those tasks may need to be re-allocated to another 
satellite. The constraints on which other satellites can assume these tasks will be based on timing and line-of-sight 
(LOS) issues (orbital mechanics). Another category is tasking earth-based sensors (optical or radar) to focus on 
specific space objects or to search a particular volume of space. Which resources can perform these tasks and when 
will also be based on timing and LOS issues involving orbital mechanics. Another category is the tasking of space-
based sensors to focus on specific objects or areas on the earth, such as to fulfill requests for commercial satellite 
imagery. Which resources can perform these tasks and when will, again, be based on orbital mechanics. Therefore 
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all 3 categories will tend to involve constraints between a location on the ground and an orbiting object. The 
different categories of orbiting objects are those in Low Earth Orbit (LEO), Geosynchronous orbit (GEO), and High 
Earth Orbit (HEO). Within each category the timing constraints are similar. LEO objects orbit several times a day, 
have relatively narrow (10-15 minutes) time windows with LOS to specific locations on the ground, and are 
relatively near to those locations. The set of locations that a LEO object has LOS with is small and rapidly changing.  
GEO objects orbit once per day, meaning they are approximately fixed in longitude. This means that they have LOS 
to a large, relatively unchanging fraction of the earth all the time, but at a long range. HEO objects tend to have long 
time windows of LOS to specific locations and the set of those locations changes relatively slowly over time. Sensor 
or communication demands (requests) typically inherit the constraints for the types of orbiting objects they relate to.  
Resource management involves optimally tasking specific resources to meet the requests while obeying all of the 
constraints. 

 Scheduling problems involving meaningful resource selection are NP-Complete, meaning that the 
computational time of any algorithm guaranteed to produce an optimal solution is exponential with the number of 
those decisions. In the case of space mission scheduling, this NP-Completeness has led to several failures to 
develop software to automate scheduling for a number of reasons. First, it is straightforward to build bad 
scheduling systems but difficult to build good ones. I.E. there are relatively simple algorithms, such as priority based 
schemes, that will generate correct schedules but not very good ones in the sense that many requests will be rejected 
that could have been scheduled with a more optimum allocation of resources. It is relatively difficult to build good 
scheduling systems because the NP-Completeness necessitates the use of good heuristics 

 Many previous attempts at AFSCN scheduling use a naïve approach to assigning communication resources 
to requests and resolving conflicts where the requests are fulfilled in priority order. Some flexibility may exist in the 
request which will be used if the primary request cannot be fulfilled, but no earlier processed (and therefore higher 
priority) requests will be reconsidered in order to try to accommodate the current request. In particular, if the current 
primary request cannot be scheduled, then the flexibility options will attempt to be utilized; but if these too are not 
successful, the request will be left unscheduled, even if it had been physically possible to shuffle some of the higher-
priority constraints to accommodate the current one. Particularly, this can occur when a geosynchronous (GEO) or 
high earth orbit (HEO) satellite has a high priority. Their relatively high orbits give them more flexibility as to the 
timing of their communications. If a LEO satellite has a lower priority (and is therefore considered for scheduling 
later) it is quite possible that the GEO (or HEO) satellite scheduled earlier happened to use an antenna at a time 
when the LEO absolutely needed it. When the LEO is finally considered for scheduling, its own opportunity will 
have been used up by the higher priority GEO and therefore it will fail to be scheduled at all. This is true even if the 
GEO could have been moved to a slightly different time to allow the LEO to be scheduled. 

 Although a priority-order allocation guarantees that higher priority requests will be fulfilled before lower-
priority ones, it is not optimal (and can perform very badly) and under-utilizes important resources. Consider the 
following extremely simple example, which is therefore easier to use to illustrate this point, where three requests for 
the same time period have been received, Requests 1, 2, and 3, respectively, where the priority is highest for Request 
1 and lowest for Request 3. Two different stations exist, A and B, that happen to be situated to service two of those 
requests each, based on the orbits. Station A can service one request at a time and Station B can service two.  
Request 1 references Station A in its primary request and Station B is listed as an alternate. Request 2's service 
request lists Station B with no alternate and Request 3 lists Station A with no alternate.  Request 1, with the highest 
priority is selected first by the priority-based scheduler and since its primary requested station, Station A, is 
available, this is what is allocated to it. The priority-based scheduler then considers Request 2, with the second 
highest priority and selects Station B, since it is the only one that can service Request 2. When the scheduler gets to 
Request 3, it finds that only Station A could service its request, but it has no more capacity. Meanwhile, Station B 
has excess capacity. Obviously this is a suboptimal solution, since it was possible, following an algorithm that 
considered resource contention, to allocate a station to every request. 

 But perhaps a scheduler could be devised that systematically tried every possible solution and selected the 
best, and therefore optimal, one. In the example above, the number of possible solutions is 2 choices for request 1 
times 1 choice for request 2 times 1 choice for request 3 = only 2 possible solutions. However, consider a set of 
requests consisting of only 30 simple requests where there are on average 4 meaningfully distinct choices (e.g. 
different stations, time windows, or frequencies) for each request. This means that there are 30 distinct decisions 
with 4 choices each so the number of solutions is 4 x 4 x 4.... x 4 = 430 = over a million trillion possible solutions, 



3 
American Institute of Aeronautics and Astronautics 

which is clearly impractical to systematically search. This is the essence of NP-Complete problems. They require 
good heuristics to solve them in a close to optimal manner and simple methods for ordering the decisions (e.g. 
ordering the requests) can produce very poor results. 

II.   General Scheduling Service Concept 

 We are creating a highly intelligent and flexible scheduling service available through a Service Oriented 
Architecture (SOA) for a variety of diverse space-related applications which require optimized resource allocation.  
These applications would provide a description of the scheduling problem that needs to be solved to the scheduling 
service. This problem definition primarily takes the form of an XML description of the tasks to be scheduled, the 
resources available, and the constraints. With enough depth and flexibility specified for these descriptions, any 
scheduling problem can be represented in this way. The scheduling service delivers back to the requesting 
application an optimized schedule which represents a high-quality resource assignment solution to the problem. The 
scheduling service stores within its local database every problem and solution that it has solved. This way 
incremental scheduling requests from clients can come to the scheduling service, merely referencing the previous 
problem and solution and only needing to specify changes.   

 The scheduling service receives these scheduling requests from a variety of SOA clients. For example, one 
application, receiving commercial requests for satellite imagery, would take these requests and the satellites under 
its control and  transform these into tasks (or requests), resources (the satellites and their payloads), and visibility 
and other constraints, and pass the resulting scheduling problem to the scheduling service which would return an 
optimized set of observation assignments. Another application, relating to reassignment of tasks from satellites 
under space weather induced duress, would combine the current tasking of the satellites experiencing difficulties 
with the tasking of the satellites which could potentially assume some of that tasking, and send the resulting 
scheduling request to the scheduling service, which would respond with the optimized reallocation of all the tasks to 
the remaining satellites. A third application would the set of observation requests for a 24 hour period for the tens of 
thousands of objects in the space catalog, primarily consisting of manmade debris orbiting the earth.  The scheduling 
service would return the set of assignments of observation tasks to radar and optical sensor resources.  

III.   SOA Integration 

 The general scheduling service was prototyped using the Java Messaging Service. The Java Messaging 
Service is a messaging standard that allows for broadcasting (using topics) and point to point communication (using 
queues) and is used by many SOAs. The current Scheduling Service prototype can be accessed as a service via the 
Java Messaging Service. The process for using the current Scheduling Service prototype as a service is as follows: 

1. The client creates an xml representation of the scheduling problem according to the data model described 
below. 

2. The client sends the scheduling problem and a return address (queue) to a permanent Java Messaging 
Service topic that is monitored by the scheduling service. 

3. The service receives the scheduling problem, schedules, and returns the solution using the same data model 
to the client via the return address provided by the client. 

 The current demonstration of the scheduling service prototype uses a client based on an existing scheduling 
tool GUI for schedule problem definition, viewing and schedule editing. I.e. the user defines the problem and views 
the solution in this GUI, but the actual scheduling is accomplished by sending the scheduling problem in XML 
format via the Java Messaging Service to the scheduling service and receiving the solution in the same way. 

For the current prototype, scheduling problems and solutions are specified with an xml schema described here: 

1. Task: A task is some action to be scheduled, like a sensor observation, communication pass, or tracking 
episode. Tasks have properties like duration and the earliest and latest possible time to do the task. Tasks 
often require the use of one or more resources. 

2. Resource: A resource is some personnel, equipment, service, etc. that is required for the completion of a 
task.  Resources might be usable only at certain times (LOS for a satellite, work hours for personnel, etc.) 
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as described by a calendar. Resources may be individual (usable by only one task at a time) or continuous 
(usable by multiple tasks simultaneously.) Resources also have a quantity indicating how many or much of 
them there are. 

3. Calendar: A calendar specifies the set of times that a resource or task can be scheduled. 
4. Constraint: A relationship between tasks and/or resources that specifies some constraint on the selection of 

the time or resource for the task. This might be a temporal requirement in the execution of the tasks such as 
one task having to complete before another can start, that two tasks should use the same specific resource, 
or that a task can only use a resource that has the proper visibility at the time the task executes. 

5. Resource Set: A collection of resources that can be used interchangeably for some purpose. 
6. Resource Requirement: Specifies what combination of resources could be used to complete a task.  E.g. 

satellite communication pass might require an antenna and the correct type of service. 
7. Resource Assignment: The set of resources actually scheduled to be used from among the options provided 

in a Resource Requirement.  
8. Visibility File: The XML schema also references the name of a file that stored previously calculated 

visibility opportunities between objects in space and locations on the ground. If applicable, it can also store 
visibility between two different objects which are both in space. 

 The scheduling service receives these scheduling requests from a variety of space mission clients. For 
example, one application could involve tasking space-based or ground based sensor resources. It would transform 
the needs for sensor information into tasks (or requests) for sensor resources, and pass the resulting scheduling 
problem to the scheduling service which would return an optimized set of sensor assignments. Another application, 
relating to reassignment of tasks from satellites under attack or duress would combine the current tasking of the 
satellites experiencing difficulties with the tasking of the satellites which could potentially assume some of that 
tasking, and send the resulting scheduling request to the scheduling service which would respond with the optimized 
reallocation of all the tasks to the remaining satellites. 

IV.   Multiple Schedulers 

 Since, like most NP complete problems, generating a correct schedule is much harder and more time-
consuming than testing or grading one, it would be possible for the scheduling service to include several different 
scheduling algorithms, all of which were independently generating schedules. Relatively simple and quickly 
executing grading software could then evaluate each schedule and select the best one. One algorithm might be the 
bottleneck avoidance algorithm (including swapping out earlier processed, lower priority tasks), described later.  
The other might be a more conventional priority based scheme which was guaranteed to service higher priority tasks 
over lower priority ones, which is useful when the number of required tasks far outweighs the resources available to 
execute them. In situations such as the simple example shown above where it is possible to service all tasks with 
proper consideration of resource contention, the best solution might be from the bottleneck avoidance algorithms.  
But there may also be some situations when all service requests cannot be met where a priority-based algorithm 
performs better in terms of delivering an acceptable solution quickly. 

 A preprocessor component could, among other things, examine the details of the incoming scheduling 
request, decide on the appropriate scheduling method or methods to call, grade the responses if more than one is 
returned, and select the best one. In this way emergency service requests requiring attention immediately would be 
passed to a very high speed (but less optimal) Emergency Response Scheduler for immediate scheduling, so that the 
appropriate tasks can be passed back and executed immediately. Presumably this would only contain a relatively 
small number of requests that require immediate execution. Otherwise, or for the remaining requests, the 
Preprocessor selects one or more appropriate Subschedulers. These Subschedulers will all be independent, and 
therefore would easily fit into a distributed architecture with each Subscheduler having its own computing resources, 
if required. 
 

V.   High Level Architecture 

 The High Level Scheduling Service Architecture is shown in the following figure. Applications integrated 
in the Java Messaging Service SOA with scheduling problems to be solved send an XML description of the 
scheduling problem (Tasks, Resources, & Constraints) along with visibility data and scheduling method selections 
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through the Java Messaging Service interface to the scheduling service. The preprocessor calls the appropriate 
subscheduler, implemented in a generic, intelligent scheduling system architecture. 

 These Subschedulers are the primary focus of the research and development and are the components that 
must address the really difficult aspects of space mission resource assignment and scheduling problems. Each 
Subscheduler conceptually takes as input the tasks, resources and constraints and produces, as output, the 
assignments to the tasks of resources and time windows that meet the constraints. Each task description includes 
what resources it requires and for how long, and the constraints that it is involved in. If tasks are hierarchical, each 
task will list its component subtasks. In practice, most of the resources needed by tasks will have been predefined, 
with only updates as to their availability being passed in (e.g. sensor failure) at scheduling time. The Scheduler 
generally maintains its own record of the availability of each resource based on the tasks and the time windows 
currently assigned or tentatively assigned to them. The constraints may be hard (an absolute requirement) or soft 
(satisfaction is desired but not absolutely necessary) and may be temporal, resource-oriented, or of miscellaneous 
type. The applications requesting scheduling services can also optionally pass in constraints on the scheduling 
process itself, such as how much time is available, which specific subscheduler should be used or which sets of 
methods should be used for the decision points, some of which are described below. 
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Figure 1.  High Level Scheduling Service Architecture. 

 Each Subscheduler has several decision points, each of which our generic intelligent scheduling 
architecture allows to be customized through selection of existing options or plugging in new software. One major 
set of decisions is what the scheduler should process and in what order to process. One common solution is to 
process tasks in due date or priority order. Another possibility is to process resources in the order in which they 
become available. Still another is to process constraints, the tightest ones first. We expect, as described in the 
algorithm description below, to process requests, sorted so that the tasks that request the most constrained resources 
at the most constrained times are scheduled first. It is extremely important to note that the order in which processing 
will occur has a very large effect on the quality of the solution and that simple priority or time ordering schemes will 
often produce very poor results in any reasonably complex scheduling situation.   

 Another major decision point is assigning to a task the needed resources and time windows, while 
satisfying the applicable constraints. Usually the time window is constrained by the need to get a task done by a 
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certain time while having to wait for events or other tasks to finish before they can start. There may be an additional 
soft constraint to have the task finish as soon as possible or to start as late as possible. Usually there is at least some 
freedom in choosing the time window at the same time that the specific needed resources are selected. Choosing the 
set of resources that are available at the same time that best meet the constraints, and that are best for the overall 
plan can be difficult. “Greedy” systems that choose what is best for the specific task or resource often produce poor 
results, overall. Some systems use a resource balancing approach whereby the least utilized resource is chosen, 
under the assumption that if a later-processed task needs a specific resource instance, all of them will still be 
available; but this can also run into problems, depending on the processing order, especially in cases like space 
mission applications where resources are expensive and therefore likely to be tight.  A better approach is to choose 
the resource that other tasks are least likely to need. This is the approach in the algorithm described below.   

 One general domain-independent resource constraint satisfaction algorithm that we have developed was 
inspired by Sadeh1

Figure 2.  Internal Scheduler Architecture. 

.  In this algorithm, first, each task’s resource time requirements are spread evenly across all of 
each possible resource’s possible time windows, without regard to when other tasks might be eventually scheduled. 
These individual profiles are summed across all tasks for each resource. This first step is done to determine which 
resources are most overburdened and at which times.  This is used to determine which tasks should be scheduled 
first and which time/resource windows should be avoided. 

 Often, this algorithm generates an optimal plan in one pass.  It accomplishes this by picking the most 
overburdened resource, that resource’s most overburdened time, that time’s task which most contributes to the 
problem but which has the least flexibility, and finally by choosing a resource and time window that minimizes the 
degree of overburdening most. The intuition is to concentrate on the most contended for resources at the most 
contentious times and then to concentrate on the tasks with the least flexibility, since this lack of choice could cause 
problems later. This might occur if a task with more flexibility was scheduled for a resource at a time where another 
task absolutely needed it. Finally, the algorithm attempts to make time window choices that minimize the degree of 
overburdening.   

 One major decision point arises when, during the assignment of resources and time window to a task, no 
reasonable assignment can be found. This may involve unsatisfiability of a soft constraint, in which case it will most 
likely be ignored, but may also involve the inability to satisfy hard constraints or to find needed resources at the 
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required time. In one of these latter cases, the appropriate action for the planner depends on the aspects of the 
domain, the way it is modeled, the scheduling time available, and the optimality of the other algorithms in use. For 
example, if an unavailable resource is not completely saturated, it may be appropriate to try to shuffle some of the 
other task assignments to make a "hole" in a resource availability profile for use by this task. Perhaps a lower 
priority or less important task that is already scheduled should be unscheduled to make room for this task. The 
concept of changing the plan in the same cycle brings up the notion of backtracking. A small amount of 
backtracking can be important to optimize a plan in relatively small ways, but over-use of this technique degenerates 
into systematic search, which should be avoided for most complex problems. Often heuristics can be efficiently used 
to handle the problem of resource/time window unavailability. These take two forms. One is that often some of the 
supposed hard constraints or resource requirements have some leeway. For example a sensor setup task may be 
specified to take 60 seconds but in an extreme situation, 30 seconds might be acceptable if the only alternative is to 
not have the sensor event occur at all. Other examples are tasks that may occur somewhat in parallel rather than in 
series as specified (again, versus not happening at all). For example, an intelligence gathering request might specify 
that they would prefer time between the passive radar search for a jammer and the task to collect overhead imagery 
in order to more precisely determine its location before taking the image. However, if the image is large enough to 
definitely include the jammer (albeit at lower resolution) it might be acceptable to perform both sensor tasks 
concurrently. This would be an especially relevant example if the particular satellite with these sensors was in 
serious contention at this time. The other form of heuristic is one whereby all resource requests and constraints can 
be met by a clever trick that the human planner has found to be useful in similar situations; e.g., human planners 
have found that GEO and HEO related requests are the most likely to be able to be moved to make room for another, 
more tightly constrained LEO related request. (Of course our proposed resource assignment algorithms already take 
this into account the first time through.) These latter forms of heuristics are less likely to be useful if the ordering 
and selection algorithms are near optimal. Ultimately it may be necessary to place the task in question (or another 
one swapped out to make room for it) on an unschedulable list, to be dealt with at the end of the cycle. 

 After each item has been processed, another decision point is reached, that of optimizing the plan just 
produced before the resource assignment cycle ends. This includes trying to solve the remaining problems and 
optimizing the soft constraints. Recall that it is possible that acceptable resources and time windows could not be 
found for some tasks. Thus, tasks may be on an Unscheduled List or may be scheduled in such a way as to create 
conflicts and otherwise violate constraints. A Case-Based Reasoning (CBR) module exists to suggest conflict 
resolution strategies based on previous similar conflicts. These may be able to be applied by the scheduler itself to 
fix the conflict or may require user approval.  The use of CBR for Conflict Resolution is discussed more thoroughly 
in Stottler2

 The scheduling service will operate on a planning cycle concept to handle evolving situations. A 
preprocessor will examine the input scheduling problem and planning time available and determine if the emergency 
or other very rapid subscheduler should be called to schedule any tasks immediately for immediate execution. This 
can be followed by additional requests scheduled with more planning time and deliberation to achieve a more 
optimum use of the remaining resources. So urgent tasks can be scheduled and executed during the more normal 
planning cycle of the majority of the tasks. This hybrid approach achieves the benefits of both approaches – high 
speed scheduling and execution when necessary and more optimum scheduling and use of resources when more 
time is available to develop a more optimum schedule. 

. Alternatively policy rules may dictate how to resolve conflicts, such as swapping out lower priority 
requests to allow higher priority ones to be satisfied.  

 Under more normal circumstances, the preprocessor takes the updated scheduling problem and the 
available planning time and chooses one or more from among a small number of planning options, each based on a 
different algorithm, having different trade-offs as to optimality and run time. These options will include a systematic 
search algorithm which was guaranteed to produce an optimal result but could only be executed with a very small 
number of tasks. One option would be an algorithm applicable to a large number of tasks, but within the design 
parameters of the resources in question. This algorithm would be heuristic in nature, to avoid the exponential 
computational time associated with NP-Complete problems, but would produce superior solutions to the task 
scheduling and resource assignment. An additional algorithm, if determined to be necessary, will be one to handle 
the case of an overwhelming problem, where far fewer resources are available than required for the requested 
tasking. This approach also makes it straightforward to add additional planning algorithms, perhaps because they 
have been shown to be more optimal in specific types of situations. With a simple grading scheme (such as the 
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summation of priorities of fulfilled tasks) the best resulting plan can be chosen from multiple independent 
algorithms. This might be especially appealing with the availability of additional processors. 

VI.   Results and Future Work 

 In addition to prototyping the scheduling engine as a JMS accessible service in an SOA, the scheduling 
engine has itself been applied to several different space mission scheduling applications. The general scheduling 
service has been used to first prototype an automatic scheduling system for a DOD satellite communication network 
and is now being used as the basis for the development of an operational system. The scheduling engine discussed 
here has also been applied to develop an automatic scheduling system for a NASA space communication network 
and for a NASA application scheduling in-space resources during manned missions. Finally, this service is being 
applied to the scheduling of the sensor resources of the Space Surveillance Network (SSN) to schedule the tracking 
and signature gathering tasks to maintain and expand the Space Object Catalog. In all cases, the system described 
here has performed as well as or better than the humans performing the activity. 

VII.   Conclusion 

 Our work has shown that it is possible to define a general scheduling service which can be successfully 
applied to a variety of diverse domains. This includes the development of an XML schema which can represent both 
the detailed, rich description of scheduling problems to be solved and the resource assignments and accompanying 
time windows that constitute the solutions. Furthermore, by including a variety of different scheduling methods, 
built in an architecture which allows each scheduling system decision to be easily customized, a wide diversity of 
space scheduling applications can accommodated. 
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