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Abstract. We have developed and continue to enhance automated intelligent 

software that performs the tasks and decision making which now occurs by the 

personnel manning watch stations in the Combat Direction Center (CDC) and 

Task Force Combat Center (TFCC), on-board aircraft carriers and other Navy 

ships. Integrating information from various sources in a combat station is a 

complex task; disparate sources of information from radars, sonars, and other 

sensors are obtained by watch station surveillance guards, who must interpret it 

and relay it up the chain of command. The Intelligent Identification Software 

Module (IISM) alleviates some of the burden placed on battle commanders by 

automating tasks like management of historical data, disambiguating multiple 

track targets, assessing threat levels of targets, and rejecting improbable data.  

We have knowledge engineered current CDC/TFCC experts and designed IISM 

using C++ and SimBionic, a visual AI development tool. IISM uses multiple 

soft computing techniques including Baysian inference and fuzzy reasoning. 

IISM is interfaced to the Advanced Battle Station (ABS) for use on many US 

Navy sea vessels. 

1.  Introduction 

The Combat Direction Center (CDC) and Task Force Combat Center (TFCC) on-

board aircraft carriers and other ships must be manned with dozens of highly trained 

technical and tactical personnel [1]. The reason for this is the complexity of the 

weapon systems and associated information, as shown by the high-level organization 

of it in Figure 1. The combat areas consist of people; computers; and displays; and the 

arrows (in the figure) roughly correspond to information flow between combat areas 

and from sensors, to combat areas and from combat areas to 

weapons/countermeasures. CDC/TFCC operation is complicated by a large number of 

sensors, weapons and countermeasures. These operations will only become more 

complicated as additional sensors, weapons, and even war-fighting areas are added. 

Furthermore, through the Cooperative Engagement Capability (CEC), each ship can 

use the sensors and weapons on other ships thus adding additional combat areas, 

sensors, and weapons.   
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Fig. 1.  Weapon System High Level Overview 

A naval commander must make complex decisions based on limited or noisy 

information.  In partially observable and adversarial environments it is vital to keep 

track of an approximate model of the world that simultaneously maintains multiple 

hypotheses about the world state [2]. These hypotheses facilitate reasonable decisions 

to take in response to the hostile environment.  

To ameliorate the complexity of these systems, Stottler Henke has developed the 

Intelligent Identification Software Module (IISM) that performs the tasks and decision 

making which now occurs by the human manning that watch station, such as tracking 

objects that merge and later split up, maintaining history of possible tracks for an 

object, assessing threat level, rejecting “insane” data, and handling errors. 

IISM is interfaced to the Advanced Battle Station (ABS) for use on many US 

Navy ships. Given tracking data and time stamps from the Advanced Battle Station 

(ABS), IISM updates the history list of tracking and identification data, rejects 

nonsense tracks, compares recent history to past patterns of activity, alerts the 

commander when necessary, and provides customizable identifications of targets as 

well as the threat level of each target.  IISM is also capable of correcting errors and 

recovering snap-shot and history data after unforeseen catastrophes. 

We have knowledge engineered current CDC/TFCC experts and determined that 

the cognitive processes being utilized were reproducible with Artificial Intelligence 

techniques [3]. We determined the types of tasks performed and the knowledge 

required for those tasks. A breadth of positions was important to keep the 

representation schema truly general. We designed the general CDC/TFCC knowledge 

representation schema and then an intelligent CDC/TFCC equipment control, 

monitoring, processing, and fusion system. From knowledge engineering and the 

schema, we designed and implemented IISM using C++ and SimBionic, a visual AI 

development tool that can help in the development of fuzzy, Bayesian and other AI 

techniques. 



2.  IISM Input / Output Description and Functional Overview 

Human tactical decision making in warfare scenarios can be described with the 

simplified diagram shown in Figure 2. Imperfect information about the current state 

of the world is gathered by a diverse set of sensors. These sensors can be in several 

modes, may be off ship, and may be human in nature. The human decision-maker 

receives the sensor data through a communication or perception processes. Based on 

that information he makes decisions to take actions that affect the objects in the world 

over which he has direct control. These might include CDC/TFCC display systems, 

airborne platforms, weapon systems, communications, and sensors. 

 

 

Fig. 2.  Human Tactical Decision-Making 

On a highly conceptual level, IISM’s task can be viewed as a classification 

problem of the threat level assigned to individual entities, e.g. ships, present in the 

scenario. Maintaining a consistent and reasonably approximate model of several 

entities’ attributes that are only partially perceivable implies the task of track handling 

and analysis. The latter is exploited in IISM to: 1) determine the identity of an entity 

(or some degree of certainty about it), 2) perform path analysis of entities and (3) 

infer abstract conclusions regarding the behavior of entities on the basis of their 

movement over time. Stated another way, both positive and negative evidence is 

tracked to form multiple, possibly competing hypotheses. Conclusions about these 

hypotheses are inferred for tracks through the process of elimination reasoning. 

IISM stores and reasons about incoming track data in a flexible and customizable 

manner as defined by the control logic defined in SimBionic (see below). During this 

processing, IISM checks the quality of incoming messages, it updates its history of 

vessel movements (tracks) and IDs and performs threat assessment of units. This 

functionality is presently performed by trained watch-standing personnel aboard 

ships. It requires reasoning about whether the perceptions align with the internal 

model of the world and how insane (i.e. misaligned) perceptions are treated.  

 

Insane and noisy data handling 

Insane data can arise through an incorrect model or faulty perceptions, and special 

care must be taken in order to extract hints to potential threats instead of discarding 

them just like incorrect perceptions are discarded. The IISM reasoning functionality is 

performed in three subsequent steps in IISM’s Insanity Checker: (1) Threat 

processing marks a unit as a potential threat in case insane perceptions are indicating 
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this. (2) Data Neglect Checking takes account of an erroneous internal model caused 

by sensor noise and updates the model with the insane update. (3) Inconsistency with 

ID checking keeps track of harmless, but questionable/suspicious pieces of 

information and thus allows reasoning about temporally dispersed perceptions.  

 

Track Hypothesis Handling 

Instead of keeping a flat organization of unit ID hypotheses, IISM uses a hierarchical 

approach to refine an ID hypothesis as needed, such as in the case of determining the 

exact type of the enemy’s unit. IISM assigns each hypothesis a particular certainty 

level that describes its reliability. When we get new data we use a Bayesian network 

update to keep track of the proper certainties for each track hypothesis. When the 

certainty for one of multiple hypothesis of a track is changed, or when a new 

hypothesis for a track arrives, an update algorithm is called on that track. This update 

algorithm uses the hyperbolic arctangent adjustment algorithm on each certainty to 

propagate the change made by the additional information. This algorithm runs 

through every hypothesis that is related to the changed one, updating each certainty 

according to Bayesian rules. These rules update the certainties based on the prior 

values and how closely they are related to the other related certainties. 

Example Situation 
Figure 3, shows an area around the Persian Gulf and provides an idea of how cluttered 

the environment being monitored and assessed can be. 

 

 

Fig. 3. Example of Density of Contacts that Need Monitoring and Assessing 

Let’s examine a situation where two surface tracks (track 1 & 2) are first detected, 

both traveling at a high speed (50 knots). At this point, IISM would already inference 

a subset of platform types based on their speed. Later these two tracks split up.  Track 

2 later merges with track 3, which had previously been IDed (identified) as an Iranian 

Houdong Fast Patrol Boat.  These tracks (2 & 3) soon split up; at this point IISM does 

NOT know which of the tracks (2 or 3) is the formerly identified Iranian Houdong 

Fast Patrol Boat.  Therefore, IISM will keep both sets of past information and use new 

information to improve its hypothesis on what each boat is.  As can been seen even 



with this simple scenario, the situation is very fluid and multiple hypotheses must be 

tracked and re-evaluated as new information is obtained. 

3.  SimBionic 

SimBionic is a visual framework that simplifies the authoring of simulated behaviors 

or algorithms. SimBionic’s framework consists of a canvas depicting algorithms as a 

finite state machine (FSM) graph, a palette of geometric objects and glyphs, and a 

dictionary of actions and predicates. 

SimBionic employs four programming constructs; 1) actions, which define all the 

different actions the algorithms can perform; 2) algorithms (also referred to as 

behaviors) that string together actions and conditional logic; 3) predicates, which set 

the conditions under which each action and algorithm will happen; and 4) connectors, 

which control the order in which conditions are evaluated, and actions and algorithms 

take place.  

These four constructs allow one to create algorithms that range from simple 

sequences to complex conditional logic. Via SimBionic’s authoring canvas, see 

Figure 4 (left image), users can visually create algorithms by drawing actions and 

invoke algorithms (represented as rectangles) and conditions (represented as ovals) to 

interact in both simple and complex combinations via connectors (represented as 

arrow-shaped lines with priority numbers). This canvas also allows users to assign 

arbitrary expressions and comments to these elements. 

 

Fig. 4. SimBionic Authoring Environment & Trigger_NearByEnemy Behavior 

SimBionic extends the usual notion of finite state machines by making it possible 

for states to refer to other finite state machines hierarchically, to define modular 

algorithms that can be combined powerfully.  SimBionic software also provides four 

extensions that increase the power and expressiveness of the basic engine: global and 

local variables, interrupt transitions, “blackboards” for sharing knowledge among 

finite state machines, and polymorphic indexing for run-time selection of algorithms. 

IISM uses the SimBionic visual AI code generator platform to instantiate 

intelligent modules that track target paths, assess threat, and identify targets. For 

example, the Trigger_NearByEnemy behaviour found in IISM, see Figure 4 (right 

image), is a schema for interacting with the possible enemy labelled RED, within 

some predefined distance.  This behaviour is called when tracking data of the target 



are consistent with type RED and calculated “distance” from own ship.   It invokes an 

action to contact the target by messaging.  Other more complicated behaviours are 

invoked for identifying targets as friend or foe, for tracking specific targets over time, 

and for rejecting nonsense/insane data. 

4.  IISM Detailed Capabilities 

IISM has been implemented using C++, and SimBionic.  SimBionic can output its 

behaviors as C++ code for fast execution.  IISM utilizes this facility to create a fast 

executing AI-based solution.  Not all of the major capabilities or requirements utilize 

SimBionic, so listed first are those major capabilities or requirements that do not 

exploit SimBionic, and then those that do are described. 

 

Intelligent Tactical Memory 

One of the important functions that humans currently provide in the CDC/TFCC is 

that of intelligent memory and IISM mimics this capability.  This memory includes all 

track attributes (position, velocity, ID information, etc.) along with a time stamp for 

each.  Current ship systems do not keep, in a readily recalled format, the trajectory 

and ID history of each track.  IISM fulfills this purpose. 

 

System Independence 

If tactical decision systems go down, IISM will continue to remember (and update 

from other sources if possible) the current tactical picture. This memory function is 

important for rebuilding the tactical picture.  IISM is set up to take inputs from 

multiple sources. 

 

IISM Reliability 

IISM is required to be very robust, never crashing and able to run around the clock 

without requiring reboots. To handle the cases of hardware failure, IISM constantly 

backs up its memory to disk and automatically restore it upon start up.  

 

Human Computer Interaction (HCI) 

Most of the HCI occurs through the Advanced Battle Station (ABS). This way watch 

station personnel do not need to learn anything new, the information will appear in the 

same manner as if the current human decision makers had provided the information. 

4.1 SimBionic Supported Capabilities 

SimBionic is used to support IISM’s core capabilities of automating the task of 

intelligent track analysis. The track’s position and velocity with historical 

information, if any, regarding position, velocity, proximity and other interactions with 

other platforms is analyzed by IISM to estimate the probability of hostile intentions of 

and assess the threat posed by the track. Whenever a track significantly changes its 

velocity, analysis is made to determine if the maneuver warrants a change in the 



current ID estimate.  Considerations include existing ship and air lanes, motion 

toward or away from blue forces or the assets that they are protecting, whether tracks 

appear to be cooperating, and attacks.  For example, consider two tracks proceeding 

together at high speed.  One breaks off and mingles with local fishing traffic.  Later 

the other attacks.  IISM will warn the watch stander about the other track.  If the 

attack track has merged with other tracks, IISM will notify the user of which ones are 

possible enemy.  IISM can reason from process of elimination as the non-enemy 

tracks are IDed to identify the remaining possibilities. 

For example, the Track Id Processing Behavior (TIPB) is a hierarchal decision tree 

to classify the track into one of the ID categories (BLUE, RED, GRAY, WHITE) with 

a given certainty level by analyzing current information as well as historical 

information of the track, see Figure 5 (left image). TIPB has 3 top-level behaviors: 

Surface Track Behavior for analyzing surface tracks, Air Track Behavior for 

analyzing air tracks and Undersea Behavior for analyzing undersea tracks. When 

IISM receives new updates for the track it runs through TIPB. 

 

 

Fig. 5.  Track Id Processing Behavior& Surface Track Id Processing 

Now looking at the Surface Track Behavior, see Figure 5 (right image), it consists 

of five behaviors: 

• ClassifyCERT 

• ClassifyPROB  

• ClassifyPOSSHIGH  

• ClassifyLogical 

• ClassifyPOSSLOW 

The analysis of the information starts with ClassifyCERT and goes through 

ClassifyPOSSLOW if the track cannot be classified by any of the behaviors. 

 

The following details some of the reasoning techniques used to perform the 

intelligent track analysis. 

 



Track History Maintenance 

Memory is also used to correlate previous tracks with new track information.  A 

complete track history is kept, which allows IISM (or a human operator) to quickly 

determine if the track's ID is ambiguous because of a track merge or ID swap.  

Several mistakes, during naval exercises, caused by merges and swaps resulted in the 

targeting of several neutral, and even blue, platforms.  Such mistakes during exercises 

cause commanders to limit their own options during future exercises or real missions.  

They are much less likely to use a weapon like the Harpoon, since they lack faith in 

their own ID picture.  Although these problems are rare during random or benign 

scenarios (tracks don't normally pass that close to each other), a real adversary will go 

out of his way to try to create them.  E.g., a terrorist attacking platforms under US 

protection would try to mingle, possibly several different times, with commercial 

platforms, such as fishing boats and merchant traffic.  IISM has algorithms 

implemented with SimBionic that will handle the most complex set of merge/split 

scenarios (e.g. platforms merging with several different platforms and each other at 

separate times) logically and correctly.  These algorithms already outperform humans 

in their ability to determine the possible IDs of tracks involved in several merges. 

 

Historical Comparison 

A track’s history is kept in varying levels of detail, depending upon its age.  IISM will 

remember all tactical data (to different levels of detail, minutes, hours, days, months, 

or even years before) and compare the current data, events, and situation to the recent 

or distant past.  IISM will retrieve tracks similar to the current one and make 

recommendations accordingly.   

 

Multiple Competing Hypotheses for ID 

IISM keeps simultaneous competing hypothesis for each track as to the type/hull of 

the platform and its country of ownership.  It will track both positive and negative 

evidence and reach both positive and negative conclusions. IISM explicitly keeps 

track of all possible hypotheses and the associated likelihoods for each track.  

Initially, a track can be anything, but incoming evidence impacts the certainties of 

each hypothesis.  Positive ID information, such as a good visual ID, eliminates the 

competing hypotheses until the track is involved with a merge, at which time the 

resulting tracks each contain all the hypotheses of both tracks that merged. 

 

Hierarchy of possible ID values 

For both dimensions of ID information, IISM will include a hierarchy (from general 

to specific) of possible ID values.  E.g.:  

• Blue – UK, Combatant – frigate – FFG-7 – Specific platform; or  

• White – Merchant, Cargo Carrier – Ship Class – Specific Hull 

ID is often hierarchical with the goal of determining the most precise value that is 

worthwhile.  Thus while an ID of White Merchant might be adequate, a Red 

Combatant may need to be IDed more precisely, perhaps as Chinese Houdong Fast 

Patrol Boat.  These hierarchical symbols interact with the competing hypotheses 

described above.  Thus, if the only competing hypotheses for a track are Gray 

Destroyer and Red fast patrol boat, and information is received that it has a speed 

greater than is possible for a destroyer, then IISM will conclude it is red. 



 

Sanity Checking 

When new data is received, before the track information is updated, the new data is 

compared to the recent history to make sure it makes sense and is at least physically 

possible.  Any inconsistencies are reported, and to the degree practical, automatically 

resolved.  This sanity checking function occurs for red, blue, gray, and white forces.  

IISM compares the current position/velocity to the last reported position for that track 

and determines if it is physically possible, given the platform type.  If not, it 

determines if it is most likely a spurious data point, that the assigned track type is 

wrong,  that a completely different platform as been assigned the same track number, 

or that the reported position of a friendly track is incorrect.  It then recommends the 

appropriate action.  

 

Fuzzy Reasoning 

Classify Logical of the surface track behavior is an example of the fuzzy reasoning 

used by IISM. It will analyze the trajectory of the track to try and classify what kind 

of platform it is. Please refer to Figure 6 

 

 

Fig. 6.  Classify Logical Fuzzy Reasoning Behavior 

 

In this behavior, first the turnRadius and Weight of the track is estimated based on the 

history of the trajectory. Next these numbers are converted into one of three fuzzy 

values, representing  heavy, light, or middle weights, and small, middle, and large 



turn radii. The reason we use fuzzy values for the calculations is because this 

algorithm now becomes much more robust in the presence of noise or other negative 

factors. Finally, the platform type is recommended with various fuzzyConfidence 

levels depending on the fuzzy values. For example, if we have a low weight and high 

turn radius, we are PROB small light platform, and similarly if we are high weight 

and low turn radius we are POSHIGH large platform. The reason the large is only 

poshigh while the small is prob is because a large ship cannot move quickly, but a 

small ship can, thus we are more confident a ship is small when it moves quickly than 

that a ship is large when it moves slowly. This kind of intuitive reasoning is only 

possible via fuzzy reasoning. 

 

Process of Elimination Reasoning 

IISM employs logic and the process of elimination in making ID decisions.  For 

example, IISM may know one combatant is out in a particular area where several 

other tracks are present.  Even though every track seems to have low probability of 

being a combatant based on their behavior, a higher probability bias is used since one 

of them must be the combatant.  The process of elimination is used to determine the 

most likely tracks to investigate first. 

5.  Conclusion 

IISM is an AI module that alleviates the burdens placed on battle commanders by 

tracking sometimes ambiguous target signals, storing and handling past target data, 

assessing threat levels of targets, filtering out insane data, as well as robustly 

recovering from crashes and errors. IISM’s rule-based logic is used to compute track 

IDs, estimate threats, and notify users of alert conditions; its probabilistic hypothetical 

reasoning system keeps track of multiple track hypotheses based on the fusion of 

evidence from multiple sources, and uses statistical algorithms to find correlations 

between track movements. IISM is a seamless enhancement to the current Advanced 

Battle Station, providing enhanced reasoning without the need for any user to learn a 

new system. By applying multiple soft computing techniques including Bayesian 

inference and fuzzy reasoning, as well as other AI techniques, including polymorphic 

finite-state-machines, IISM is performing as well as or better than Navy personnel. 

References: 

1.  Navy Warfare Development Command, “Sea-Based Theater Air and Missile Defense: A 

21st-Century Warfighting Concept”, http://www.ndcweb.navy.mil. 

2.  Hutchins, S. G., Technical Report 1718, Principles for Intelligent Decision Aiding. 

3.  Salas, E., Cannon-Bowers, J. A., & Johnston, J. H., “How can you turn a team of experts 

into an expert team?: Emerging training strategies”. In C. Zsambok & G. Klein (Eds.), 

Naturalistic decision making (pp359-370). 


