
Appears in Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, Montana.

 1

Rapid Simulation Construction
Jeremy Ludwig, Ryan Houlette, and Dan Fu

Stottler Henke Associates
951 Mariner’s Island Blvd, Suite #360

San Mateo, CA 94404
650-931-2700

ludwig, houlette, fu @ stottlerhenke.com

Abstract—In the course of building four low-cost and fairly

distinct desktop training simulations for the Air Force’s Air

University and a simulated control system for NASA’s

International Space System, we have worked to develop in-

house standard practices and a toolset for rapid construction

of training simulations. We present here this process and

toolset and discuss its key strengths and shortcomings in the

context of the simulations we have built using it. We focus

in particular on two aspects of development that we found

to be pivotal: scoping the level of fidelity for the simulation

logic, and designing and constructing cost-effective

simulation user interfaces that achieve instructional goals.

These two aspects will be described in the context of the

SimVentive and SimBionic toolsets, both of which are

freely available for use by NASA or any other government

agency.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. SIMVENTIVE..1
3. SIMBIONIC...3
4. TRAINING SCENARIOS ...4
5. DISCUSSION ...6
6. CONCLUSION ...8
REFERENCES ...8
BIOGRAPHIES ..8

1. INTRODUCTION

Desktop PC simulations are increasingly finding a place in

the classroom as an effective way to provide immersive

experiential training. While significantly less expensive

than dedicated-hardware simulators, these simulations still

tend to be costly and time-consuming to develop, in large

part because training simulations are often built as custom

"one-offs" with little shared infrastructure or content.

Improving simulation development practices and tools to

enable true rapid development has obvious cost benefits and

will permit more widespread adoption of training

simulations. 12

In the course of building four low-cost and fairly disparate

desktop training simulations for the Air Force’s Air

University and a simulated control system for NASA’s

International Space System, we have worked to develop in-

house standard practices and a toolset for rapid construction

1
1 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2 IEEEAC paper #1206, Version 3, Updated 2007:11:28

of training simulations. We present here this process and

toolset and discuss its key strengths and shortcomings in the

context of the simulations we have built using it. We focus

in particular on two aspects of development that we found

to be pivotal: scoping the level of fidelity for the simulation

logic, and designing and constructing cost-effective

simulation user interfaces that achieve instructional goals.

These two aspects will be described in the context of the

SimVentive and SimBionic toolsets, both of which are

freely available for use by NASA or any other government

agency.

2. SIMVENTIVE

The SimVentive software toolset enables instructional

designers and subject matter experts to author computer-

based simulations and serious games without programming.

This software provides a visual authoring environment

designed to simplify and streamline the development of

simulations by moving away from the traditional text-based

programming interface. Underneath this visual interface lies

a sophisticated simulation engine capable of deploying

complex, highly-interactive scenarios both on the desktop as

well as via the web browser.

SimVentive is composed of two main components—a

Scenario Editor to create simulations, and a Scenario Player

for playing those simulations. Figure 1 shows the

relationship between authoring and playing simulations.

Figure 1: SimVentive Usage Overview

On the left is an instructor who uses the Scenario Editor to

build a simulation scenario. The resulting scenario is then

loaded by the Scenario Player, which enables the student on

the right to play the simulation.

The SimVentive Scenario Editor allows an instructor or

subject matter expert to visually construct simulations out of

 2

a set of basic building blocks, as shown in Figure 2. An

entity represents a single simulated object in the simulation.

It may be concrete (like an airplane) or abstract (like a

communication network). Each entity can have one or more

attributes that describe its current state – for example, an

airplane might have a “speed” attribute with the value

“300.”

A rule is a piece of game logic that defines how some

aspect of the simulation responds to the passage of time or

to player actions. Rules describe how the simulated world

works and define the gameplay for the scenario. They

provide the “AI” for entities and computer-controlled

players. Rules can also provide feedback and hints to the

player.

Widgets are components such as maps, HTML pages,

tables, and buttons that make up the scenario’s user

interface. Widgets can make use of many kinds of

multimedia files, ranging from bitmapped and vector images

to audio files to 3D models to video. When the player plays

a SimVentive scenario, he or she interacts with the

scenario’s widgets to perform actions in the simulation.

Events are the “glue” that binds the pieces of the scenario

together. Each time the player interacts with a widget, it

generates an event. Rules and other widgets can listen for

and respond to those events. Rules can also generate their

own events, to which other rules and widgets can in turn

respond.

Scenario editing is performed by using a number of

different editor panes, such as the pane shown in Figure 3.

We focus on only the core editors below.

The scenario pane allows the author to specify descriptive

text that will be displayed at the start of the scenario. It also

enables the author to create teams, roles, and player

positions within the game for multi-player games. In

addition, the Time Settings tab allows the author to specify

the game type, either turn-based or real-time, and the

various time settings. The assistant pane informs the author

of the overall status of the scenario and the current open

tasks. It also provides a number of wizards that step the

author through complicated procedures. The entity pane is

used to create and edit the entities that make up a scenario.

This involves the construction of entity types, the attributes

associated with a type, and entity instances. Each entity can

also have a control rule associated with it, which uses

SimBionic to drive the behavior of the entity in the game or

simulation. The events pane is used to create, edit, and

manage the events that form the "glue" of the scenario. The

rule pane is used to create and edit the rules that define the

gameplay of a scenario, where each rule has a type

(immediate, persistent, control) and a list of triggering

events. The rule logic pane is used to graphically specify

the logic that defines the behavior of each of these scenario

rules. This pane is based on Stottler Henke's SimBionic

intelligent simulation behavior technology, discussed in

more detail below. The UI builder pane is used to author

graphical user interfaces for the Scenario Player. Widgets,

such as a text input field, are placed in a Canvas and their

properties, methods, and interactions determine much of the

game play. The map pane allows the author to create and

edit maps that will be displayed in the Scenario Player as a

map widget. For example, this pane allows the author to set

the type of map (pixel, grid, lat/long), paint textures, draw

annotations, and place entities in the map.

Figure 2 Scenario Specification

Entities

Rules

UI

Widgets

Multimedia

Events

widgets display

multimedia

widgets send and

 receive events

rules send and

 receive events

rules control entities

 3

3. SIMBIONIC

The rule logic pane is used to create the logic for the

underlying models in the simulation. This pane makes use

of the SimBionic modeling architecture [Fu, Houlette, &

Ludwig, 2007]. The core of SimBionic is a visual authoring

tool that allows users to draw flow chart-like diagrams that

specify sequences of conditions and actions. Actions are

something the modeled entity can do and are represented by

rectangular nodes. Ovals indicate conditional nodes that are

true or false based on the agents perception or its internal

variables. Control flows from one action to another by

directed connectors.

Figure 4 shows an example SimBionic (SB) behavior.

Execution starts in the start node (green) at the top. The first

transition (labeled 1) is then tested. If the agent is within

range of the solider, the action MoveFrom is taken.

Otherwise, the second transition from the start node is taken

which performs the action MoveTowards action. The

behavior ends in the final node (red). A hierarchy of

behaviors can be built as an action may be a primitive action

(as shown in the example) or another behavior.

The SimBionic language supports a number of features in

addition to the basic hierarchal task network model such as

local and global variables, direct use of Java classes (i.e.

using methods as actions and conditions), ordered

transitions, polymorphic behavior, blackboard

communication, behavior interrupts, and exception

handling.

Figure 4 Sample SimBionic Behavior

Figure 3 SimVentive Editor Pane

 4

4. TRAINING SCENARIOS

In this section we summarize five training simulations built

with the SimVentive tool. The first four were built for the

Air Force’s Air University and the last was built for NASA.

Of the five simulations, only an overview is provided of the

first three. The last two simulations, in aerospace domains,

are discussed in greater detail.

ACSC: Logistics Scenario

This scenario is a training simulation for logistics mobility

planning. The simulation provides an example of how a

Joint Force Commander’s (JFC) staff needs to understand

the tradeoffs between requirements and prioritization of

scarce lift and logistics assets. Students grapple with the

challenges of limited lift capability while providing force

flow (military capabilities) to meet JFC requirements in a

notional scenario.

Figure 5 ACSC UI

 Overall, this application demonstrates the importance of

integrating logistics requirements with operational planning

objectives. The scenario is designed to be a one and a half-

hour student-participation exercise in which the instructor

will introduce and close the exercise. Students are provided

with a list of forces that must all be prioritized, and they

prioritize and match these forces with available lift assets

(air and sea). They then use their list to determine if JFC

objectives and phasing can be met within the given

timelines, and should determine that the JFC requirements

are not supportable.

AFOATS: Targeting Scenario

This training simulation puts the player in the role of a

military commander. All US efforts have failed to bring a

peaceful resolution. The US will use military force to

achieve national security objectives. To achieve supremacy,

the player will task air and space assets appropriately and

see their effects throughout the war. Roughly, the game will

go through three phases: an initial strategic attack, air

dominance, and ground support. This training simulation

puts the player in the role of a military commander.

Figure 6 AFOATS UI

SAASS: Instruments of National Power Scenario

This training simulation puts the player in the role of the Air

Theater Commander in the Middle East region. The United

States is pursuing the cessation of a country’s nuclear

weapon program development. The player must make and

implement strategic decisions to produce the most favorable

outcome possible. This outcome, which can be produced by

ceasing operations at any time, is measured in terms of the

diplomatic concessions that are available under the

prevailing conditions at that time. These conditions include

military dominance, viability of the country’s nuclear

weapons program, coalition status, and political will as

reflected in US public opinion. Operations may also cease

spontaneously at any time as an act of US congress. The

game is turn-based, meaning that most actions only take

effect "overnight," when the day is advanced by the player.

Figure 7 SAASS UI

SOC: Satellite Tasking Scenario

In this training simulation, the student is in charge of

planning the use of and making requests for information and

services provided by space-based platforms, in the context

 5

of a theater-level conflict. The student’s decisions are

driven by the needs of simulated friendly commanders and

constrained by limited availability of resources, so the

student must determine the optimal use of space capabilities

given the current situation. The outcome of the simulated

conflict, which will unfold over time, will provide feedback

on the merit of the student’s choices. Note that due to the

highly classified nature of satellite operations, this scenario

is largely notional and as such is intended to simply give the

general flavor of satellite operations. It should not be

assumed to be correct in any specific details.

Figure 8 SOC UI

There are eight main areas in the SOC scenario’s user

interface.

• The map shows the theater of operations with targets of

interest to the commanders. Each target has a health bar

indicating its observed status. A green bar indicates full

health; yellow indicates some damage; red indicates

severe damage.

• The weather area displays the current time, whether it

is day or night, and the weather. It also shows a weather

forecast for the next two turns. This information is

useful in deciding which satellite asset will be most

effective at a given time.

• The commander requests area shows all of the current

requests for space capabilities from theater

commanders. Each request has an originating

commander, a “need by” time, a type (either Comms or

Imagery), a purpose (either “Ops,” indicating pre- or

during-strike needs, or “BDA”, indicating post-strike

BDA), and a target area. Clicking on a request will

highlight the target area on the map.

• The space assets area shows the space assets that can

be tasked by the player. Each asset has a name and a

type. Selecting an asset will display its current status

and tasking in the Asset Status window.

• The asset status area shows detailed information about

a single asset. This information includes the overflight

time of the asset where relevant as well as all of the

currently-scheduled taskings for that asset. Note that

taskings may arrive from sources external to the theater

as well as from the player.

• The asset tasking area shows all of the satellite

taskings that the player currently has scheduled. Each

tasking lists the asset being tasked, the target location,

the scheduled time, and the desired quality of service.

Selecting a tasking will highlight the associated request

and asset. The scheduled time and quality of service for

a tasking can be modified by clicking on the

appropriate cell and choosing the desired value from

the combo box. Invalid values will generate a warning

message from the scenario.

• The reports/scoring area shows the result of taskings

and strikes from the previous turn. It displays the extent

to which the player has satisfied each commander

request as it comes due. It also gives the player’s score.

• The toolbar area contains the “Add Tasking”, “Delete

Tasking”, and “End Turn” buttons. To add a tasking,

select the asset to task and the request to satisfy and

click the “Add Tasking” button. To delete an existing

tasking, select it and click “Delete Tasking.” Finally,

pressing the “End Turn” button will cause the scenario

to advance the simulation time, executing any

scheduled taskings and strikes.

There are six main principles that the students are expected

to learn in this simulation:

1. Space capabilities have the power to enhance

operational effectiveness. In this scenario, strike

effectiveness is directly tied to the satisfaction of

commanders’ requests for comms and imagery. An

unsatisfied or poorly-satisfied request will lead to an

ineffective strike.

2. Weather has a drastic impact on some types of

satellites. Communications satellites are somewhat

affected in this scenario, infrared satellites are strongly

affected, and visual satellites are severely impacted.

3. Available daylight has a major impact on some kinds of

imagery satellites, notably visual and, to a lesser

extend, infrared.

4. Imagery satellites must be over the target area in order

to collect imagery. This typically happens only once or

twice a day, which limits the times at which collection

can be performed.

5. Space assets are high-demand resources shared among

many users, some of whom are higher-priority than the

theater commanders. The player must contend in the

scenario with requests from external sources.

6. After a strike, it is important that bomb damage

assessment (BDA) be performed in order for the

commander to know how effective the strike was.

Without this information, the commander does not

know whether to devote more effort to destroying the

target. In this scenario, the observed status of a target

does not change until BDA is performed.

 6

ADEPT: Space Systems Diagnosis Intelligent Tutoring

System

We have nearly completed development of a simulation-

based intelligent tutoring system that trains astronauts and

flight controllers to apply their understanding of systems

operations to diagnose and recover from problems. The

system simulates mission operations software, so students

can apply their understanding of space systems and their

interactions to investigate, diagnose, and recover from

hypothetical problems. For example, one scenario

challenges flight controller students to diagnose a problem

by reasoning about the interactions among the electrical,

thermal control, and environmental control systems on

board the International Space Station.

SimVentive was used to construct the models and user

interfaces required to simulate mission operations software.

All of the screens for this simulation are created by using

the Scalable Vector Graphics (SVG) widget included in the

UI builder pane. Each SVG Widget displays interactive, 2-

dimensional, graphics.

Parts of the ADEPT simulation resemble actual mission

operations systems used by flight controllers. This screen

shows a listing of cautions and warnings at the beginning of

the scenario.

Figure 9 Adept Caution/Warning Screen

Other parts of the ADEPT simulation do not resemble any

current mission operations software. Instead, they use

graphical display techniques to help the student visualize

the physical and functional components of the Space Station

and how they relate to one another. The interactive screen in

Figure 10 is inspired by drawings in NASA technical

documents that show an overview of the major components

of the Space Station.

Figure 10 ISS Systems

The next screen, Figure 11, shows an interactive schematic

of the pipes, pumps, valves, and heat loads that are part of

the thermal control system for the US Lab within the Space

Station.

Figure 11 ISS Schematics

5. DISCUSSION

The process used in creating these fives simulations was

quite similar. The first step is to determine what the

objectives of the simulation are. For example, in the satellite

tasking scenario, the student should learn that weather has a

drastic impact on some types of satellites. Based on these

objectives, the author can make a number of decisions.

These include defining the nature of time in a game – real

time, turn-based, or something in between. The author also

determines what information needs to be presented to the

user and what types of actions the user needs to be able to

take. With this set of objectives, the desired game play, the

display information, and the user actions, the author then

needs to implement the simulation. This involves creating

the user interface the student will interact with and defining

the underlying models in the simulation. In building these

five simulations, we found these final two aspects of

 7

development to be pivotal: designing and constructing cost-

effective simulation user interfaces and scoping the level of

fidelity for the simulation logic that achieves instructional

goals.

With respect to the user interface, the author outlines a)

what the user needs to know and b) what actions the user

needs to take. However, there are many mappings from a)

and b) to a set of inter-connected user interface widgets. To

quickly create a simulation user interface, we found the UI

needed to use the simplest, most flexible, widgets available.

For example, in the first four simulations we made

significant use of HTML display widgets to show

information to the user. HTML is very flexible in what it

displays, easy to create, and easy to change. In the fifth

simulation, that of the international space systems, HTML

image maps were not able to support the type of UI

required. Instead, SVG images were used to create

interactive interfaces that both display information and

allow the user to perform the necessary actions. This UI

leveraged the ability of existing tools that construct high-

quality interactive images to create the simplest interface

that met the simulation objectives.

Scoping the level of fidelity for the simulation logic that

achieves instructional goals is also of paramount

importance. Generally we found that the finer the

granularity the more complex the model. To rapidly create

a simulation, it is imperative to model only that which is

absolutely necessary to support the training goals. One

example is the granularity of time in the simulation. Do you

model hours, days, weeks, months? Granularity of entities

is another dimension. Do you model soldiers, fire teams,

platoons, brigades, etc? The fewer the types of entities

you're modeling, the less time will be required to author

corresponding behavior logic. Domain is another way to

scope. In military terms, this would be restricting to only a

single service or mission type within a service. For

example, the SAASS scenario doesn't model the naval

aspect of the conflict at all, and has only a very limited

model of ground combat and space operations. The focus

of this simulation is on the air domain.

In the satellite tasking simulation we could have created a

model of satellite orbiting and used this to control the

location of the satellites in the scenario. Instead, we

simplified the scenario considerably by just specifying the

time at which a satellite would be over a target. In this same

simulation, we did construct a day/night modeling system.

In this case, the logic was easy to implement and there was

not a simpler alternative. Again, the lesson here is to

simplify as much as possible while still meeting the training

objectives.

As a more in-depth example, the SAASS scenario works,

spatially, much like the board game RISK. Entity symbols

inhabit sectors of action or influence, or rest on top of

particular targets, merely to demonstrate a correspondence.

There are also some other entity symbols, outside the user's

control, to visualize army units fighting their way across the

countryside. Originally we had planned much more freedom

of action, similar to that found in a hex-map game, but those

degrees of freedom collapsed when we found that the

training objectives were more abstract. That is, we wanted

to evaluate the user’s decisions with respect to whether to

deploy assets to certain kinds of bases, and what to target

with what assets. In the end this is just a many-to-many

iterative allocation game that could have been implemented

in an Excel spreadsheet. However, the visual style of the

training game suggests clues to the mechanics of interest:

nuclear reactors near cities, bases in foreign countries, air

presence across many regions, etc. Real spatial mechanics,

like transit costs, don't exist in SAASS.

Evaluation

In construction of these five training scenarios, we found

that it was certainly easier to build the simulations in

SimVentive than it would have been to custom-code each

one in Java. Excepting ADEPT, none of the simulations

took more than a couple of weeks to build, and most took

only a couple of days. In our opinion, this is far less than the

corresponding coding effort would have been by at least a

factor of two. We found that the more complex the training

simulation, the bigger the win, since at some point a lot of

the infrastructure provided by SimVentive would have been

required by the simulation.

Limitations

The main limitation that we found in developing these

scenarios was the over-reliance on the event model. The

vast majority of events in existing SV scenarios are devoted

to managing low-level interactions between rules and

widgets. These events generally have little domain

significance and are forced on the author by the requirement

that all interaction between rules and widgets be mediated

by events. A widget interaction cannot directly invoke a

rule, nor can a rule directly change a widget’s state by

invoking a widget method. This amounts to a “tax” on the

scenario author, who must go through a number of extra

steps for each rule-widget interaction he wishes to specify.

It also muddies the scenario with many events that are

purely implementation details.

Related Tools

While a review of the diverse array of simulation / serious

game construction toolsets is beyond the scope of this

paper, it is important to note that SimVentive sits in the

middle between the heavyweight simulation tools for

modeling complex systems or that rely heavily on 3-D

graphics and the lighter weight simulation tools that focus

on being very author-friendly. For small scale training

games, such as those developed in SimVentive, our limited

survey found that the primary competitors in this field are

Flash and Captivate, both by Macromedia.

 8

6. CONCLUSION

While constructing the SimVentive tool and creating five

distinct simulations, we found that two aspects of

development that are pivotal: scoping the level of fidelity

for the simulation logic, and designing and constructing

cost-effective simulation user interfaces that achieve

instructional goals. In this paper we provide an overview of

the SimVentive tool and briefly describe five training

simulations that have been built with SimVentive.

Following this, we discuss the lessons learned while

creating the scenarios.

Building these simulations has also provided some direction

for the future work on the SimVentive tool. Our main focus

right now is on making the tool more accessible to non-

programmers. To achieve these, one aspect of SimVentive

that we are trying to simplify is the event model. As many

events are only used for a single purpose, the simulation

quickly gets cluttered with a large number of events. The

second aspect that we are working on is identifying

complex tasks shared by a number of scenarios, in order to

create automated wizards that will complete these tasks for

the author.

REFERENCES

[1] Fu, D., Houlette, R., & Ludwig, J. (2007). An AI

Modeling Tool for Designers and Developers. Paper

presented at the IEEE Aerospace Conference, Big Sky, MT.

BIOGRAPHIES

Jeremy Ludwig is the technical lead on

the SimVentive simulation construction

toolkit. He is also involved in the

continuing development of the

SimBionic behavior modeling tool and

currently directing the addition of a

machine learning component. His

research areas include machine

learning, behavior modeling, intelligent training systems,

and expert systems. Mr. Ludwig joined Stottler Henke in

the fall of 2000 after completing his M.S. in Computer

Science at the University of Pittsburgh with a concentration

in Intelligent Systems.

Ryan Houlette is a project manager

and lead software engineer at Stottler

Henke Associates. He holds an M.S. in

Computer Science (Artificial

Intelligence) from Stanford University.

He has participated in the development

of a wide range of AI systems, with a

particular focus on autonomous agents

and intelligent interfaces. Mr. Houlette

is lead architect of the SimBionic

behavior modeling tool and product manager for the

SimVentive simulation construction toolkit. He is also an

editor for the AI Game Programming Wisdom book series.

Dan Fu is a group manager at Stottler

Henke Associates. He joined nine

years ago and has worked on several

artificial intelligence (AI) systems

including AI authoring tools,

wargaming toolsets, immersive training

systems, and AI for simulations. Dr. Fu

is the principal investigator for SimBionic, which enables

users to graphically author entity behavior for a computer

simulation or game. Dr. Fu holds a B.S. from Cornell

University and a Ph.D. from the University of Chicago,

both in computer science.

