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Abstract 
The insider threat has proved a tough nut to crack.  
Previous work in this area has been dominated by efforts to 
model normal user behavior through statistical measures 
and then detect substantial anomalies.  Unfortunately, 
while these methods have shown some ability in the 
detection of masqueraders, broader applications have 
proved ineffectual due to extremely high false alarm rates.  
In this paper we describe an alternative approach (SL-
SAFE) that can achieve high levels of accuracy in detecting 
the unauthorized access and distribution of 
sensitive/proprietary information by insiders – the single 
most costly type of computer crime.  SL-SAFE succeeds in 
this task by means of a stochastic sampling of bottlenecks 
through which information must flow in order to be useful 
to the malicious insider.  Further, it achieves a low (and 
shrinking) false alarm rate by validating its suspicions 
through public information sources and eliciting feedback 
from the information owner. 

1. INTRODUCTION 
It is interesting that while public attention to information 
security focuses primarily on the often indiscriminant 
hostile acts of “outsiders,” it is widely recognized in the 
computer security community that the trusted (but 
untrustworthy) “insider” represents a far greater threat.  For 
instance, a joint Computer Security Institute and FBI study 
indicated that 80 percent of respondents reported insider 
abuse, and that attacks (theft of proprietary information) 
launched by insiders were far more costly—$2.7 million vs. 
$50,000 for the average attack [4].  In an independent 
study, the Gartner Group estimated that insiders cause 70 
percent of the “cyber” attacks that cost the victim $20,000 
or more [6].  And of course insiders also pose very real 
risks outside the private sector as witnessed by the fatal 
consequences of the acts of the convicted spies Robert 
Hanssen and Aldrich Ames. 

But despite these clear risks, the insider threat remains 
largely unaddressed – with the primary network defenses 
being largely ineffectual against these attacks.  Further, it is 
interesting to note the dearth of substantive work in the area 
of insider threat detection that takes an approach other than 
statistical anomaly detection.  This is important because 
while anomaly detection has shown some promise in 
authentication (i.e., distinguishing legitimate user account 
activity from that of a masquerader), there is in fact little 
evidence that the assumption underpinning broader 
statistical anomaly detection (namely that detectable 
anomalies are strongly correlated with intrusive behavior) 
holds outside of software process monitoring.   
In this paper we describe a unique approach to insider 
threat detection that neither relies on codified attack 
signatures nor on unreliable statistical anomaly detection, 
and targets the specific problem of detecting unauthorized 
access and distribution of sensitive information.   

Of course, substantial progress has been made in the 
development of Digital Rights Management (DRM) 
solutions such as Authentica [1] which seeks to allow 
information owners active control over who can access, 
edit, copy, forward, and print documents even after they 
have been disseminated.  With Authentica, documents are 
encrypted at rest on a server and can be downloaded by any 
user with access to that server.  When opened, users are 
authenticated and decryption keys are sent to the client 
program to provide the user with access to the document’s 
content.  Through this scheme, the document’s owner can at 
any time revoke the user’s privileges to a document – 
preventing it from being opened again.   

But while Authentica improves an organization’s ability to 
control document access, it is by no means a complete 
secure knowledge management solution.  As pointed out by 
Bruce Schneier, while Authentica’s encryption scheme is 
quite secure, it relies on a trustworthy client, which can not 
be ensured in the case of an insider [19].  Further, it is clear 
that even if used extensively, Authentica could not prevent 
the unauthorized access or distribution of information 
through social engineering, masquerading, hard copy 
distribution, etc.  Therefore, the deployment of such DRM 



solutions does not remove the need for methods of 
identifying the unauthorized access and distribution of 
sensitive information. 
In our approach we seek to detect these untrustworthy 
activities by monitoring key “bottlenecks” through which 
information (i.e., documents) must pass in order to be 
exploited by the insider and by detecting the presence of 
potentially restricted content (i.e., strings of words that 
overlap with a document the user should not have access 
to).  Our system, Stochastic Long String Analysis with 
Feedback (SL-SAFE), then screens out false alarms by 
searching for the identified strings in public sources of 
information.  SL-SAFE further seeks to reduce false alarms 
by accepting feedback from document authors to 
incrementally learn which elements of a restricted document 
are not in fact sensitive.   

The remainder of the paper is organized as follows.  In 
Section 2 we present a discussion of related work.  Then in 
Sections 3 and 4 we discuss the SL-SAFE approach and 
present some experimental results.  We then conclude with 
a discussion of the limitations of our work and future 
directions. 

2. RELATED WORK 
In our research effort we took substantial inspiration from 
Lippmann’s concept of Bottleneck Verification [15].  In 
particular, we sought a means of making high accuracy 
judgments regarding the appropriateness of insider actions 
and circumventing the long standing difficulties observed in 
applying more traditional intrusion detection methods.  
Where Bottleneck Verification seeks to detect a user’s 
unexpected ability to execute commands requiring root 
privileges (without regard to how that capability was 
achieved), we seek a similarly exploit-independent means 
of detecting the unexpected ability to access restricted 
document content. 
Our SL-SAFE system differs substantially from other 
efforts that purport to support the detection of insiders.  
NIDES [10] and EMERALD [18] are perhaps the best 
known examples of intrusion detection systems that utilize 
statistical profiling of computer users in the hopes of 
detecting previously unknown attacks and insider abuse that 
would not match attack signatures.  In fact some have 
suggested that anomaly detection may be the only way to 
detect insiders [10].  Unfortunately little evidence exists 
that this approach can be made feasible given the mercurial 
nature of everyday, honest work. 
Similarly, while Lane & Brodley [12] have demonstrated 
some success in detecting masqueraders by modeling users’ 
typical UNIX command sequences and then detecting 
significant deviations, they were not able to provide clear 
evidence that this method supports insider threat detection.  
These results are substantially inline with the work by 

Goldring [7] and Yihua Liao [14] that applied similar 
approaches to modeling Microsoft Windows usage.  
Goldring himself has recently expressed serious doubt 
regarding the applicability of these anomaly detection 
techniques outside the task of authentication [8].   
Other uses of anomaly detection have demonstrated 
substantially lower false positive rates by focusing their 
attention on modeling activity that is much more regular 
than general computer usage.  Two examples include the 
DEMIDS system that seeks to identify anomalies in 
database access patterns for users with specific work roles 
[2].  Even more effective have been the application of 
anomaly detection methods to software process monitoring 
[5][13][17].  Although these methods do not specifically 
target insiders they are valuable tools for maintaining 
system security.   
Lundin and Jonsson [16] provide a good discussion of why 
typical anomaly detection is not terribly useful for detecting 
system misuse.  One of their more interesting observations 
is that a malicious insider could easily trick these systems 
into generating “masquerader” alerts in order to achieve a 
form of plausible deniability.  
Finally, our approach is related to recent work done in the 
area of plagiarism detection.  While our approach appears 
similar on the surface, the unique qualities of the insider 
detection problem mandate a unique approach.  Hoad and 
Zobel [9], for instance, focus primarily on establishing 
document-to-document similarity between what are 
assumed to be virtually identical documents (changes due to 
small corrections, revisions, or reorganization).  Their 
system is incapable of making a “yes or no” determination 
with regards to plagiarized content and instead returns a 
ranked list of most similar documents – an approach wholly 
unsatisfactory for generating intrusion alerts.   
At the other end of the spectrum is the Turnitin product [20] 
which is closer to our own concept – extracting long strings 
of words from a submitted document and searching the 
Web for instances of those strings in order to identify the 
source of likely plagiarized material.  While this approach 
can be quite effective when evaluating term papers, it does 
not account for the common (and legitimate) replication of 
content that may occur extensively within an organization’s 
documents (e.g., corporate boilerplate).   

3. SL-SAFE 
3.1 Assumptions 
The SL-SAFE approach to detecting the misappropriation 
of information by insiders makes two fundamental 
assumptions.  First, it is assumed that some collection of 
documents has been identified as “access restricted” 
(subsequently referred to as Restricted) and that we know 
who has legitimate privileges to access that information.  
Second, we assume that the malicious insider will transport, 



view, or (at least temporarily) store the Restricted 
information within the monitored environment during the 
attempt to exploit it.  This second assumption then allows 
us to focus on bottlenecks that we may monitor, including: 
transport over a network, writing to a hard drive, 
reading/writing through desktop applications (e.g., MS 
Word and Adobe Acrobat), and writing to removable 
media.  Of course none of these monitoring points will be 
useful in all situations (e.g., due to encryption) and each has 
its own unique limitations and requirements, but the 
potential redundancy acts to prevent circumvention by the 
insider. 

3.2 The Content Monitoring Strategy  
Partition document into

passages of size P

Sample S snippets
of length L

Search Local Public Index
For exact snippet match 

Search Restricted Index for
exact snippet match 

Search Web search engine
for exact snippet match 

Ship test document to 
secure server and 

compute content overlap.

Send Alert to content author

Add content overlap
to Local Public Index

For each
passage

If no
match

If matchElse, next snippet
or passage

For each
snippet

If no
match

If false
alarm

 
Figure 1.  The SL-SAFE Algorithm 

Given a secure index of Restricted documents, an index of 
unrestricted documents (henceforth called Public 
documents), and a means for monitoring the creation, 
access, and distribution of documents, the SL-SAFE 
approach to content monitoring can be summarized as 
follows.  When a new document is detected by one of our 
sensors, SL-SAFE processes it as follows: 
1. The Test document is divided into passages of a fixed 

length P (e.g., 250 words).  This initial partitioning of 
the text is done to distribute the following sampling in 
order to mitigate the threat that savvy insiders might 
somehow hide Restricted content within otherwise 
unremarkable text. 

2. From each passage, S snippets (e.g., 3) of fixed length 
L (e.g., 5 words) are randomly selected. 

3. SL-SAFE then searches for each of the S snippets in a 
Local index of Public information.  This local index 

will contain the organization’s documents and 
document fragments (e.g., corporate boilerplate) that 
are deemed non-sensitive. 

4. If the snippet is not found within the local Public 
index, then our suspicions remain, and SL-SAFE 
searches the index of Restricted documents. 

5. If the snippet is found within the Restricted documents, 
then SL-SAFE may attempt one more time to explain 
away the match by conducting a Web search.  

6. If any snippet is found in Restricted documents (to 
which the suspect user does not have legitimate 
access), but not in any Public source, then SL-SAFE 
generates a complete list of overlapping text between 
the Test document and the identified Restricted 
document.  This list is then delivered to the owner (or 
owning organization) of the Restricted document as an 
Alert.  Note that the alert contains no document 
content that the Author did not originally include in 
their document. 

7. If an alarm is found to be unjustified (meaning that the 
overlapping text did not indicate to the owner that an 
unauthorized access had occurred) then the overlapping 
text is added to the Local Public store to prevent future 
false alarms related to this content.  Note, only the 
overlapping text is added to the Public store (not the 
whole document). 

3.2.1 Algorithm Discussion 
As justification for this algorithm let us discuss three 
issues/concerns/limitations in some detail. 
1. Defeating SL-SAFE by adding restricted content to the 

Public store.  One can imagine scenarios in which a 
malicious insider might be able to access Restricted 
content and publish it to the Public store prior to the 
registration of the original document as Restricted or 
before the unauthorized access is detected.  The effect 
would be that SL-SAFE would disregard future 
detections of the Restricted content.  However this 
threat can be mitigated by extracting even longer 
strings (say 7 words), and therefore even less likely to 
appear at random, from newly added Restricted 
documents (perhaps with the help of the author) which 
could be used to check (and then periodically monitor) 
the public store for wholesale additions of Restricted 
content to the Public store.  This approach will not 
allow SL-SAFE to attribute the release to a particular 
insider, but it can allow the author of the Restricted 
content to recognize that a breach has occurred. 

2. Security of indexes and queries.  One might be 
concerned that indices of Restricted content might be 
attacked directly or that queries to the search engines 
might be vulnerable to snooping.  To address these 
concerns we can protect indices of Restricted content 



by employing privacy preserving indexing methods [2], 
and queries to search engines can themselves be 
encrypted.  This of course means that a deployed 
system could not use existing Web search engines 
(unless a specialized interface is created), but that is 
not a significant concern. 

3. String selection.  It might appear initially that our 
sample of strings must be very carefully selected in 
order to achieve good results.  This might involve any 
number of techniques to identify particularly important 
text elements in the document.  We instead chose to 
use randomly selected long strings for two reasons.  
The first reason was the need to scale to large 
information environments which required that we not 
incur any unnecessary computational costs.  The 
second reason, which is more important, is that, in 
early tests randomly selected long strings demonstrated 
high discriminative poser (i.e., the majority of five 
word strings sampled from non-public documents 
returned zero hits on the Google search engine).   

4. Obfuscating the Text. The insider might use a number 
of methods to disguise the content he is attempting to 
misappropriate or disseminate, including: 

o Substituting key words 
o Hiding the content in unrelated material 
o Character-level mangling 
o Encryption 
o Conversion to Image 

These risks can be largely mitigated by the pervasive 
deployment of sensors that can detect new information 
content prior to substantial manipulation.  Sensors 
embedded in document viewers or monitoring 
computer ports and hard drives could all be used for 
timely detection.  Of course, the heavy or unusual use 
of encryption and screen capture might provide a 
reliable indication that the user is seeking to 
circumvent the system.   

5. Use of Indirect Channels: The insider could use less 
direct methods of obtaining content, e.g., hardware-
based attacks (keyboard capture, disk readers, etc.) and 
stealing document hardcopies.  Obviously, depending 
on what the insider does with the content once he has 
obtained it, this may or may not fall outside the scope 
of our system.  In the situation where some of this 
content makes its way through a monitored bottleneck, 
our approach will offer some capability to detect the 
activity (see Section 4.2). 

4. EXPERIMENTS & DISCUSSION 
Our intuition upon the formulation of this algorithm was 
that it would endow SL-SAFE with a number of interesting 

and attractive characteristics.  This intuition led us to 
establish two primary hypotheses to investigate.  
Hypothesis 1: Given a sufficiently large and representative 

index of Public documents, the false alarm 
rate should be expected to approach zero.   

False alarms are generated when SL-SAFE encounters 
unrestricted text that it has not seen before.  So, with a 
sufficiently robust starting set of Public documents, the 
probability of encountering text that is not in the Public 
index should be low, and should approach zero as it learns 
through feedback.   
Hypothesis 2: SL-SAFE can reliably detect relatively 

small passages of Restricted text hidden 
within documents that are otherwise 
comprised of Public content.   

Our hope here was that the simple steps taken to distribute 
SL-SAFE’s text sampling across the document would make 
it difficult to simply hide Restricted content within a larger 
document.  

4.1 Experiment 1 
4.1.1 The Data Set 
The data set we utilized was composed of research 
proposals written by employees of Sottler Henke 
Associates.  In particular the data was partitioned based on 
the hypothetical scenario in which the Seattle office of 
Stottler Henke sought to restrict access to proposals related 
to its emerging Aware technology.   
1. The Restricted document set was composed of 11 

Aware related proposals written in 2002 and 2003. 
2. The Public document set was composed of 15 

proposals unrelated to the Aware technology written in 
2002 and 2003 by researchers involved in Aware’s 
development. 

3. The set of Test documents was composed to 
approximate a realistic distribution in a corporate 
environment: 

a. 1 proposal taken from the Restricted Set 
b. 3 Aware-related proposals from 2004  
c. 1 non-Aware-related proposal from 2004 written 

by the researchers involved in Aware’s 
development. 

d. 39 proposals from 2002-2004 written by Stottler 
Henke researchers uninvolved with Aware. 

Also note that instead of explicitly manipulating documents 
to simulate the obfuscation tactics of an insider we relied on 
the fact that the 3 Aware-related proposals had only limited 
overlap with the Restricted document set (the largest 
contiguous overlap of Restricted content was under 50 
words within proposals that average approximately 12,000 
words). 



4.1.2 Methodology  
We established a testing paradigm that simulated the 
process of multiple users accessing documents within the 
test set in a uniform random pattern over time.  Specifically, 
in each of three test runs, we randomly selected Test 
documents (with replacement) a fixed number of times 
(1000).  During each test we allowed SL-SAFE to 
accumulate feedback by simulating the responses made by 
the owner of the Restricted documents that were found to 
overlap suspiciously with the Test documents.   
Space limitations prevent a full discussion of the range of 
experiments we conducted, but a representative example 
utilized passages of 250 words, and 3 snippets of 5 words 
per passage.  Note that these settings directly control the 
“sensitivity” of the system in detecting Restricted content 
hidden in larger texts, thus controlling the accuracy of alerts 
as well as how quickly the system learns to reduce false 
alarms through feedback. 

4.1.3 Results 
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Figure 2.  Number of false alarms (feedback requests) 
observed in a sliding window of 100 test documents.  

In this experiment we found that 85.7% of the documents 
that should have been marked Restricted were correctly 
classified; and, as shown in Figure 2, the false alarm rate 
falls rapidly as early feedback is accumulated, and proceeds 
to zero.  In fact we found that over the span of the 
experiment, only an average of 2.6 (and a median of 1.67) 
false alarms (feedback requests) were generated per Test 
document.  Given the small size of the starting Public set, 
these figures imply that the time and effort required on the 
part of document owners should be quite low in practice.  
Further, these figures could easily be improved through 
document preprocessing steps that could identify much of 
the unrestricted text in documents at the time they are added 
to the Restricted index. 

4.2 Experiment 2 
While the previous experiment approximated the conditions 
under which we originally intended to utilize SL-SAFE, we 
saw an opportunity to tackle an even harder problem.  In 
particular, we wanted to determine if SL-SAFE could be 

used to reliably detect paraphrased content drawn from 
Restricted documents.   
In this second experiment we asked four test subjects to 
pretend to engage in corporate espionage.  Each subject was 
given 30 minutes to review an Aware related proposal that 
was left open on a colleague’s computer and take written 
notes regarding critical details of interest to a competitor.  
Based on these written notes, the test subjects authored an 
email intended to be sent to an outside contact.  We added 
these emails to the set of test documents utilized in the 
previous experiment and ran an additional three runs.   
The results of this experiment were very encouraging.  We 
found a hit rate across our test subjects were 18%, 22%, 
55%, and 64%.  These figures are surprisingly high given 
that each test subjects used a variety of shorthand and 
ungrammatical sentences in their emails.  The explanation 
appears to be that there were certain portions that were far 
easier to repeat verbatim than to paraphrase – especially 
under time pressure. 

5. CONCLUSIONS AND FUTURE WORK 
SL-SAFE represents a scalable and effective means for 
detecting the misappropriation or unauthorized distribution 
of Restricted content by insiders, without requiring the 
ability to detect the precise means of attack.  SL-SAFE 
succeeds in detecting these activities through the stochastic 
sampling of information passing through bottlenecks while 
maintaining low false alarm rates by validating suspicions 
through public information sources and by soliciting limited 
feedback from the information owner. 
Clearly the proposed approach does not represent a 
complete solution to the problem of unauthorized 
information access and distribution by insiders.  And we 
recognize the risk that savvy insiders will know that their 
activities are being monitored, and may even have some 
idea of the nature of the monitoring (i.e., content-based).  
Given this, SL-SAFE represents a new and substantial 
impediment to insiders.   
While our experiments have proved successful, there 
remain a large number of potential improvements that can 
be made to the core SL-SAFE approach in order to 
decrease false alarms, including more front loading of the 
solicitation of feedback from document owners, and being 
more intelligent about the selection of text samples.  In 
particular we are now experimenting with a new lightweight 
sampling technique that rejects a sampled snippet if it is 
composed entirely of very common (stop) words.  We are 
also seeking to optimize the computational bottleneck in 
our prototype – document overlap calculation. 
Finally, we will begin to address the larger architectural 
issues required to field SL-SAFE and conduct live 
exercises.  This will involve working out schemes to 
maintain and protect sensors, maintain the index of 



protected documents and associated access lists, coordinate 
alerts to document authors, etc. 
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