
Appears in Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, Montana.

 1

Evaluating Game Technologies for Training
 Dan Fu, Randy Jensen Elizabeth Hinkelman
 Stottler Henke Associates, Inc. Galactic Village Games, Inc.
 951 Mariners Island Blvd., Suite 360 119 Drum Hill Rd., Suite 323
 San Mateo, CA 94404 Chelmsford, MA 01824
 650-931-2700 978-692-4284
 {fu,jensen}@stottlerhenke.com elizh@galactic-village.com

Abstract—In recent years, videogame technologies have

become more popular for military and government training

purposes. There now exists a multitude of technology

choices for training developers. Unfortunately, there is no

standard set of criteria by which a given technology can be

evaluated. In this paper we report on initial steps taken

towards the evaluation of technology with respect to

training needs. We describe the training process,

characterize the space of technology solutions, review a

representative sample of platforms, and introduce

evaluation criteria.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. TRAINING PROCESS...1
3. CONSTRUCTING TRAINING SIMULATIONS............1
4. REVIEW OF TECHNOLOGIES2
5. EVALUATION CRITERIA ..5
6. PLATFORM EXAMPLES..6
7. PLATFORM EVALUATION8
8. CONCLUSIONS ...8
ACKNOWLEDGEMENTS ...9
REFERENCES ...9
BIOGRAPHIES ..10

1. INTRODUCTION

The use of game-based training is rapidly gaining

momentum. Games offer the benefit of experiential situated

learning delivered in a dynamic and engaging manner

(Macedonia, 2002). From the Army’s acclaimed “America’s

Army” recruitment game to various medical games, a

number of “serious games” have been developed for various

domains.12

Despite these successes, the use of games for training

presents challenges that limit its applicability. Foremost,

the technology choices available today offer a bewildering

array of 3-D engine toolkits, path planners, physics engines,

network infrastructures, game AI, existing 3-D game source

code, art asset tools, and so forth. While current efforts

have yielded disparate successes, there still does not exist a

unified evaluation framework by which technologies can be

evaluated. Moreover, comprehensive solutions rarely exist

based on a single technology platform.

1
1
 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2
 IEEEAC paper #1203, Version 8, Updated 2007:12:14

Given that pre-existing software can enable rapid, cost-

effective game development with potential reuse of content

for training applications, we discuss a first step towards

structuring the space of technology platforms with respect

to training goals. The point of this work isn’t so much to

espouse a leading brand as it is to clarify issues when

considering a given piece of technology. Towards this end,

we report the results of an investigation into leveraging

game technologies for training. We describe the training

process, outline ways of creating simulation behavior,

characterize the space of technology solutions, review a

representative sample of platforms, and introduce

evaluation criteria.

2. TRAINING PROCESS

Since the particular strength of game technologies is to

allow trainees to visualize or experience desired behavior,

we focus on demonstration-based training. Demonstration-

based training can be thought of as an instructional program

that incorporates a sequence of five core elements:

information (e.g., novel maneuvers), demonstration (e.g.,

demonstrations or recorded examples of task performance),

practice-based methods (e.g., simulation), feedback (i.e.,

subsequent training based on practice results) (Salas, Priest,

Wilson, & Burke, 2006).

One of the core strengths of any training strategy is that

learners are guided through the acquisition of several types

of knowledge and skills (Rosen, Salas, & Upshaw, 2007).

While the information element focuses on declarative

knowledge, the demonstration element emphasizes

procedural knowledge. In the practice-based element,

learners can develop procedural knowledge as well as

strategic knowledge by performing a task under various

conditions (i.e., different scenarios). The scenarios used for

demonstration and practice-based elements capture the

relevant knowledge, skills, and attitudes (KSA’s) and

provide examples of demonstrations as well as opportunities

for the learner to engage in practice that employs the

KSA’s.

3. CONSTRUCTING TRAINING SIMULATIONS

In a technology context, the construction of training

simulations features the behavior of simulated entities and

 2

objects; indeed, it is what makes a simulation “come alive”

for the user. Creating simulations of human behavior takes

three major forms: authoring as acting, authoring as

scripting, and post production.

Authoring as Acting

Human users of a simulation technology can perform a

demonstration or interact with learners in the simulated

world. They may perform motions which are measured by

hardware and translated into character “avatar” motions in

the simulated world. They may also use more traditional

keyboard and mouse interfaces to drive avatars in the

simulated world. The attraction of this method is that a team

with experience in a particular task may be able to generate

a demonstration of that task easily, or interact with learners,

with a minimum of skill required to drive the simulation.

This method requires planning and coordination, rehearsal,

and subject matter experts (SME’s). It also requires the

simulation system, complete with appropriate graphics,

physical models, and I/O devices as well as support

personnel.

If the technology supports a full complement of SME’s and

trainees, it is possible to conduct live scenarios within the

simulated world. These live scenarios may be conducted

either as realistically as possible, or complete with

instructors, narration, pauses, or pointing out of elements.

Authoring as Scripting

In this approach, the primary content of a demonstration or

the “canned” behavior during practice is supplied in

advance, through development of software, graphics,

scenarios, and behaviors of synthetic characters. (In military

parlance these characters are referred to as SAF – semi-

automated forces; in commercial games they are referred to

as NPC’s – non-player characters.) Commercial game

development studios maintain suites of tools for this

purpose; ideally, scenario authors can deploy existing

resources without resorting to software programming. This

method requires skilled developers but leads to immersive,

interactive training sessions without the need for SME’s at

the time of the demonstration.

Authoring as Post-Production

After behaviors have been constructed and recorded in the

simulated world, it may be necessary to replay, edit, and

mark up the session record to create a more informative

presentation. There are two principal forms of post-

production. The first relies on screen capture and video

editing, leading to a digital movie whose playback can be

controlled by the trainee or an instructor. The second relies

on replay of the session events using a graphics rendering

engine. This can be used to produce “movies” as well, but

allows for more sophisticated camera control (optimized

points of view and zoom-ins) or more interactive playback.

Realistically, most simulation-based training will require a

combination of these approaches to authoring. The acting

and scripting approaches can be thought of as opposites on

a spectrum of authoring complexity, while post-production

is a necessary step to transform recorded content to useful

demonstration or feedback.

4. REVIEW OF TECHNOLOGIES

In terms of virtual environments, there is a great variety of

platforms with varying strengths and weaknesses, largely by

nature of the differences in the domains they respectively

simulate. This portion of the research effort sought to

review a representative set of platforms at the category

level. The resulting technology review targets performance

criteria pertaining to specific authoring capabilities and use

cases, as opposed to a general survey. In this section we

summarize potential technology platforms, establish

evaluation criteria, and describe specific platforms.

Game Engine Types

There are several commercial game technologies upon

which to base authoring. With the growth of the videogame

industry, game development platforms have emerged that

offer a powerful array of authoring capabilities. Broadly,

platforms can be characterized according to two categories:

depiction and plurality. The most popular type of depiction

is 3-D, which tries to make the visualization as realistic as

possible. The other type is 2-D which is not as realistic.

Plurality is the number of players that can participate: single

player, multiplayer, or massively multiplayer online

(MMO). Using these two dimensions, Table 1 shows the

range of platform technologies.

With an eye towards authoring, the multiplayer and

massively multiplayer platforms encourage an “authoring as

acting” approach. Individuals involved in the creation of a

demonstration can participate by playing their individual

team roles. This approach is less viable for single player

platforms as coordination of several individuals, acted by a

single author, is difficult. Thus, the “authoring as scripting”

method has the author specify the behavior of SAF/NPC in

a demonstration. In the following subsections we describe

each of the basic technology platform categories.

2-D Games—Two dimensional displays may provide great

ease of authoring for certain types of tasks. 2-D game

engines depict a point of view either from overhead or from

the side. For example, a videogame such as Pac-Man shows

an overhead view. The heights of the notional halls that are

traversed are not depicted. A videogame like Space

Invaders shows a view from the side. These types of game

engines are early technology and are less demanding than 3-

D engines both in terms of memory and computation.

Because they lose one dimension, they use symbols

(“sprites”) that represent actors or objects in the videogame.

 3

A game that features “scrolling” has the added capability to

give the player a sense of motion across a terrain. Games

like Pac-Man and Space Invaders are static in that the point

of view of the player never changes. In contrast, a game like

Gauntlet or Defender has the player’s avatar always near the

center of the screen. As the avatar moves across terrain, the

point of view stays with the avatar. An example of a modern

PC game relying on 2-D graphics is Civilization II. Its

production values are far higher than the ‘80’s games.

2-D depictions could be most promising for “big picture”

explanations. For example, the coordinated movement of a

fire team requires that all members know their roles, the

actions expected of them, and of each other for cross

training (Salas & Cannon-Bowers, 2000). Many games

played primarily in 3-D retain a 2-D view to provide context

and situational awareness. This is especially true for

understanding coordinated movement. Some examples

include GuildWars and RuneScape: massively multiplayer

online role playing games, and Battle for Middle Earth: a

PC strategy game. Figure 1 shows a screenshot of a

Clemson University visualization tool for recorded

movements of Marine fire teams in Military Operations in

Urban Terrain (MOUT) scenarios (MOUT, 2006). The

view shows a 2-D overhead view of locations of soldiers

and their direction of sight. On the upper right is a camera

recording.

2-D game engines offer the lowest amount of fidelity as

they are almost incapable of rendering a realistic scene.

Thus, what the player sees is essentially a diagram.

Oftentimes 3-D games will include a 2-D overhead display

to provide useful information that would otherwise be

difficult to see in a (crowded) 3-D display.

3-D Single Player Games—A 3-D single player game

features a 3-D graphics engine that displays the game

environment by rendering it from parameters and

descriptions of 3-D objects. The engine renders the

environment from a 3-D scene. It assumes the player is the

only person operating in the environment, and that anything

else moving (whether supposedly human or not) is

controlled by the engine. The engine may support many

“cameras” or viewpoints within the environment, such as

first person, tethered, overhead, or a user-controllable point

of view. It may support display of several cameras

simultaneously on one screen. A game such as Half-Life is

a good example where most of the simulation is

constructive, including several types of opposing entities.

There are three major genres of single player games:

First person shooter (FPS): Depicts the 3-D scene from the

point of view of the player who is usually armed with a gun.

The emphasis is on high tempo tactical motion requiring

“twitch” skills which require the player to exercise fine

control to (typically) shoot at monsters.

Real-time strategy (RTS): These videogames depict 3-D

scenes, but from an “in the air” perspective, typically 45

degrees to the terrain’s plane. The player controls a team of

avatars against an enemy force. Time is spent creating

forces, attacking enemy forces, and exploring the world.

The AI for forces isn’t complex. During battle is when the

player’s ability to task forces becomes crucial as the player

must constantly monitor outcomes of conflicts and re-task

and re-group units across a terrain.

Role-playing game (RPG): These videogames are

“dungeons and dragons” simulations that have the player

assume control of a small team typically less than a dozen

characters. The point of view is similar to RTS, but without

time pressure. The player is given the ability to pause the

simulation to decide what to do. Indeed, the menu of

possible actions for each character is quite rich, thus the

player may create a rich choreography of actions for each.

These three types of videogame genres are broad. Several

games mix two types. For example, Metal Gear Solid has

the player controlling a single character with an RTS point

of view with a semi-transparent overhead 2-D view in the

upper right. As well, when desired the player can switch to

a FPS point of view in real time for the purposes of

observing or shooting. CHI’s VECTOR (McCollum et al.,

2004) has a FPS point of view, but no twitch factor: it gives

the player time to decide what to do or say next (similar to

an RPG). Stottler Henke’s Informant (Cramer,

Ramachandran, & Viera, 2004) has a FPS point of view as

well, but NPC’s vary reactions depending on when the

student says an utterance.

The use of 3-D graphics (along with many other

technological advances since the ‘80’s) allows more realism

than 2-D. FPS games are the most realistic as they attempt

to depict the scene in the most life-like manner possible.

RTS and RPG are in between 2-D and 3-D. Indeed, early

RTS games could be considered scrolling 2-D games. Even

though character models are generated in 3-D, their

subsequent depiction and animations always appear the

same way as the player’s point of view is always at a

constant angle via orthographic projection.

The industry trend of recent years is toward hyper-realism

of graphics. Water must be translucent; individual hairs and

blades of grass must wave in the wind. Game developers

have identified a phenomenon known as “the uncanny

valley”, where rendered images of humans fail to display

matching realism in facial expressions and gestures. The

resulting displays are viscerally “creepy” to viewers, to the

point where they prefer less realistic images instead.

Today’s 3-D engines such as Half-Life 2 (Keighley, 2004)

implement facial expressions based on studies done by Paul

Ekman (Ekman, 1974).

 4

Table 1: Basic Categories of Game Engines

DEPICTION

2-D 3-D

Single

A player controls an avatar in a 2-D

environment. The perspective is an

overhead or side view.

The player’s avatar operates in a 3-D

environment. First-person shooters and real-

time strategy games are common.

Multiplayer

Multiple players control an avatar in the 2-D

world. Typically an extension of single

player. Much less common.

Typically less constructive than the 3-D

single player games as there are human

players.

P
L
U
R
A
L
IT
Y

Massively

Multiplayer

A small handful exist as free games.

Several commercial 3-D based systems have

ancillary 2-D views as well.

Similar to 3-D multiplayer except players can

number in the thousands with persistent

worlds.

Figure 1: Visualization tool showing recorded fire team activity.

3-D Multiplayer—A multiplayer game engine is less

constructive than the 3-D single player in favor of

increasing the number of human players involved (usually

ranges from 2 to 64). One might think of multiplayer as the

same as single player except that the AI for avatars is

supplanted by real human control. There are two

implications for this style of gameplay:

Importance of social contact: Players are competing or

cooperating with each other. The emphasis is on human-to-

human gameplay. There is always a way for players to

communicate during the game, either for teamwork or social

purposes.

Absence of storyline: The entertainment that players derive

is from the satisfaction of competing against each other.

Contrast this to developing storylines in single player

games. A game such as Half-Life has what might be

considered an intricate story as opposed to games like

Quake 2 which barely have a plot. Multiplayer games have

themes related to single player, but time is reset every few

minutes and the game starts over. Terrain requirements are

typically minimal.

Almost all modern 3-D multiplayer game engines also

feature single player modes; in fact, the earliest games such

as Quake and Half-Life started as single player games that

later featured multiplayer online “death match” games

where players would fight and accumulate points based on

how many times they eliminated opponents. Later, games

such as Counter-Strike emerged which featured team-based

gameplay. The addition of headsets with microphones

enabled players to communicate as if on a radio net.

3-D Massively Multiplayer—One might think of MMOG’s

(massively multiplayer online games) as similar to 3-D

multiplayer except on a bigger scale. They feature a huge

virtual world where one may explore and meet other avatars

controlled by other players. There aren’t really so much

levels or scenarios as there is a single ongoing world

simulation. The scale and corresponding technical

requirements (high capacity internet infrastructure,

persistent worlds) on these games differentiate it from a 3-D

multiplayer game.

The social component of MMOG’s is much more important

than in multiplayer as the virtual worlds are persistent.

Unlike the multiplayer games whose participants can

 5

change minute by minute, round to round, or server to

server, MMOG players build experience and history in the

virtual world. The world changes and so do the avatars in

it. For example, in Everquest players can attain certain

weapons or experience points that imbue them with

augmented power in the world. There is, however, a trend

towards “instancing,” where a particular part of the world

will be replicated for each party wanting to enter such as

GuildWars.

5. EVALUATION CRITERIA

Our investigation reviewed self-contained virtual

environments, or mixes of technologies that could

conceivably serve for authoring providing 3-D views of the

virtual world. This included SAF-centered options such as

OneSAF coupled with a visualization tool or Half-Life DIS.

 Multiplayer game engines included Renderware, Unreal,

Gamebryo, and Jupiter, as well as specific applications such

as VBS1 (Virtual Battlespace 1) which is based on

Operation Flashpoint. Massively multiplayer online games

(MMOGs) included OLIVE (Online Interactive Virtual

Environment), BigWorld, and Second Life.

Considering the types of technologies available, we

partition them into a “platform space” with simulation and

videogame technologies as a focus. Figure 2 shows the

space of technologies we have surveyed. Each space is

marked with a letter. Broadly speaking, most platforms for

the military fall into sections c, e, and f.

Platform space

Multiplayer

3-D

Environments

Massively

Multiplayer

2-D

Environments

a

b

c

d

e f

g

Figure 2: Venn diagram of platform technologies.

We initially defined a thorough list of evaluation criteria for

the virtual environments that could be considered for

authoring. From that list, no single platform meets all

criteria, so we attempted to narrow the list to a central set of

criteria for our assessment. The following list shows our

criteria with an emphasis on deployment into DoD. Table 2

provides examples for each space for simulation and games.

Native scenario authoring capabilities. Authoring of

scenarios can be very difficult. This is a major concern for

game-based training, and therefore the availability of tools

for authoring is an important evaluation criterion. Where

new art assets or animations or models or terrain are

required for a scenario, the upfront pre-production tasks are

significant for all platforms. However, if these tasks are

held as a constant and we consider the next scenario-

specific pre-production stage which involves assembling the

elements of a scenario together on the terrain, some

platforms make this step nearly trivial, while others require

specific tools expertise or even programming expertise.

Clearly the advantage is with the former.

Native support for synchronized communications. There

are training domains in which communications are not a

major component. However, we believe those domains

involving communications are more deserving of focus for

an authoring tool. Simply by the nature of team operations,

and many contemporary asymmetric warfare challenges in

which coordinated information is both dynamic and

mission-critical, the depiction of synchronized

communications is likely to be a key element of the training

goals for a wide variety of instructional demonstrations.

Interoperability. We considered platform inter-operability

in the sense of 1) access to the code either through direct

source code availability or an SDK/API, 2) compatibility

with existing standards for simulation event data such as

DIS or HLA as a means for potentially including SAF

behaviors from military simulations such as OneSAF, and

3) the absence of programmatic roadblocks to constructing

an integrated solution.

Capture. Once a demonstration has been constructed, the

ability to transmit it becomes an important resource

multiplier. We anticipate the dissemination of

demonstrations and feedback delivery to be a critical factor.

 It is ideal for a platform to ultimately support seamless

export mechanisms in tools, ideally with an existing or

developable native video capture capability. A component

of this criterion is also the requirement that the engine

architecture fundamentally supports logging and playback

of execution events.

Modeled subject matter. The availability of existing art,

animations, and models for objects appearing in military

training domains is a significant positive factor. While

these elements can be produced when absent, there is

clearly reason to prefer platforms that have such assets

within easy grasp already. Additionally, a key element of

this criterion is specifically the capability of a given virtual

environment to model combined platforms with mounted

and dismounted views and maneuverable vehicles.

Additionally, several of our early criteria considered as

performance factors for various platforms were determined

to have relatively less importance. For example, the

availability of automated entity behaviors may have only

limited value for demonstrations and practice, particularly

when team tasks are being depicted. A common reported

finding is that semi-automated force behaviors are useful for

some limited tasks like crowd “filler” kinds of behavior, but

 6

the key actions are more complex than what SAF can enact.

 Therefore for time-intensive authoring, at least for

demonstration purposes, an approach involving human role-

players in a multiplayer or massively multiplayer platform

appears to be more practical, even with the customary

difficulties associated with coordinating human role-

players.

Table 2: Examples of Platform Space.

Space Simulation Game

a All simulations including operations research All games

b Wargames, Course of action analysis Solitaire, Space Invaders, Gauntlet

c
Aide de Camp 2, SimVentive, play-by-email

wargames
Abuse, older RTS’s

d Board wargames Multiplayer card and board games

e

DIVAARS, Game DIS (Half-Life 2), VBS1 /

Ambush! (Operation Flashpoint), Microsoft

Flight Simulator

Doom 3, Counter-Strike, Quake III Arena,

Starcraft

f
Tactical Iraqi (Unreal Engine), VECTOR

(Jupiter), Informant (Jupiter)
Half-Life, Gran Turismo, StarCraft

g OLIVE, Second Life BigWorld, Everquest, World of Warcraft

6. PLATFORM EXAMPLES

In this section we describe some representative examples in

the constellation of technologies that could be leveraged.

Torque Game Builder, 2-D

Torque Game Builder is a comprehensive toolkit for

building 2-D games. It is composed of a UI builder, custom

scripting language, 2-D game engine, physics engine, and a

networking package. The tool software runs on a Windows

PC, but the resulting games can also be played on Apple OS

X and Xbox 360. Documentation for the product is

extensive with online manuals and a developer’s forum.

Sample games are included.

Unreal Engine, 3-D Multiplayer

Unreal Engine is a popular game engine marketed as such in

the multiplayer game category. Unreal Engine 2 and its

Xbox variant are used in many current games, including

most versions of America’s Army. Here we concentrate on

the recently released Unreal Engine 3.

Unreal Engine 3 runs on 2006 and later hardware, requiring

DirectX 9 or next generation consoles. It has peer-to-peer

networking support for up to 16 players, and client-server

Internet support for up to 64 players. The network supports

mixing of PC and console devices in a single game session.

The framework provides numerous third party components

for such functions as AI, vehicle physics, and facial

expressions.

One advantage of Unreal Engine 3 is the ability to create

state of the art graphics for several platforms simultaneously

(though not optimized for any). Another is the extensive

toolset which features tools for particle effects, 3-D audio

effects, collision effects, organizing animations and meshes,

visual scripting, materials editor, user interface, and content

organization. Many of these tools are available to the public

to allow players to create their own game modifications. A

significant disadvantage is cost.

Unreal Engine 3 is used for Gears of War (FPS) and Unreal

Tournament 3 (Multiplayer FPS), as well as America’s

Army 3 and numerous games in production by major

studios. Unreal Tournament 3 will be distributed with

authoring tools for both graphics (Unreal Editor) and

behaviors (Kismet), for player mods.

Gamebryo Element, 3-D Game Engine and Tools

Gamebryo Element is a 3-D graphics engine that features

platform optimizations for PC and next-generation consoles.

 Its particular strength is its flexibility. Rendering

capabilities include fully customizable rendering pipeline,

vertex and pixel shaders, shadows, bump maps, and screen-

space geometric primitives. Gamebryo can integrate with

physics engines, but does not feature its own.

COTS tools include 3-D Studio Max and Maya graphics

plug-ins, a suite of animation and of runtime performance

tools, and Scene Designer, for integrating art assets, light

sources, and cameras and verifying the rendered output to

create scenes, levels, and worlds.

 7

Titles produced with Gamebryo Element include

Civilization IV and numerous Elder Scrolls titles. Military

applications include Cubic Defense Systems’ multi-player

EST 2000 Small Arms Trainer, and BreakAway Games’ 24

Blue, a Navy flight deck operations simulator.

Machinima, 3-D Multiplayer

Machinima refers to the use of 3-D videogame technology

for producing movies. What differentiates machinima from

animations or cartoons is that 3-D multiplayer game engines

render scenes in real-time. That is, the avatar “actors” are

under control by human controllers. They interact in the 3-

D world, and a virtual camera records the action. This type

of technology is “authoring as acting.”

Machinimation 2.0 is an example of a machinima software

package based on id Software’s Doom 3 game engine

technology. Movie-making capabilities are supported

through the use of additional control panels arrayed around

the 3-D game world window.

Machinimation 2.0 affords the following capabilities:

• Avatar actions – The author can take control of an

avatar and record actions. The author can also see other

previously-recorded avatars as well during the

recording.

• Timeline - The author can move back and forth on a

timeline. Recorded avatars and camera will move

accordingly.

• Overlays - Insert text or images.

• Camera motion - The author can record camera location

and posture in 3-D space. Using the timeline, the author

can specify where the camera should be, when. The

package figures out smooth motion. Cameras can also

be “chase cams” that follow an avatar at recording time.

 Unlike DIVAARS (Clark et al, 2004) the author

cannot simply add them in later if desired.

• Game is live - All aspects of the game work during

recording; e.g., monsters will attack, all sound effects

will be heard.

• Preview - Play back all the recordings immediately

after laying down a “track.”

• Render movie - Mix everything down into a high

resolution video.

Figure 3 shows a screenshot of Machinimation 2.0’s

authoring interface. The panel on the left invokes basic

authoring actions such as inserting a new camera. The

motion of the camera (if any) is articulated by using regular

player controls except that the camera is not bound by

gravity. Thus, the author “flies through” the game world.

What the author sees is what the camera will capture.

Special keys are used to record camera points. The orange

lines with white points are camera paths. The points specify

camera location and posture. The timeline at the bottom

enables the author to select a time and see where the avatars

and cameras will be. The Figure shows the recorded avatars

at exactly 4.52 seconds from the start of the scene.

Although this approach to authoring is viable, the software

is no longer supported. While it represents a powerful

authoring method, it is excluded from our evaluation.

VBS1, 3-D Multiplayer

VBS1 (Virtual Battlespace Systems 1) is a 3-D training

system for small unit tactics. It is based on the game

Operation Flashpoint which was originally released in 2001

by Bohemia Interactive. It features realistic terrain, mission

editor, and functional vehicles and equipment. The US

Marine Corps funded the VBS1 training system which

additionally includes an AAR component. Follow on

funding by the Australian Defense Force resulted in the

“VBS1 Instructor Interface” which enables instructors to

“fly through” the mission to emplace items such as IEDs,

and also monitor in-game activity (Morrison et al., 2005).

Its use has slowed as of March 2006 because its

successor—the MVTC (Mobile Virtual Training

Capability)—was released. MVTC is a “turnkey” system

which also includes all necessary hardware as well as

software. BBN used Operation Flashpoint to develop the

“Ambush!” convoy training system, funded by the DARPA

DARWARS program.

OLIVE, 3-D MMOG

The OLIVE (On-Line Interactive Virtual Environment)

platform is based on an MMO game engine, and provides a

server-driven persistent virtual world (Mayo, Singer, &

Kusumoto, 2005). The typical process of scenario

authoring takes a simpler meaning in OLIVE as compared

to the typical military simulation world. In an authoring

mode, avatars can simply call up and place any objects in

the virtual space. Setting up a scenario like a checkpoint

operation is as simple as choosing the location, retrieving

barriers and other checkpoint objects or vehicles and

placing them at that location, and then having players log in,

and SAF auto-generate. Individual avatars can define their

appearance through a set of templates, and a variety of

culturally typical templates already exist for areas of likely

military operations. OLIVE is standards compatible, and

supports SAF control of entities through DIS; for example

OTB has been used to control crowd characters in exercises.

 OLIVE provides a voice over IP capability for

communications between virtual avatars, and also has an

existing (but simple) playback mechanism used for AAR.

So far OLIVE’s use within the military has been confined to

research efforts. The Asymmetric Warfare-Virtual Training

Technology (AW-VTT) effort for RDECOM is intended for

joint, interagency, and multinational operations in the

Global War on Terror, including asymmetric and

unconventional warfare, antiterrorism, force-protection and

missions-other-than-war. For the AW-VTT, a notional one

 8

square kilometer urban setting geo-referenced to Baghdad

has been modeled in a 3-D virtual environment.

BigWorld (3-D MMOG)

Based in Australia, BigWorld is the leading MMO engine

marketed to game developers. The BigWorld server is

capable of supporting millions of users and millions of

shards, with automatic load balancing and error recovery. It

supports multiple games per server cluster. Within a game it

supports public, restricted, and private areas (such as for

quests). It supports data and behavior updates at runtime. It

has configuration and load balancing tools.

The BigWorld client is scalable for both high-end and

casual graphics. For authoring, BigWorld does not provide

game AI but rather an API for Python-based object behavior

scripting. The graphics authoring tools include a world

editor, model editor, and particle effects editor, and ability

to integrate with the standard graphics tools 3-D Studio

Max and Maya.

The principal disadvantages of this MMO platform are cost,

and the lack of any US military specific standards, behavior

or graphics pipeline, graphics, or existing scenarios.

Video Capture and Conversion Tools

The ability to play back a demonstration either via video

recording or through the simulation engine is a valuable

capability. As a minimum, the output must be in a format

compatible with a current desktop PC. Aside from

machinima approaches which focus on demonstration, few

platforms feature this capability. Example platforms with

custom AAR include Game DIS, which is based on the

Half-Life 2 engine, and OLIVE which is compatible with

ARI’s DIVAARS.

In principle, generation of media for demonstration and

feedback is not a difficult technical challenge. COTS tools

already exist for certain types of screen capture, such as

TechSmith’s SnagIt software which can record arbitrary

screen content. Subsequent mix-down capabilities can be

afforded by TechSmith’s Camtasia Studio 2 which features

movie-making capabilities along with advanced features

such as zoom control and call outs. Open source

applications such as VirtualDubMod enable the user to

package content into a variety of media formats tailored for

different media player hardware and software.

7. PLATFORM EVALUATION

With respect to our criteria,

Table 3 shows how our samples from the previous

subsection stack up. In some cases, it was unclear whether

certain assets could be available. For example, America’s

Army is based on the Unreal Engine. While there is

certainly modeled subject matter in existence, it’s unclear

whether they can be easily secured for demonstration

construction. In these instances, we erred on the side of

optimism.

2-D game engines such as Torque Game Builder are

unlikely to be used in team training systems aside for

diagrammatic overhead views of team movement. Building

this capability presents very few risks. The 3-D multiplayer

games, such as VBS1, are an attractive set as they are all

now able to support multiplayer participation. This

supports the “authoring as acting” approach. MMO’s also

support this as well. Production platforms, such as

Camtasia Studio 2, provide a way for authors to assemble a

demonstration.

Figure 3: Machinimation 2.0 screenshot

8. CONCLUSIONS

Starting from a description of the training process, we

identified where the choice of a technology platform plays a

major role; namely, in the demonstration, practice, and

feedback elements. We then introduced basic

characteristics of game engines such as the method of

depiction and number of human participants. Although

taken in entirety there are hundreds of other factors to

consider, as well as exotic technology features such as

crowd behavior, we believe our dimensions are a good

starting point for a taxonomy of platform types. These

types were then subsequently situated in a “platform space”

which enabled the creation of a table which provided

relevant data point examples of simulations or games.

 9

Table 3: Platform Evaluation Using Guidelines

Unreal Engine Gamebryo Machinimation VBS1 Olive BigWorld

Native scenario authoring

capabilities
Yes Yes Yes Yes Yes Yes Yes N/A

Native support for synchronized

communications
No Yes Yes Yes Yes Yes Yes N/A

Interoperability No No No No Yes Yes No N/A

Capture No No No Yes Yes Yes No Yes

Modeled subject matter No Yes No No Yes Yes No N/A

Transition paths No Yes No No Yes Yes No N/A

2-D
Post

Production
3-D

Evaluation Criterion

Torque 2-D
Camtasia

Studio 2

Multiplayer MMO

We introduced six evaluation criteria for adoption of a

given game technology; namely, authoring capabilities,

support for comms, standards interoperability, capture for

demonstration or feedback, and existing subject matter

models. We picked a representative sample across 2-D and

3-D multiplayer and massively multiplayer games and

engines as well as post-production applications. The results

of the evaluation were presented in a table.

We do not prescribe the “best” solution. In reality there has

been no emergence of standard platforms for common

military needs within the greater training community.

COTS art assets are not commonly shared unless they are

wedded to a particular platform. Most deployed training

systems do not share a common base of content as standards

vary. For example, MMOG’s simulate a world which

resides on a sphere, such as the earth. However,

multiplayer games assume a flat earth. This discrepancy

becomes apparent (say) during a playback of an OLIVE log

file using DIVAARS. Software transformation steps are

necessary to reconcile differences in assumptions.

We view this work as a clarifying step for evaluating

platforms for training needs. Convergence of standard

evaluation criteria for “serious games” training may

eventually yield a common baseline for technologies which

would ultimately benefit tomorrow’s warfighter.

ACKNOWLEDGEMENTS

Eduardo Salas, Michael A. Rosen, and Christin L. Upshaw

provided the training process exposition. Portions of this

work were funded and sponsored by Don Lampton of the

Army Research Institute under contract #W91WAW-07-P-

0020. Opinions expressed are those of the authors and do

not necessarily represent an official position of the

Department of the Army or the Army Research Institute.

REFERENCES

Clark, B. R., Lampton, D. R., Martin, G. A., & Bliss, J. P.

(2004). Virtual After Action Review Systems (DIVAARS)

(ARI Research Product 2004-03). Arlington, VA: US Army

Research Institute for the Behavioral & Social Sciences.

Cramer, M., Ramachandran, S., Viera, J. (2004) Using

computer games to train information warfare teams.

Interservice/Industry Training, Simulation, and Education

Conference (I/ITSEC).

Ekman, P. & Friesen, W.V. (1974) Detecting Deception

From Body or Face, Journal of Personality and Social

Psvchology, 29: 288-98.

Keighley, G. (2004). The Final Hours of Half-Life 2.

Retrieved December 12, 2007 from http://www.gamespot.

com/features/6112889/p-5.html

Macedonia, M. Games Soldiers Play. IEEE Spectrum, Vol.

39, Issue 3, pp. 32-37, Mar 2002.

Mayo, M., Singer, M. J., & Kusumoto, L. (2005). Massively

Multi-Player (MMP) Environments for Asymmetric

Warfare. Interservice/Industry Training, Simulation, and

Education Conference (I/ITSEC), Paper No. 2149.

McCollum, C., Deaton, J., Barba, C., Santarelli, T., Singer,

M., & Kerr, B. (2004). Developing an immersive, cultural

training system. Interservice/Industry Training, Simulation,

and Education Conference (I/ITSEC).

Morrison, P., Barlow, M., Bethel, G., & Clothier, S.

(2005). Proficient Soldier to Skilled Gamer: Training for

COTS Success. Proceedings of SimTecT 2005.

MOUT project, (2006). Retrieved June 21, 2007, from

http://www.parl.clemson.edu/~ahoover/MOUT/

Rosen, M. A., Salas, E., & Upshaw, C. L. (2007).

Understanding Demonstration-based Training: A

 10

Conceptual Framework, Some Principles and Guidelines.

Unpublished manuscript.

Salas, E. & Cannon-Bowers, J. A. (2000). The Anatomy of

Team Training. In: Tobias & Fletcher (Eds.) Training and

retraining. Woodbridge, CT: Macmillan Reference USA:

312–34.

Salas, E., Priest, H. A., Wilson, K. A., & Burke, C. S.

(2006). Scenario-based training: Improving military

mission performance and adaptability. In C. A. C. A.B.

Adler, and T.W. Britt (Eds.), Military life: The psychology

of serving in peace and combat (Vol. 2: Operational Stress,

pp. 32-53). Westport, CT: Praeger Security International.

BIOGRAPHIES

Dan Fu is a group manager at Stottler

Henke Associates. He joined nine

years ago and has worked on several

artificial intelligence (AI) systems

including AI authoring tools,

wargaming toolsets, immersive training

systems, and AI for simulations. Dr. Fu

is the principal investigator for SimBionic, which enables

users to graphically author entity behavior for a computer

simulation or game. Dr. Fu holds a B.S. from Cornell

University and a Ph.D. from the University of Chicago,

both in computer science.

Randy Jensen is a group manager at

Stottler Henke Associates, Inc.,

working in training systems since 1993.

He has developed numerous Intelligent

Tutoring Systems for Stottler Henke, as

well as authoring tools, simulation

controls, after action review tools, and

assessment logic routines. He is

currently leading projects to develop

automated after action review for

Marine Corps combined arms training, a framework for ITS

interoperability with distributed learning architectures for

the Joint ADL Co-Lab, and an authoring tool for virtual

training demonstrations for the Army. He holds a B.S. with

honors in symbolic systems from Stanford University.

Elizabeth Hinkelman is VP of Development at Galactic

Village Games, LLC. Prior to joining Galactic Village,

Elizabeth was project manager for the suite of voice Web

infrastructure products at iConverse, and contributed to

several other commercial applications of language

processing technology. She has engaged in academic

research, leading research teams and winning government

funding for investigations of human and computer

processing of natural language. Elizabeth received her

Ph.D. in Computer Science from the University of

Rochester, and a postdoctoral fellowship from the

University of Chicago.

