
Principle Hierarchy Based Intelligent Tutoring System
for

Common Cockpit Helicopter Training

Robert A. Richards

Stottler Henke Associates, Inc. (SHAI)
1660 So. Amphlett Blvd., Suite 350

San Mateo, CA 94402, U.S.A.
Richards@shai.com, www.shai.com

Abstract. SHAI is developing a comprehensive Operator Machine Interface
Assistant (OMIA) system. The system will assist operators learn the new
common-cockpit MH-60R and MH-60S helicopters in an increasingly broad
variety of mission tasks and analyses, using the wide assortment of sensor,
navigation, and computational resources available. We are employing a
principle hierarchy based intelligent tutoring system, to teach the Common
Cockpit machine interface during simulated mission execution. The Intelligent
tutoring system utilizes a SHAI developed ITS authoring environment that has
been developed and enhanced for various other ITS projects. This paper
describes the OMIA system, emphasizing the authoring tool’s ability to develop
visually the principle hierarchy and the evaluation finite state machines
necessary to evaluate the student. In addition the decision tree enhancement to
the authoring tool developed as part of this OMIA project, is described.

1 Introduction

The US Navy is introducing two new helicopters, the
MH-60S and MH-60R (See Fig. 1.). Both of these
helicopters utilize the Common Cockpit design. The
Common Cockpit includes all the flight and mission
instrumentation in both of the helicopters and
enables both the pilot and co-pilot to share workload
through dual flight and mission instrumentation, see
Fig. 2. SHAI is building a training tool called the
Operator Machine Interface Assistant (OMIA) that
includes an intelligent tutoring system (ITS) to teach
[1] the common cockpit. OMIA is currently in use
by the US Navy and is being expanded to teach more of the overall domain.

OMIA utilizes a principle hierarchy based approach to the intelligent tutoring that
interfaces to a scenario-based free-play simulation [2]. Much of the intelligent
tutoring system aspects of the overall OMIA training system have been developed
utilizing an ITS authoring tool (ITSAT) developed by SHAI. In addition, OMIA has

Fig. 1. MH-60R

required capabilities beyond the
scope of the previous version of
ITSAT and has thus enhanced
ITSAT in a general manner to meet
OMIA’s needs.

2 OMIA Training System

Two major components of the
OMIA System are the ITS, and the
scenario-based free-play simulator.
The simulator allows the student to

learn via free-play scenarios
with a graphical user
interface that closely
matches that of the common
cockpit mission displays. As
shown in Fig. 3 the
simulator communicates
with the ITS, (via an
external system interface) to
update the student model,
and to provide the student
with remediations.

2.1 Simulator

The simulator provides an engaging interface between the student and the ITS. A
student interacts with the simulator
through a computer re-creation of
the controls onboard the
MH-60R/S, see Fig. 4. In addition
to being an interface, this
component also simulates the
environment surrounding the
helicopters using scenarios.
Scenarios are authored using a
visual editing tool, and determine
the elements of the simulation. For
example, sonar returns from
pinging depend not only upon the
settings chosen by the operator, but
also on the environment and target
submarine settings in the scenario

Simulator
with

Operator
Interface

Instructor Module,
Expert Knowledge

Module,
&

Student Model

External System
 Interface (ESI)

Events

Remediations
Remediation

Module

Fig. 3. OMIA Major Components

Fig. 2. Common Cockpit

Fig. 4. Simulator’s Operator Interface

file. Other entities, such as an enemy submarine or a friendly ship, can have agendas
of their own. For instance, a submarine can be assigned the behavior “flee on
detection.” Even the fleeing behavior itself is customizable, as are all behaviors.

Of course, an operator might add objects such as sonobuoys to the simulation in
real time. The flip side is that destroyed/sunk objects would be removed from the
simulation as well. The ability to act upon the simulation and have it respond gives
the students freedom to do the right thing, or to make mistakes. Either way, the
system then has a better model of the student than before, and can use this to improve
his learning experience. A graphical scenario generator [3] allows an
instructor/author to create complex scenarios that include any number of intelligent
agent entities (e.g., ships, submarines, and aircraft).

2.2 ITS Design

The OMIA ITS consists of the following major modules:
student model,
instructor,
expert knowledge, and
remediation.

This paper concentrates on the principle hierarchy and the tools used to manipulate
the principle hierarchy. More information regarding other aspects of OMIA may be
found in [4].

The Expert Knowledge Module utilizes a principle hierarchy representation, i.e., a
collection of individual principles, arranged in a hierarchy. The principles are
relatively low-level pieces of testable information. Each principle may also contain
material that should be presented to the student as remediations. A very small sample
of the principle hierarchy is shown below.

• Acoustic
o Active Sonar

 Dipping Sonar
• Unintegrated for fast targets
• Waveform selection
• Configure before ping
• Ping after configure

The lower levels of the hierarchy are composed of specific principles which
include the operational knowledge necessary to determine the appropriate action for a
crewman to take in a particular set of circumstances. As events unfold, various

principles come into play
suggesting the appropriate
conclusions and reactions
resulting from new data and
circumstances. The principle
hierarchy, and associated
knowledge about proper
application of principles to
scenarios, provides a facility for
detecting at any time in a mission

Fig. 5. Dipping Sonar Decision Tree

a correct action (e.g., evasive maneuvers) and/or determining a correct conclusion
(e.g., target submarine is deeper than expected).

An example of an individual principle is “Use the unintegrated setting on the
dipping sonar for fast moving targets.” In this case, comparing a student’s actions to
the expert’s is straightforward. A slightly more complicated principle is “Correct
waveform selection for the dipping sonar.” For this principle, the sonar settings
suggested by the expert vary depending upon the environment and the expected
target. A decision tree is used to represent the domain expert knowledge for principles
such as this.

Decision trees are graphically constructed tree diagrams where at each node a
question is asked. The next node is
chosen based on the answer to the
current question. By traversing through
this tree, one eventually arrives at the
correct decision. A partial decision tree
for determining dipping sonar settings
based on submarine presumed speed and
distance is shown in Fig. 5 and Fig. 6. In
Fig.5 the highlighted 0 – 4 Kyd is a leaf
of the tree for a slow moving target at a
range of 0 to 4 kiloyards. For this leaf
the proper settings are shown in Fig. 6.
In this situation, there are two dipping

sonar configurations that are appropriate.

3 Using the Intelligent Tutoring System Authoring Tool (ITSAT)

There are six categories of knowledge in the OMIA ITS system. These are;
The principle hierarchy.
The simulation scenarios, to be used as examples and exercises.
Descriptions (multi-media) which explain each principle.
Knowledge used to asses the correctness of student actions.
Knowledge used to assess a student’s mastery of a principle given the history of

his performance in relation to that principle.
Pedagogical knowledge.

SHAI has developed tools to assist in the development of all of these categories of
knowledge. The SHAI developed ITS Authoring Tool (ITSAT) allows ITS authors to
organize course principles, articulate teaching methods, specify courseware, and
develop a case base of scenarios for students along with a specification of how the
student’s actions will be evaluated and their mastery of the required knowledge
assessed. This paper demonstrates primarily the visual ITSAT environment with
regards to the principle hierarchy and the finite state machines that contain the
knowledge used to asses the correctness of student actions, i.e., they evaluate the
student’s knowledge of the principles.

Fig. 6. Dipping Sonar Decision Tree
Example Settings

3.1 Principle Hierarchy Editor

ITSAT’s principal hierarchy screen is shown in Fig. 7. The Hierarchy tab has been
developed and evolved during the course of many SHAI ITS projects [5] to provide

information about the
principle hierarchy and
the constituent
principles and
remediations as well as
to provide a visual
method of creating,
manipulating and
destroying principles
and remediations. Each
principle can be
associated with multiple
elements from the
remediation section.

The left Hierarchy
region shows the
principle hierarchy and
is used to organize the
principles into the
hierarchy itself. The

bold entries in the hierarchy are groups, e.g., “Acoustics(ACST)”. These groups
represent areas of knowledge that encompass one or more principles. Under the
groups are the principles, and under each principle are the principle’s remediations.
Objects in the hierarchy may be edited via a double click or the Edit button, while the
Delete button removes items from the hierarchy.

Similarly, the Remediations region and the Principles region provide buttons to
easily create, delete, edit, and rename items; as well as add items to the hierarchy (via
the <<< key). The Group region provides the mechanism to create and add new
groups to the principle hierarchy.

For example, there is a visual layer for creating or editing remediations, as shown
in Fig. 8. In the remediation dialog, the remediation type indicates the type of this

remediation file. This
information determines how the
file will be presented to the
student. Types include,
multimedia (i.e., video), text,
picture, and default. In the case
of default OMIA will ask
Windows to open and display the
file. One can test the
remediation via the Play button;

this will show how the remediation is presented to the student.

Fig. 7. ITSAT – Main Screen Showing Hierarchy Tab

Fig. 8. Remediation Editor

3.2 Instructor, Student Model, and Remediation Modules

It is the job of the instructor module to determine when a student has failed a principle
or conversely when a principle has been successfully applied. If for example the
expert module indicates that a student should search for short range targets before
long range targets, but the student does the opposite, he has failed this principle. The
instructor module would then annotate the student’s student model, and inform the
remediation module, which may provide immediate feedback to the student
(remediation) if appropriate.

The OMIA ITS contains evaluation finite state machines (EFSM) that describe
what principles are active in a given situation, and evaluate a student’s performance
during the execution of a scenario. That is, it is the evaluation machines that are
watching the actions of the student and determining which principles are being
performed correctly or incorrectly. A scenario can have any number of evaluation
machines that are evaluated simultaneously. ITSAT provides a visual tool for
constructing, managing and editing the EFSMs.

A graphical representation of an EFSM is
shown in Fig. 9. After a student performs an
action, for example pinging the dipper, a
different EFSM might check the student’s
waveform selection against that of the expert
waveform selection. If the settings are
correct, the student’s percentage correct on
waveform selection would increase. If wrong,
his percentage on this principle would
decrease and the remediation attached to this
principle might be displayed.

EFSMs consist of states and transitions.
Each state has a set of transitions; each

transition has a destination state. During evaluation, the EFSM is considered to be in
one of its states, called the “current state.” From this current state, the EFSM
evaluates each of the state’s outgoing transitions. If one of these transitions “becomes
true”, it is taken to its destination state. This state then becomes the “current state” of
the EFSM. Additionally, the student passes any of the transition’s passing principles,
and/or fails any of the transition’s failing principles. This structure creates a set of
directional paths that are used to determine how well the student reacted to events in
the scenario.

3.3 Evaluation Finite State Machine (EFSM) Editor

ITSAT includes an evaluation machine editor. In the main window of the editor
one can graphically create and connect states and transitions using the mouse. The
text box below this window displays hints for editing the EFSM. The basic operations
include:

• To create a state: Move the mouse over a blank portion of the window, and then right
click. A box representing the state will appear.

Fig. 3. Evaluation Finite State
Machine Editor

• To create a transition: First select a state to be the source state. Then move the mouse
over the state that will be the destination state for the new transition. Finally, right click.
A transition will be created going from the source state to the destination state. The
transition object itself is represented graphically as an oval.

• To select a state or transition: Move the mouse over the state or transition and click.
• To edit a state or transition: Move the mouse over the state or transition and double click.
• To delete a state or transition: Select a state or transition, and then press the delete key.
The descriptions button brings up the description editor for the evaluation machine

that can be used to provide documentation.
As an example, in the EFSM shown in Fig. 9, the initial state, ACST Mode, is the

top-most rectangle. When the action, Key_DIP_CNFG is taken, a transition is made to
the DIP_CNFG Menu state. From this state, the machine can either transition on the

dipper being configured
(SetsValue) or on the key which
closes the menu without changing
any settings (Key_DIP_CNFG).

A major portion of the
information content for an EFSM is
contained within the transitions.
Transitions can be activated based
on either an event or a condition, or
both. For example, a transition
might be triggered on the event
OpenScenario with a condition of
Scenario name equals Scenario
Bravo. ITSAT provides a GUI to
work with the transitions and is
further described below.

3.3.1 Evaluation Transition Editor
The evaluation transition editor is shown in Fig. 10. Each transition has a list of
conditions. In general, when these conditions are satisfied, the transition “becomes
true” and is taken by the evaluation machine. A simple or complex set of factors can
determine whether a transition is taken or not.

The event on which to match for the transition is set in the Event field. If an event
is specified, this transition will only be taken if the event occurs AND all the
conditions are met. If “None” is specified, the transition is taken any time the
conditions are met. To the right of this field are the bindings of the event parameters.
These event variables become bound to the particular event that occurred, and can be
used as parameters to the transition’s conditions.

If the Spawn a child Evaluation Machine if this transaction is taken box is
checked, then the evaluation machine will remain in its current state and spawn a
copy of itself when the transition would normally be taken. The spawned evaluation
machine will begin evaluating at the transition’s terminal state. This technique is
useful for creating evaluation machines that need to evaluate a situation that can
happen multiple times simultaneously.

Fig. 10. Evaluation Transition Editor

The Conditions region displays all the current conditions for this transition. The
drop-down list contains all possible conditions that can be added. If the “Can be
satisfied” radio button is selected, then the transition will only be taken if all the
conditions can be satisfied. If the “Cannot be satisfied” radio button is selected, then
the transition will be taken only if all the conditions cannot be satisfied. Buttons are
provided to; Add the selected condition to the current list of conditions, giving it
default parameters; Edit the parameters of the condition via a Condition Editor; and
Delete the condition from this transition. OMIA has enhanced the previous version of
ITSAT to include the capability to have decision trees as one of the conditions. See
below for more information on decision trees.

The Variables region allows editing of the different types of variables in a
transition. These variables can then be used as parameters to the transition’s
conditions. Variables have a type, which indicates what type of object they can refer
to, types include Global, Event and Free. Global variables are global in the sense that
they are shared between the states and the transitions of the evaluation machine.
Changes to the value of a global variable made in one transition will be seen by all
transitions in that evaluation machine. Event and free variables are local variables.
That means that they are only available in the context of the current transition. Free
variables are declared as part of a transition, and the system will assign them to any
object that causes the conditions to be satisfied. Event variables are parameters that
are tied to an event. ITSAT includes variable editors for all types of variables.

The Principles region allows for adding/removing passing/failing principles for
this transition. When a transition is taken, the student is credited with passing all the
“passing” principles indicated, and is considered to have failed all the “failing”
principles. To attach a principle to the transition, simply select it in the drop-down

list. Then, choose to add it to one
of four categories: passing,
warning, failing, and dialog.
When the transition fires, an
action will be performed based on
the category of the attached
principle(s). For passing
principles, a success will simply
be noted in the principle
hierarchy. Warning principles
indicate that if the principle has a
warning associated with it, then
this warning should be displayed
to the user. In the OMIA system,
this is known as an enhancement
and shows up on the multi-
function display. A warning of
TryCOM1 PL4 is shown in Fig.
11. If a failing principle is

attached it is noted that the principle was failed in the principle hierarchy.
The transaction type field specifies what kind of transition this is. This provides

feedback in the evaluation summary as to whether this transition is purely

Fig. 11. Operator Interface with Warning

informational, whether it means some event occurred, or whether the student
performed some action that caused this transition to be taken. In any case, this field is
only applicable for transitions in which no principles are passed or failed, and it has
no impact on the evaluation.

The description field annotates the transition with comments that may be displayed
to the student after they’re evaluated, i.e., in an ex postfacto summary report. The
comment field is used to describe the transition in plain English, e.g., to provide
explanation to other authors.

3.4 Decision Tree Editor

OMIA’s major contribution to the
ITSAT tool is the addition of
decision trees. A decision tree (DT)
provides a powerful new type of
event transition condition. The
complex environment in which the
MH-60S and MH-60R helicopters
operate requires judgments that must
take into account many variables. In

addition, there are situations where multiple answers are correct. For multiple answer
situations EFSMs could be constructed to handle them, but handling them in the
context of the DT proved much cleaner.

The OMIA development could have built the DT
capability outside the context of ITSAT, however, it
was determined early that the power of DTs is
formidable and should be included as a key
component of ITSAT. The Decision Tree Editor
follows the look and feel of the rest of ITSAT. The
Decision Tree tab in ITSAT, as shown in Fig. 12,
provides the basic mechanisms for creating New
decision trees, as well as the ability to Edit, Delete and
Rename decision trees.

The dialog accessed via the Edit button, see Fig. 13,
begins to reveal the power of the decision tree editor.
All DTs have a Root node, from the Root node one
may add (New) nodes, as well as Edit, Delete, and
Rename nodes. This dialog also allows for the
selection of arguments available to the nodes and the return values.

There are a series of dialogs that allows for the creation of nodes, nodes can be one
of three types, Leaf, Evaluate, or switch. An example of a complete leaf node is
shown in Fig. 14.. This is the Leaf node for the Unknown Speed, Unknown Range
branch of the decision tree shown in Fig. 13.

The decision tree editor addition to the ITSAT tool has proven valuable to the
OMIA ITS development, both in the development of decision trees and in the
maintenance and understanding of them.

Fig. 12. Decision Tree Tab

Fig. 13. Edit Decision Tree
Dialog

4 Conclusion

The complexity and number of the sensors under control of the crew on the MH-60S
and MH-60R helicopters pose a difficult training task for the Navy. To meet this
challenge SHAI is developing a comprehensive Operator Machine Interface Assistant

system that employs a
principle hierarchy based
intelligent tutoring system.
SHAI has exploited its own
rapid development
intelligent tutoring system
authoring tool to construct
the principal hierarchy, the
evaluation finite state
machines, decision trees and
other portions of the ITS.
The intelligent tutoring
system authoring tool’s
capabilities have continued
to expand as more and more

SHAI ITS projects have found the tool valuable and then enhanced the tool to add any
new capability required be particular ITS projects. The enhancements have been
added under the same general framework so that added power and flexibility have
come with only a small increase in user complexity. OMIA is no exception, the
decision tree capability has been added during OMIA’s development process. OMIA,
benefiting from the power of ITSAT, has proven its value to the US Navy, as it is
currently in use to train MH-60S crew as further development continues.

References

1. Bloom, B. S., (1984). The 2 sigma problem: The search for methods of group instruction as
effective as one-to-one tutoring. Educational Researcher, 13(6): 4-16.

2. Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) (1999). How People Learn: Brain,
Mind, Experience, and School. Washington D. C.: National Academy Press.

3. Stottler, R. H., & Vinkavich, M. (2000). Tactical action officer intelligent tutoring system
(TAO ITS). I/ITSEC 2000 Proceedings.

4. Ludwig, Jeremy L. & Henry Jackson (2001). A Common Cockpit Training System. I/ITSEC
2001 Proceedings.

5. Stottler, R. H., Fu, D., Ramachandran, S. & Vinkavich, M. (2001). Applying a Generic
Intelligent Tutoring System (ITS) Authoring Tool to Specific Military Domains. I/ITSEC
20001 Proceedings.

Fig. 14. Decision Tree Node Dialog

