
FlexiTrainer: A Visual Authoring Framework for Case-
Based Intelligent Tutoring Systems

Sowmya Ramachandran, Emilio Remolina, and Daniel Fu

Stottler Henke Associates, Inc., 951 Mariner’s Island Blvd. #360, San Mateo, CA, 94404
{sowmya, remolina, fu}@stottlerhenke.com

Abstract

The need for rapid and cost-effective development Intelligent Tutoring Systems
with flexible pedagogical approaches has led to a demand for authoring tools.
The authoring systems developed to date provide a range of options and flexi-
bility, such as authoring simulations, or authoring tutoring strategies. This paper
describes FlexiTrainer, an authoring framework that enables the rapid creation
of pedagogically rich and performance-oriented learning environments with
custom content and tutoring strategies. FlexiTrainer provides tools for specify-
ing the domain knowledge and derives its power from a visual behavior editor
for specifying the dynamic behavior of tutoring agents that interact to deliver
instruction. The FlexiTrainer runtime engine is an agent based system where
different instructional agents carry out teaching related actions to achieve in-
structional goals. FlexiTrainer has been used to develop an ITS for training
helicopter pilots in flying skills.

Introduction

As Intelligent Tutoring Systems gain currency in the world outside academic re-
search, there is an increasing need for re-usable authoring tools that will accelerate
creation of such systems. At the same time there exists a desire for flexibility in terms
of the communications choices made by the tutor. Several authoring frameworks have
been developed that provide varying degrees of control, such as content, student mod-
eling and instructional planning [3]. Some allow the authoring of simulations [2],
while some provide a way to write custom tutoring strategies [1, 4]. However, among
the latter type, none can create tutors with sophisticated instruction including rich in-
teractions like simulations [3]. Our goal was to develop an authoring tool and engine
for domains that embraced simulation-based training. In addition, our users needed
facilities for creating and modifying content, performance evaluation, assessment pro-
cedures, student model attributes, and tutoring strategies. In response, we developed
the FlexiTrainer framework which enables rapid creation of pedagogically rich and
performance-oriented learning environments with custom content and tutoring strate-
gies.

FlexiTrainer Overview

FlexiTrainer consists of two components: the authoring tool, and the runtime engine.
The core components of the FlexiTrainer authoring tool are the Task-skill-principle
Editor, the Exercise Editor, the Student Model Editor, and the Tutor Behavior Editor.
The Task-skill-principle Editor enables the definition of the knowledge of what to
teach and includes the following default types of knowledge objects: tasks, skills, and
principles. These define the core set of domain knowledge. The Exercise Editor facili-
tates the creation of a library of such exercises for the tutor to draw upon as it trains
the students. The Tutor Behavior Editor has the author specify two kinds of knowl-
edge: how to assess the student and how to teach the student. Both types of knowl-
edge are captured in the form of behavior scripts that specify tutor behavior under dif-
ferent conditions. These behaviors are visualized in a “drag and drop” style canvas.

Except for the Behavior Editor, all the other editors employ a uniform method for
creating knowledge structures. An atomic structure consists of a type which is a set of
properties common to a number of instances that distinguish them as an identifiable
class. For example, the author may want to define “definition” as a separate knowl-
edge type by creating a “definition” type with properties “name”, “description”, and
“review content”. An instance would be a definition of “groundspeed” with values
filled in, such as “speed relative to the ground” and “ground speed review.html”.

Types and instances provide a way for gathering knowledge. Ultimately, there are
two ways in which the knowledge will become operational: evaluating and teaching
the student. The ways in which the training system fulfills these functions are driven
by behavior scripts that dictate how the training system should interact with the stu-
dent.

FlexiTrainer’s behavior model is a hierarchical finite state machine where the flow
of control resides in stacks of hierarchical states. Condition logic is evaluated accord-
ing to a prescribed ordering, showing very obvious flow of control. FlexiTrainer em-
ploys four constructs: actions, which define all the different actions FlexiTrainer can
perform; behaviors that chain actions and conditional logic; predicates, which set the
conditions under which each action and behavior will happen; and connectors, which
control the order in which conditions are evaluated, and actions and behaviors take
place. These four allow one to create behavior that ranges from simple sequences to
complex conditional logic. Figure 1 shows an example “teach for mastery” behavior
invoked whenever the student wants to improve his flying skills. It starts in the upper
left rectangle. The particular skill to practice is determined by the selectSkill behav-
ior. Once the skill to practice is chosen, the teachSkill behavior is invoked: it will pick
an exercise that reinforces the skill (and is appropriate for the student mastery level)
and then will call the teachExercise behavior to actually carry out the exercise. If the
student has not taken the assessment test yet, he will take the test before any skills are
selected.

Instructional agents carry out teaching-related actions to achieve instructional
goals. The behaviors specified with the Behavior Editor define how agents satisfy dif-
ferent goals. The engine also incorporates a student modeling strategy using Bayesian
inference.

So far the FlexiTrainer framework has been used to develop an ITS to train novice
helicopter pilots in flying skills [5]. We plan to add other functionality such as: ability

to support development of web-based tutoring systems; support for creating ITSs for
team training; a pre-defined library of standard tutoring behaviors reflecting diverse
instructional approaches for different types of skills and knowledge.

The work reported here was funded by the Office of the Secretary of Defense un-
der contract number DASW01-01-C-5317.

Fig. 1. Example of a dynamic behavior specification

References

1. Major, N., Ainsworth, S. and Wood, D. (1997) REDEEM: Exploiting symbiosis between
psychology and authoring environments. International Journal of Artificial Intelligence in
Education, 8 (3-4) 317-340.

2. Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S., Towne, D.M. and Wogulis, J.L.
(1997). Authoring simulation-centered tutors with RIDES. International Journal of Artifi-
cial Intelligence in Education. 8(3-4), 284-316.

3. Murray, T (1999). Authoring Intelligent Tutoring Systems: An analysis of the state of the art.
International Journal of Artificial Intelligence in Education, 10, 98-129.

4. Murray T. (1998). Authoring knowledge-based tutors: Tools for content, instructional strat-
egy, student model, and interface design. Journal of the Learning Sciences, 7(1).

5. Ramachandran, S. (2004). An Intelligent Tutoring System Approach to Adaptive Instruc-
tional Systems, Phase II SBIR Final Report, Army Research Institute, Fort Rucker, AL.

