
Use Cases, Requirements and a Prototype Standard for an Intelligent Tutoring
System (ITS)/Simulation Interoperability Standard (I/SIS)

Richard H. Stottler and Robert Richards, Ph.D.
Stottler Henke Associates, Inc.

951 Mariners Island Blvd., Suite 360
San Mateo, CA 94404

650-931-2700
stottler@stottlerhenke.com

Brian Spaulding

MAK Technologies, Inc.
10 Fawcett St

Cambridge, MA 02138
617-876-8085 x112

bspaulding@mak.com

Keywords:
Intelligent Tutoring System (ITS), Simulation, Interoperability, Standard

ABSTRACT: Intelligent Tutoring Systems (ITSs) are being applied to an increasing proportion of military training.
Most ITSs are interfaced to simulations, usually involving real-time tactical scenarios. The simulation and ITS are
generally developed by different companies at different times. This makes interfacing the ITS and the simulation
problematic, experience has shown. An industry-wide interoperability standard would enable different vendors of
simulations and ITSs to easily integrate their products, save time and money, and increase the training value of
simulation exercises. The Intelligent Tutoring System Interoperability Study Group (ITSI SG) was formed to study the
issues associated with an ITS/Simulation Interoperability Standard (I/SIS).

This paper describes the results of the ITSI SG meeting held at the Fall, ‘04 SIW in Orlando which resulted in a refined
set of use cases and requirements and a prototype of the I/SIS. They are presented here for comment and discussion
and follow up on the paper, “Requirements of an Intelligent Tutoring System (ITS)/Simulation Interoperability Standard
(I/SIS)” presented at the Fall, ’04 SIW [1].

Four primary use cases were identified – tactical decision-making training, equipment operations and maintenance
training, ITS-centered training systems, and simulation-centered training systems – along with combinations of them.
Several requirements were identified and sorted by use case and level. The Study Group decided that it was important
to have both a minimal level I/SIS that simulation developers could easily meet (Level 1) and would allow a reasonable
integration and level of functionality and a higher capability level (Level 2) that provided a much better integration and
supported a much fuller range of desired capabilities. A small number of optional levels were also identified to support
very specific capabilities, such as an integrated scenario editor. The requirements include data from the simulation
needed by the ITS, such as the trainee’s actions for automatic evaluation; facilities needed by the ITS, such as an
avenue to present feedback and other information to the trainee through the simulation; and facilities needed by the
simulation, such as automatic trainee evaluation, on request.

The prototype standard allows for data transfer through either the Distributed Interactive Simulation (DIS) or High
Level Architecture (HLA) protocols at the simulation developer’s discretion. TCP-IP sockets are also being
considered. The XML Battle Management Language (XBML) would be used to format tactical orders. Other data
needed by the ITS or simulation would be in XML format.

This paper will present examples of each of the use cases and requirements from actual Simulation-ITS integration
projects as well as examples of how the standard would have applied had it already existed. This paper supports the
ITSI SG by promoting discussion of I/SIS use cases, requirements, and prototype standard with an audience larger than
the study group.

1. Introduction/Motivation

In order to evaluate a trainee's actions and decisions, the
ITS needs access to information about the execution of
those actions. It may need a mechanism within the
simulation to present real-time and debriefing feedback.
The ITS may also need a mechanism to start the
simulation with a specific scenario and potentially control
some aspects of the scenario. Standards such as DIS and
HLA (with various Federation Object Models (FOMs))
exist to support interoperability of simulations. These
allow simulations written by different vendors at different
times to interoperate. ITSs are often forced to use these
standards as a basis for an interface; however, in the
current form, their object models are inadequate and must
usually be extended. Their primary shortcoming is that
they were designed to export the data from one simulation
to another primarily for rendering and calculations. This
is what is externally observable for a given platform
(position, velocity, sensor states, fire events, damage
levels, etc.). However, a trainee's actions include data
that is not externally observable such as actions
performed on the equipment or in software that don't have
an immediate externally observable effect or internal
communications including text, audio, graphical plans,
orders, etc. These are not handled by the common
simulation protocols. Additionally, no standard
mechanism exists for sending feedback to students
through the simulation or for performing the control
measures mentioned above other than some generic
messaging packets and trigger mechanisms. A well-
integrated application would also have a mechanism for
transferring instructor entered information from the
simulation’s scenario editor to the ITS for use in
evaluating the student’s actions. A further benefit of
I/SIS is that a human instructor needs access to the same
kind of information and control as an ITS. Thus, I/SIS
also will facilitate integration of simulations with
instructor stations from different vendors, greatly
reducing the cost of instructor stations while ensuring the
needed instructor capabilities will exist.

2. Use Cases

Four important use cases were identified to cover the
majority of military training using simulations and ITSs in
concert. These were: Tactical Decision-Making training
(TDM), Equipment Operations and Maintenance training
(EOM), ITS-Centered training systems (IC), and
Simulation-Centered training systems (SC). TDM
training refers to training and practice in making decisions
in a tactical situation. It is primarily directed toward
deciding what to do. Equipment Operations training
refers to training on the use of equipment or software to
perform some task. It is primarily directed toward

knowing how to do something, given that what to do has
already been decided. Equipment Maintenance training,
since it is directed toward tasks (troubleshooting, repair,
preventive maintenance) not related to a tactical situation,
doesn’t involve TDM and requires the same type of
ITS/simulation integration as operations. The EOM use
case covers most miscellaneous training systems not
related to the interaction of friendly and enemy units. For
example, a medical ITS, a Navy sonar image analysis ITS
and a counter-terrorism intelligence analysis ITS all fall
under EOM.

IC training systems are ones in which the ITS is primarily
in control of the combined application. The student or
team typically starts training and logs on through the ITS.
The ITS models the students and/or teams at least
regarding the skills and knowledge that they have
mastered, decides on the next instructional events,
including which scenario is appropriate when the next
event is executed in the tactical simulation, evaluates the
performance of the students or teams, provides hints and
real-time feedback, provides after action review (a
scenario debriefing which may be interactive), and
formulates and executes a remedial plan. The simulation
provides the ITS with a practice and testing platform.

In SC training systems, the ITS is an accessory available
to support and enhance the training objectives of the
simulation. This support can include real-time feedback
through an interactive dialog with the trainee, where the
ITS evaluates performance during the scenario, and/or has
an evaluation engine, that executes at the completion of
the entire simulation or at pre-defined stages within the
simulation. In all cases, the interaction with the ITS
should be transparent and the trainee interacts with it as
another component of the simulation-based trainer itself,
rather than a separate item. The purpose of the ITS is to
augment the basic functionality of the simulation-based
trainer with intelligent evaluation, hinting, and debriefing
capabilities and to provide a more effective training
environment. However, the trainee starts and logs on to
training through the simulation and should not need to
start a separate application and, ideally, the ITS is
seamlessly embedded and consistent with the GUI of the
application itself.

These four use cases form two pairs each corresponding
to a dimension. One dimension is the type of training –
TDM or EOM. The other dimension is the type of system
– IC or SC. A specific ITS/Simulation Integration
covered by I/SIS will be at least one of each dimension.
In other words, a specific I/SIS training application will
be TDM or EOM (or possibly both) and IC or SC (or
possibly include modes for both). As implied in the
previous sentence, systems may include both use cases of
the same dimension. In fact, a specific simulation-based

ITS might cover all 4 use cases. An example would be an
ITS effort currently under way. An embedded ITS was
developed for the Future Combat System (FCS)
interfaced to an FCS vehicle prototype which teaches both
platoon level reconnaissance TDM and how to use the
robotic interface software. The current version is
primarily SC, but the notion of having an IC mode has
also been considered. If this occurs, all 4 use cases would
be covered by the one training system. [2]

Figure 1. Embedded FCS ITS Prototype

3. Examples

Battle Command 2010 (BC-2010) is a PC-based, military
tactical trainer that allows commanders and their staff
officers to practice both their planning and execution
skills within a compelling simulated environment. It was
designed to support Army battalion and brigade
commands in preparing operation orders.

BC-2010 helps commanders develop warfighting skills by
allowing them to plan the battle, fight the battle and
review the battle. At the start of training, trainees produce
all graphical and text-based products to support their
military decision making process. During this process,
trainees collaborate using shared graphical overlays and
planning documents. When trainees are ready, they can
activate the simulation and fight their plan against other
players or a computer-directed enemy. During the
exercise, trainees can work together to revise the plan and
issue changes to subordinate unit commanders. At the end
of the execution, BC-2010 provides charts and tracking
information to determine the success of the battle plan, as
well as a full recording of the exercise as part of an After
Action Review (AAR).

The BC-2010 ITS Integration Prototype is an example of
the Tactical Decision-Making (TDM) and Simulation-
Centered (SC) ITS interface use cases. Under a PEO-
STRI funded project, MÄK Technologies and Stottler-

Henke created an initial proof-of-concept prototype to
demonstrate the linkage of an ITS with an HLA-based
simulation, BC-2010. For the prototype, the ITS and BC-
2010 existed as separate applications, with a separate
window containing buttons to evaluate the user developed
plan and evaluate the results of the execution. Although
this is not the optimal approach for integration, it was
done as a first step due to limited funding and time and
did serve to demonstrate the additional value of
incorporating ITS functionality.

To use the combined application, the trainee followed a
deliberate planning process and created the tactical
graphics, unit positions, and planning documents, then
pressed a button to receive feedback from the ITS about
the produced plan. Based on the feedback, the trainee
could then make any necessary changes to the plan and
re-evaluate. When the trainee (and the ITS) were satisfied
with the plan, execution could be started. The trainee
then executed the plan by tasking units according to the
developed plan in an attempt to accomplish the specified
mission objectives. When the execution was completed,
the trainee pressed a button and reviewed the performance
evaluation produced by the ITS.

The Intelligent Flight Trainer (IFT) teaches introductory
helicopter pilots in the context of exercises performed in
MicroSoft Flight simulator (MSFS) following the
instructional model used by instructor pilots of teaching in
the context of simulated flight exercises. Trainees are
assigned flight exercises based on mastery and personality
attributes. Exercises are preceded by pre-flight briefings,
and followed by detailed after-action reviews. The after-
action reviews include pointers to remedial material;
however, most of the training happens in the context of
exercises. Trainees are coached through the exercises to
varying degrees based on their expertise level.

The IFT is an example of the EOM and IC use cases. To
begin an exercise, IFT instructs the student to select a
specific flight that is geared for the chosen exercise. The
student uses the simulator facilities to start the flight.
Once the flight starts, the student is in control of the
helicopter. The tutor provides (spoken) instructions
whenever it decides the student needs some help. The
tutor decides and informs the student when the exercise is
done.

Real-time coaching feedback during the exercise is
derived from a description of the procedure the student
should carry out to recover from out of nominal
conditions (e.g., if the student lost altitude, use a recover
altitude procedure to coach the student). Authors can
“draw” such procedures as flow charts in a graphical
environment for execution during the simulation.

The tutor provides the following kinds of coaching
depending on the expertise level of the student. Advanced
students get limited coaching, which is often restricted to
alerting the student about events and helicopter conditions
that need attention. Novice students, on the other hand,
get hands on coaching in the form of specific instructions
on what they should be doing with the controls. Coaching
takes the form of verbal, spoken instructions. In addition,
the tutor may provide help in the form of visual cues. In
the current version of IFT, the tutor can flash relevant
instruments to guide the student in using instruments to
understand the state of the helicopter and determine
corrective actions. For example, if the student is climbing
too fast, the tutor will flash the climb-rate indicator in
order to draw the student’s attention to his rate of climb.
The tutor stops the simulation whenever the student loses
control of the helicopter. Losing control of the helicopter
happens when the helicopter’s parameters are outside the
exercise’s specified range, which is specified while
defining the exercise using the authoring tool. Usually
these parameters define obvious out of control conditions:
the helicopter is about to crash, the helicopter is rolling,
etc. Other out of control conditions are less obvious: the
helicopter deviated too much from the exercise’s targeted
heading; the helicopter is out of the altitude range
specified for the exercise; etc. The tutor will explain why
the helicopter is out of control, as well as how to correct
the situation.

The tutor provides an after-action review once the
exercise is completed. This feedback is given in two
forms: an exercise performance summary and a replay of
the exercise. The postbrief is a typical exercise
performance summary that shows the following results:
(i) the three best things that were done well; (ii)
improvements (if any) noticed in the student’s flying
skills, and (iii) three worst things done during the
exercise. Hyperlinks are provided for the student to
review those flying skills or principles that need the most
improvement. In all cases, the student model is used to
filter the feedback that is provided to the student by not
including things the student already knows (e.g., pointing
out things done well only if the student has not mastered
them before the exercise) or things that are not usual
problems (e.g., advanced students may lose altitude
during an exercise although they, in general, know how to
maintain altitude).

4. Requirements

One of the main goals of the study group was to make
sure that the standard was practical in the sense of being
straight-forward for simulations developers to meet. It
was therefore decided to have two main levels of
requirements and components of the standard. The first
level, Level 1 (L1), should be very straight-forward for

simulation developers, while still supporting most of the
capabilities that the combined ITS/simulation training
system should have. Level 2 (L2) in contrast supports
almost all of the capabilities that such a training system
should have. A number of optional levels for
requirements and parts of the standard were also
identified, corresponding to optional capabilities of the
combined system. The optional level to allow for the ITS
to provide feedback using the elements of the simulation’s
user interface is called LSUI. The optional level to
provide integration of the simulation’s scenario editor
with the scenario information editor of the ITS is called
LCSE (for coordinated scenario entry). The optional
level for the simulation to allow the ITS to drive a replay
capability is called LIDR (for ITS driven replay).
Elements of the requirements and the standard itself are
labeled with both the use case and level to be as clear as
possible what is required to accomplish different sets of
capabilities. There is a fair amount of overlap between
the use cases so if neither use case is mentioned, the
requirement or component of the standard is needed for
both. Also, Level 2 implicitly includes all of Level 1.

The ITS requires access to the trainee’s actions. For
TDM, the Level 1 requirement (TDML1) is to provide
externally observable data (such as that available through
DIS or the HLA Real-time Platform Reference (RPR)
FOM) to the ITS. The ITS will have to infer the student’s
actions from the actions of the tactical platforms, however
this is often quite satisfactory. For EOM or TDML2
access to the internal actions (software or equipment
actions, repair activities, communications such as plans,
orders, audio, etc) is required.

The ITS also requires the context in which the student is
making his decision. For TDML1 this will also be
externally observable data, such as entity positions, fire
events, etc. For TDML2, the student’s immediate context
will be provided by the simulation. This includes
information dynamically displayed in the student’s view.
This would include what entities are visible in the
student’s current 3-D view, what vehicles are being
displayed on the student’s 2-D map, the values of various
instruments, communications received, etc. EOM, both
levels, also requires the values of various instruments and
other information being displayed to the student.

A Level 1 requirement is for the simulation to present
real-time and after action review information, both text
and graphics, from the ITS to the student. A Level 2
requirement is for the simulation to provide interactivity
with the student for the ITS. Instead of just presenting
text and graphics, the ITS can ask questions and get the
answers back, through facilities provided by the
simulation. An optional level (LSUI) requirement enables
the ITS to send instructions to the simulation to partially

control its user interface. For TDM this would be the
ability for the ITS to highlight entities, units, or areas in a
2-D or 3-D display as well as allow students to answer the
ITS’s questions by selecting entities, units, or areas in the
simulation’s displays. For EOM, this would allow ITS
highlighting or student selection of instruments, controls,
equipment parts, tools, etc.

An IC requirement is for the ITS to be able to start the
simulation in a specific scenario. The corresponding SC
requirement is for the simulation to start the ITS, inform it
of the specific scenario being run, and select specific
evaluations, types of coaching, and debriefing that the ITS
should perform. An ICL2 requirement provides for ITS
control of simulation finish, pause, resume, reset, After
Action Review (AAR) start, and various elements of the
scenario including entities and units, controls,
environment, and equipment malfunctions and inputs.
During the debrief, the LIDR requirement allows the ITS
to direct the simulation to replay various time segments
from various perspectives.

An L2 requirement is for the simulation’s scenario files to
be in a standard format, for access by the ITS.
Additionally, for TDM or EOML2, the ITS will access
additional information associated with the scenario for
evaluation and feedback purposes. Much of this
information can be input by instructors at the same time
that they are creating the scenario for the simulation. This
could occur with separate editors, or optionally (LCSE),
with integrated editors.

ITSs typically model the mastery and other aspects of
specific students. This requires that they know which
specific student or team of students is currently

performing. Most have a logon process for students using
a student ID and password. In the SCL2 case, these will
have to be received by the simulation and passed on to the
ITS. Additionally some simulations require a user ID and
password logon process. In the ICL2 case these will have
to be passed to the simulation. In both cases, the
receiving component will have to notify the sending
component that the either the user ID and password were
accepted or that they were incorrect. In the case of team
training, the SCL2 requirement also includes specifying
for each student ID, that student’s role within the team,
assigned equipment, and other team context (such as call
sign).

5. Preliminary Suggested Prototype Standard

All of the L1 and L2 requirements can be grouped into
two categories – the need to move information between
the Simulation system and the ITS and the need for the
ITS or simulation to provide requested services to the
other. This latter category also includes moving
information because the Simulation or ITS has to make its
request for services known to the other. The ITSI Study
Group extensively discussed the most appropriate
mechanism for this information transfer. Both HLA and
DIS and other basic mechanisms were discussed. HLA
and DIS were both considered serious contenders.
Ultimately, it was decided that the standard should define
the content and form of the information to be transferred
but leave the selection of which mechanism option,
whether DIS or HLA, up to the simulation developer.
TCP-IP sockets are also being considered. This leaves the
following architecture for the standard.

Simulation

ITS

Trainee or
Team Scenario

Author

Simulation
Scenario
Editor

ITS
Scenario
Editor

Scenario

Scenario
ITS Info.

HLA or
DIS

Optional
if SC

Possibly
Integrated

Figure 2 I/SIS Architecture

The trainee or team may or may not (in the SC case)
interact directly with the ITS. They will definitely
interact with the simulation through its user interface to
perform in the simulated scenarios. The Simulation and
ITS transmit information to each other, including requests
for services, using HLA or DIS. In the case of HLA, this
actually occurs through the Real Time Infrastructure
(RTI), not shown. The scenario author interacts with the
simulation scenario editor to create scenarios to be run in
the simulation. For Level 2, tactical portions of the
scenario are represented in the Military Simulation
Definition Language (MSDL). Non tactical portions (or
for the EOM case) are stored as XML files. The author
also defines additional scenario related information for
use by the ITS for evaluation, coaching, and debriefing
purposes. The editor for this ITS related scenario
information may (LCSE) or may not be integrated with
the Simulation Scenario Editor. In addition to using the
Scenario ITS Information, the ITS also accesses the
Scenario used by the simulation.

If DIS is the chosen protocol, the information generally
available from the simulation via DIS would still be
transmitted via DIS. This corresponds to externally
observable information and meets the requirements for
TDML1. The other information, described further below,
would be sent via Experimental PDUs. If HLA is the
chosen protocol, the information generally available from
the simulation in the RPR FOM would still be transmitted
via HLA. This also corresponds to TDML1.
Additionally, an I/SIS FOM extension will have been
created that could be added to RPR FOM. This extension
would encapsulate the additional details needed for ITS-
Simulation communication. One specific additional
Interaction to be created in the I/SIS FOM extension will
be called Simulation Data and will be used in exactly the
same way as the Experimental PDU, above. Then both
the simulation and ITS would be Federates of the same
Federation. This would not affect other Federates that
were not aware of the I/SIS extension since they would
have the choice of which Objects/Interactions to Publish
or Subscribe. The decision to represent the additional
data identically in either the DIS or HLA case was a
conscious one because of the obvious benefits of one
representation instead of two. A logical alternative for the
HLA case would be to define the additional attributes in
the I/SIS FOM instead of XML in one FOM class (the
Simulation Data interaction). This would more naturally
utilize HLA’s capabilities at the cost of having different
representations for HLA and DIS.

In either the DIS or HLA case, the additional information
would be represented as XML at a minimum and with an
XML based standard when available. Defining this extra
information would be a good start. The HLA IEEE 1516
standard uses XML as its FOM definition language, so it

would be easy to add the data to a FOM like RPR. Also,
it would be a straight-forward process to translate the
XML format to the HLA 1.3 OMT format. As discussed
in requirements there are several different types of
information to be transmitted.

TDML2 information of the student’s actions includes
orders which would be represented using the XML-based
standard XBML [6, 7]. When those orders reference
graphical plans, they would be represented using similar
objects models as contained within existing FOMs like
the Naval Training Meta-FOM (NTMF) [3] or the C4I
Reference FOM [5]. Student actions that involve
software or equipment actions are covered under the
EOM student actions below. Communications that are
not orders, will be represented depending on what they
are. If they are C4I types of messages (such as to
maintain a common operational picture) components of
the NTMF or C4I Reference FOMs will be used. If they
are text that does not fit this definition, they will be
represented as text within an XML wrapper that describes
whatever formatted data is associated with the text, such
as the communication channel and the intended recipient.
Similarly, audio communications are saved to a globally
accessible file and an XML message that contains the file
name and related attributes is created and sent to the ITS.
For example, both DIS and HLA can be used to transmit
digital audio corresponding to radio transmissions
between team members. These would be stored in a file
and the file name transmitted in XML via HLA or DIS to
the ITS. Tactical context is partly provided by the list of
entities and units shown in each display formatted in
XML. Additional context includes communications
previously received by the student which are represented
in the same ways as communications from the student as
described above. Context provided by instrument values
are covered in EOM context below.

EOM information of the student’s actions and context is
represented by XML formatted lists of controls actions
and instrument values. Displays that display multiple
items have a list instead of a single value associated with
them. If instruments do not always reflect reality or if
some significant simulation state is not available from an
instrument display, then simulation state information must
also be sent via XML messages. For some applications,
most notably pilot training, the real-time performance of a
large number of XML formatted messages has to be
studied, given the relative inefficiency of XML coding.
The study may determine that compressed XML may be
acceptable or that a different, more compact and easily
decoded format may be needed for some applications. If
so, the simulation developer will have to take extra care to
clearly define the format and provide numerous examples.

Service requests are handled just like the other

information transfers, as XML formatted messages
embedded in DIS PDUs or HLA objects. Both DIS and
HLA have Action Request (and Action Response)
messages, so these will be used to send the XML
formatted service requests. Service requests have fields
for the type of service request, the sender, and the
intended recipient (the presumed servicer of the request)
along with fields for the necessary information. The
Level I requirement for the simulation to present feedback
to the student from the ITS is provided by the Feedback
service request type. It includes the URL of an html page
of text and graphics to be displayed to the student. The
L2 requirement to provide interactivity is provided by the
Interactive Feedback service request type. It is otherwise
formatted identically except that the html page is designed
to return a value, either selected or entered, that the
simulation should extract and send to the ITS as a service
response type of XML message in an Action Response
message. Multiple levels of interactivity are realized by
the ITS receiving service response messages and
responding with appropriate additional Interactive
Feedback service request messages.

Both HLA and DIS include a corresponding set of
Simulation Management (SIMAN) capabilities which
I/SIS will take advantage of. However, these do not
include starting the simulation application. The ICL1
requirement for the ITS to be able to start the simulation
in a specific scenario will be handled by the ability of the
simulation application to be run from a command line and
to accept as its first argument on that command line the
name of the scenario file. The simulation application
starts up and loads the scenario, but does not begin the
scenario. Analogously, the SCL1 requirement for the
simulation to start the ITS in a specific scenario will be
handled by the ITS application being able to be run from
a command line and to accept as its first argument the
name of the simulation’s scenario file. The ITS must map
from this file name to its own files for the scenario. By
receiving the simulation’s scenario file, the ITS has the
opportunity to extract scenario information from it. The
L2 requirements for scenario Finish and Pause and Start
and Resume, are handled by the DIS Stop/Freeze and
Start/Resume PDUs, respectively and the corresponding
HLA interactions. The IC use case requires the ITS to
emit these and the simulation to accept them while the SC
use case requires the simulation to emit and the ITS to
accept them. The ICL2 requirements for simulation reset,
new scenario load, and AAR start are handled by the ITS
sending Reset, Load Scenario, and Start AAR service
requests through Action Request messages to the
simulation which accepts and responds by resetting the
scenario to the beginning, purging any existing scenario
and loading the specified scenario file, and starting the
AAR phase of training, respectively.

For SCL2, the ITS must honor a variety of related service
request types sent through Action Request messages
including Add Evaluation, Delete Evaluation, Run
Evaluations Continuously, Run Evaluations Once, Run
Specific Evaluation <Continuously | Once>, Add
Coaching, Delete Coaching, Run Coaching
<Continuously | Once>, Run Specific Coaching
<Continuously | Once>, Add Debrief, Delete Debrief, and
Run Debriefs to select and run automatic evaluations
which posts its results as service response types in Action
Response messages; select and run different types of
automatic real-time coaching and hinting provided by the
ITS which posts the resulting feedback as html pages in
either service responses or in Feedback service request
messages to the simulation, depending on a parameter in
the Run request; select and run different debrief
construction agents whose output is handled similarly to
real-time coaching’s.

The L2 requirement to allow control of various elements
of the scenario including entities and units, controls,
environment, and equipment malfunctions and inputs is
handled in HLA by the ITS requesting ownership of
specific attributes provided by the simulation as controls.
The simulation divests ownership in those attributes but
maintains control over the physical modeling. For
example, the simulation might provide an attribute for a
piece of equipment such as Status with possible values of
Functioning, Total Failure, Partial Failure Mode 1, and
Partial Failure Mode 2, which the ITS could use to
introduce specific types of malfunctions, but the
simulation would retain the modeling responsibilities for
that equipment and it’s interactions with other aspects of
the simulation. Similarly, the simulation could provide
for an enemy tank entity the attributes of Heading,
Desired Speed, Aim Point, and Fire Trigger, which the
ITS could use to control the tank but the calculations of
actual speed, position, and shell trajectories would all be
handled by the simulation. In the DIS case, Set Data and
Data Query PDUs are used for this same purpose. Note
that this L2 mechanism is similar in purpose but different
in form to the mechanism described near the top of this
subsection. That mechanism defined a specific standard
for transmitting data needed by the ITS for evaluation (as
XML in an Experimental PDU or Simulation Data
object). The need to have access to internal information
for controlled entities (which is also data transferred from
the simulation to the ITS) in order for the ITS to exert
intelligent control over them is more esoteric and
therefore more acceptably left to the simulation
developer’s discretion. Unifying these mechanisms is an
alternate option at the cost of complicating some L1
implementations.

For the L2 requirements, student IDs will be Universally
Unique Identifiers (UUIDs). For IC and SC control the

simulation and ITS, respectively, will accept Logon
service requests that include a password string and
respond with an Action Response containing “Accepted”
or an error message. For team training SCL2, the
simulation will send an Assign Team Member service
request containing the student’s UUID, role, assigned
equipment, etc. which the ITS will accept and note.

Some training simulations allow the recorded student
performance to be replayed during an AAR session which
follows the simulated scenario. The optional capability
provided by the simulation to allow ITS-Driven Replay
(LIDR) is handled by a series of service requests sent via
Action Request messages. These are Set Time, Set
Perspective <display element> <new perspective>, Play
<real-time multiplier>, and Freeze, which are accepted by
the simulation, while in AAR mode. Set Time sets the
scenario time for the replay. The simulation’s student
interface may have a number of different displays, such as
a 3-D out the window display and 2-D dynamic map for
TDM training or a 3-D virtual world and instrument
readings for EOM. The assumption is that during replay,
all displays are synchronized to the replay time. However
some displays may include the notion of a perspective.
During replay, the 3-D view may be from out the window
of the student’s vehicle, from the vantage point of another
vehicle, or from a point completely independent of any
vehicle. Similarly, a maintenance trainer virtual world
viewer may be focused on a specific part from a particular
angle or a different part or from a different angle. A
maintenance trainer may also have a viewer which shows
the value of different instruments such as a voltmeter or
oscilloscope. Set Perspective allows the ITS to make
adjustments to different displays to different views or
perspectives. Play causes the recorded scenario to be
replayed from the current time faster than, slower than, or
the same as real-time. Freeze halts the replay and freezes
the displays.

Associated with replay may be the notion of logged
annotations. If the simulation supports display of logged
annotations during replay, it should also support the ITS
making these annotations during the simulated scenario.
The ITS issues Log Annotation <scenario time> <URL>
service requests which contain a time stamp and URL of
html pages that describe an event or instructionally
relevant information for the debrief.

The optional capability (LSUI) to facilitate dialog
between the ITS and student using the simulation’s user
interface elements is provided by a pair of additional
service requests, LSUI Feedback and LSUI Interactive
Feedback both sent via Action Request message similarly
to Feedback and Interactive Feedback service requests.
The format is LSUI Feedback <URL> <element>
<mode> where the simulation upon receipt will display

the html page at the URL and place the user interface
element into the specified mode. The elements are
defined in documentation provide by the simulation
developer. Examples are entities, units, areas, and
instruments. The element might include subidentifiers,
such as the specific part of a simulated instrument. Mode
could represent color, intensity, or highlighting, such as
flashing. In the case where element was an audio channel
the mode could be a tone or even a .wav file name to play.
LSUI Interactive Feedback <URL> <list of (<element>
<identifier> <mode>)> causes the simulation to display
the page at the URL, and place each listed element in its
corresponding mode. This can be used to highlight for
the user what his options for selection are. If the user
selects one of the elements, the corresponding identifier is
returned in an Action Response message. If the selection
is cancelled, then that fact is returned instead of a
selection.

The optional capability (LCSE) to integrate the
simulation’s scenario editor and the ITS’s additional
scenario information editor would be used to allow
coordinated scenario entry and editing by Subject Matter
Experts (SMEs). Examples of additional information
possibly needed by the ITS from the SME are: parameters
that might appear in the student’s pre-scenario briefing
such as rules of engagement, specific routes, points, or
areas, reported symptoms of equipment in need of repair,
etc.; information that the ITS needs that the student
shouldn’t see such as key terrain, correct and common
incorrect solutions such as plans or diagnostic steps, and
annotations of those solutions; and descriptions relating to
the applicability of the scenario for different types of
students such as which principles and skills it
tests/practices and how hard it is.

For LCSE, both the simulation scenario and the ITS
additional information editors must be able to be invoked
from the command line with an optional parameter, the
file name where the simulation’s scenario is stored. The
ITS scenario editor must be able to map from the
simulation’s file name to its own files for the same
scenario.

Data that must be transmitted between the editors occurs
as described above for simulation data (XML inside of
either DIS Experimental PDUs or an HLA RPR FOM
extension object). This includes notification from the
simulation’s scenario editor of when the scenario file
changes (in either its name or contents when it is saved to
disk) or when the scenario changes in memory. These
changes include adding, deleting, or changing elements
such as military units, briefing parameters, plans and
orders, graphics, symptoms, etc. The two scenario editors
will each have their own user interface in their own
separate windows. However this communication from the

simulation’s scenario editor will allow the ITS’s editor to
prompt for additional information as elements are added
to or changed in the scenario.
The ITS may need information from the SME most
conveniently added using the simulation’s tools provided
to students. For example, the simulation may provide an
interface for the student to enter plans (or repair actions).
If the ITS needs the SME to enter correct and common
incorrect plans (or repair actions), this should be done
from the same interface. The required data will already
be available from the Level 2 interface. The ITS editor
simply needs to prompt the SME and get some additional
information from the SME (such as whether this is a good
or bad plan (or action sequence)) about the information
being entered. Similarly, if the optional LSUI capability
has been implemented, the ITS editor can use it, in
addition to the ITS using it during training, to prompt the
SME by highlighting elements of the plan and asking for
additional annotations such as the related principles and
the rationale as to why the element is good or bad. It
could ask the SME questions, such as which enemy unit
should be considered most dangerous, and receive
answers using the simulation’s interface, such as clicking
on the enemy unit in the PVD. Similarly, this sort of
interaction may also be useful with the simulation’s
scenario editor. For this purpose two additional service
requests, LCSE Feedback and LCSE Interactive
Feedback, which are exactly analogous to LSUI Feedback
and LSUI Interactive Feedback are defined.

Additional items can be defined by the simulation
developers. If they want to make additional data available
from the simulation, this can just be defined in the XML
and sent out in DIS Experiment PDUs or HLA Simulation
Data Interactions as described above. If the simulation or
ITS developers want to make additional services
available, they just become additional service request
types passed in Action Request message also described
above. An example would be if the simulation actually
did some evaluation of the student’s actions on its own.
In that case, this would be additional data from the
simulation that the simulation developers could define.

Part of the I/SIS standard is required documentation.
Since some amount of freedom is allowed for in the exact
format and content of some of the XML-represented
information, each type of data and service request has to
be documented with multiple realistic examples of each
provided.

I/SIS Summary

The above described prototype standard is summarized in
the following five lists. (Short definitions of the levels
and use cases are also repeated for convenience). To be
considered compliant, all systems must include the All

Use Cases list. Each system must also include the lists for
their applicable use cases. Each list is divided into the
applicable levels. Level 1 applications must only support
the level 1 portion of the list but Level 2 applications
must support both Level 1 and Level 2 portions.

Level 1 – Basic Integration
Level 2 – Advanced Integration
LIDR – ITS Driven Replay
LCSE – Coordinated Scenario Entry
LSUI – ITS partial control of Simulation User Interface
TDM – Tactical Decision Making use case
EOM – Equipment Operations and Maintenance use case
IC – ITS Centered use case
SC – Simulation Centered use case

All Use Cases:
o Level 1

 Service Requests (SR) via Action Request messages
 Feedback SR
 Developer Created Documentation of Interface

o Level 2
 Interactive Feedback SR
 Controlling component sends and other accepts

Start/Resume & Stop/Freeze SIMAN messages
 UUID Student IDs
 Logon SR from controlling component
 Log Annotation SR

o LIDR
 Set Time SR
 Set Perspective SR
 Play SR
 Freeze SR

o LCSE
 Command Line Start of Sim & ITS Scenario Editors
 Sim notifies ITS of scenario changes
 Level 2 implemented
 LSUI implemented
 LCSE Feedback SR
 LCSE Interactive Feedback SR

o LSUI
 LSUI Feedback SR
 LSUI Interactive Feedback SR
 Additional Items
 XML Data and SRs as required

TDM:
o Level 1

 DIS or HLA RPR FOM
 ITS access to additional scenario-related ITS

information
o Level 2

 XML Data in Experimental PDUs or HLA
Simulation Data Interaction in I/SIS FOM

 Orders in XBML, Audio in files/XML, other
communications/actions/context in XML

 MSDL & XML Scenario Files

EOM:
o Level 1

 XML Data in Experimental PDUs or HLA
Simulation Data Interaction in I/SIS FOM

 XML formatted lists of control actions and
instrument values

o Level 2
 XML Scenario Files
 ITS access to additional scenario-related ITS

information

IC:
o Level 1

 Command Line Sim Start (scenario file)
o Level 2

 ITS sends and Sim accepts Reset, Load Scenario,
& Start AAR SRs

 Entity control via HLA Ownership Switch or DIS
Set Data

SC:
o Level 1

 Command Line ITS Start (scenario file)
o Level 2

 Sim sends and ITS accepts Evaluation, Coaching,
and Debriefing SRs,

 Sim Sends and ITS accepts Assign Team Member
SR

6. Examples of Applying the Standard

All three examples mentioned above, BC2010 ITS, IFT,
and FCS ITS are past systems which have already had
their simulations integrated with their ITSs, obviously,
before the creation of I/SIS. In fact, each of those
systems partly contributed to the requirements listed in
Section 4. In this section, the integration that would have
been performed if I/SIS had already existed will be
described.

Taking the BC2010 ITS system as an example, the
developers would first consult the I/SIS Summary lists.
Specifically, as a TDM SC system, they would need to
include items from 3 lists - All Use Cases, TDM, and SC.
Considering first a Level 1 integration, the simulation
developer would have to support either DIS or HLA and
the RPR FOM. BC2010 already supported the latter. The
only other L1 requirements on the simulation would be to
be able to accept Feedback service requests via HLA
Action Request messages. BC2010 would have to be able
to display the html pages referenced in those requests.
BC2010 would also need to invoke the ITS via a
command line and pass the scenario file name.

For Level 1, the ITS would have to be developed such
that it could be invoked via a command line where the
first argument is the simulation’s scenario file name.
Using that file name, the ITS would need to open its own
files associated with that scenario. In this case, this would
be descriptions of key areas for that scenario’s terrain and
tactical situation. This included avenues of approach and
logical blocking positions. It would evaluate student
performance based on the data available in the RPR FOM
(mostly unit movements in this application). The ITS
would assemble mission execution real-time and
debriefing feedback as html pages and send them to the
simulation via Feedback service requests in HLA Action
Request messages. Although always required to some
degree, there would be no significant documentation for
this integration from either developer.

Unfortunately, Level 1 integration will not achieve the
capabilities realized by the actual application, since it also
debriefed the student’s plan, so a level 2 integration is
called for. Again, consulting the same 3 lists, for Level 2
this time, the simulation developer needs to output orders
(the student’s pre-mission plans and real-time orders) in
XBML format inside an HLA Simulation Data object
defined in the I/SIS FOM extension to the RPR FOM. At
this point greater integration will have already been
achieved, since the BC2010 can start the ITS application
on its own and the simulation can display the html
feedback to the student from within its own interface.

Correspondingly, the ITS developer would need to accept
those XBML formatted orders. This would probably be
easier than what was actually done, which was to receive
the orders in the proprietary format of the simulation
developer, requiring the simulation developer to provide
decoding software. To fully support Level 2, the ITS
should also accept Start/Resume & Stop/Freeze SIMAN
messages.

Neither application had a logon process so that service
request is irrelevant. BC2010 did include a scenario
replay option so it should support the Log Annotation
service request. Based on previous messages from
BC2010, the ITS would create html descriptions of
instructionally relevant events (such as mistakes) and log
them for display during the playback. The ITS must
support requests from BC2010 to turn on or off specific
evaluations, coaching, and debriefing. This would allow
the student or instructor to choose different modes of
training through BC 2010. For example, a novice might
need everything turned on, but a more experienced
student might want the more realistic practice afforded by
having coaching turned off. He might still want
debriefing in order to catch any mistakes he might make.
The level of detail that BC210 provides for the instructor

or student to turn these on and off would be up to the
simulation developer’s discretion. However, the ITS
should provide the finest detail possible and document the
options available through these service requests.

For a single user of BC2010, the main context is what
units are displayed in the Plan View Display (PVD). At
the beginning of the scenario run, BC2010 creates an
XML list of all units displayed in the PVD, places it into
an HLA I/SIS FOM extension Simulation Data object.
Each time a change occurs, because units appear or
disappear, move into/out of the map’s display, or the map
is panned or zoomed in/out by the student, the changes
are sent in an updated Simulation Data object. The ITS
accepts this information and can, at its discretion use it as
additional information when evaluating student actions.
For example, the ITS may determine that the student’s
failure to respond to an enemy’s movement was caused
by the fact that the PVD does not currently show the
relevant enemy units.

The Level 2 BC2010 should accept Interactive Feedback
service requests. The ITS could, at its discretion, choose
to use them or not. For example during debrief, instead of
just pointing out an error, such as failure to adequately
allocate additional units to a blocking position in the face
of a larger than expected enemy attack, the ITS could ask
some questions first, such as did the student notice that
the attack was larger than expected. The student’s yes/no
answer would be extracted by BC2010 and sent back in
XML via an Action Response message. A “no” would
lead to different remediation dialog than a “yes”. For
example a “yes” would lead to questions about whether
the student considered the relative force ratios. A “yes”
to that would quiz the students about which units he
considered to use as reinforcements and why he rejected
each. Ultimately he would have been instructed that one
of the units he rejected had an irrelevant or lower priority
mission than the blocking mission. A “no” to the original
question would cause the ITS to provide information
about the need to monitor key parts of the battle and to be
primed for differences from what was expected.

The above discussion naturally leads to the desire for the
optional LSUI capability to allow the student to respond
to some of the ITS’s questions by clicking on elements in
BC2010’s PVD. For example, the ITS might ask the
student which enemy unit he perceived as most dangerous
by issuing the service request, LSUI Interactive Feedback
<URL of html page asking “which enemy unit is most
dangerous? Select one from the PVD.”> <list of all
enemy units(<enemy unit i> <enemy unit i ID>
<highlight mode>)>. BC2010 highlights those enemy
units and the student selects one whose ID is passed back
to the ITS in an Action Response message.

Level 2 dictates that BC2010 scenarios are stored in
MSDL (an XML) format. The ITS could theoretically
read and write them. Similarly the ITS scenario
information would be stored in XML format. For the
BC2010 ITS this is the description of key areas for
specific scenarios. The BC2010 developers could easily
allow scenario authors authoring scenarios in the BC2010
scenario editing environment to also specify these areas
on the scenario map and store them into the ITS’s
scenario information format, to realize a single editing
capability for both parts of the scenario. Optionally
LSCE could provide for integration of the separate editing
software packages, but this would not have a big
advantage for this application.

The IFT, as an EOM IC system must address the All Use
Cases, EOM, and SC items. Considering first a Level 1
integration, the flight simulator developer will have to
provide XML formatted lists of control actions and
instrument values via either DIS or HLA. For this
example assume that the developer chooses HLA so that
the action and instrument value lists will be transmitted
in an HLA Simulation Data object. The action list
consists mainly of the current cyclic and collective
positions plus several others of lesser importance. The
instrument list will include the following list of
instruments and their values: Altitude indicator, Airspeed
indicator, Climb rate, Turn rate, Heading, Attitude
indicator - pitch, Attitude indicator – roll, etc. The
specific name of the instruments and controls and the
specific meaning of the values must be documented by
the developer with multiple examples of each. The flight
simulator must be able to be invoked from the command
line and accept the scenario file name to load as its first
argument. Finally the flight simulator must accept the
Feedback <feedback URL> service request via an HLA
Action Request and display the feedback html.

A student using the IFT logs on through the ITS portion.
The flight simulator, unlike in the current version of IFT,
is automatically started for him in the ITS chosen
scenario. Real-time feedback and after action debriefing
is presented through a window provided by the flight
simulator. While this may be an acceptable situation,
audio feedback is more appropriate for this application.
Additionally the current IFT can flash instruments as a
hinting mechanism. These two capabilities would both
be handled by the optional LSUI service request, LSUI
Feedback <URL> <element> <mode>. To provide real-
time audio coaching the element would be “Audio” , the
URL would be empty, and the mode would either be a
quickly generated .wav file or a string to be spoken by a
speech generation component in the flight simulator.
The developer of the flight simulator could decide which.
To flash the Climb Rate instrument the ITS would send,
via an Action Request Message, LSUI Feedback < >

<Climb Rate> <Flashing>. The modes would be clearly
documented for each instrument by the flight simulator
developer.

Additional useful capabilities would be provided with a
Level 2 integration. The flight simulator has no logon or
password procedures so those elements of Level 2 are
irrelevant. The flight simulator would have to support
Start/Resume and Stop/Freeze SIMAN messages. This
would be useful when the ITS discerned the need to
explain something to the pilot in detail in the middle of a
scenario run.

For Level 2, the Flight Simulator should also provide
documented facilities to control the simulated helicopter.
If the student lost control of the helicopter, the ITS
would issue the HLA request to take ownership of the
Cyclic and Collective attributes then set those controls to
a series of appropriate values to get the helicopter back
to a state that the student could handle.

If there was a desire to include replay in the debrief, then
the LIDR integration option could be selected. The flight
simulator developer would have to create a replay
capability, accept the Level 2 service request, Start AAR,
and accept the LIDR service requests. During the
scenario the ITS would note interesting time periods to
replay to the student. After the flight exercise was over
the ITS would issue a Stop/Freeze and a Start AAR
service request to inform the flight simulator that the
exercise was over, control inputs should be ignored, and a
debriefing, possibly to include replay would start. For
each time period the ITS would issue a Set Time, Play,
and Freeze service request. Set Perspective would be
used, if allowed by the simulator, to set the perspective
outside of the helicopter, if that served to illustrate some
point better.

7. References

[1] Stottler, R. and Spaulding, B., Requirements of an

ITS/Simulation Interoperability Standard (I/SIS), Fall
SIW, Sep. 2004

[2] Jensen, R., H. Marshall, J. Stahl, R. Stottler (2003)
"An Intelligent Tutoring System (ITS) for Future
Combat Systems (FCS) Robotic Vehicle Command",
I/ITSEC 2003.

[3] NTMF Website, http://www.ntmf.com/
[4] Layman, G. et. al., C4I-Simulation Interoperability

Using the DII COE and HLA, 6th ICCRTS, June
2001,
http://www.dodccrp.org/events/2001/6th_ICCRTS/C
d/Tracks/Papers/Track3/113_tr3.pdf

[5] Roberts, J. and Dobbs, V., Application of a C4I

Reference or Starter FOM to an Existing Simulation
Environment, Fall SIW, Sep. 2000

[6] SISO Coalition Battle Management Language
Website,http://www.sisostds.org/doclib/doclib.cfm?S
ISO_RID_1005560

[7] Sudnikovich, W., Pullen, M., Kleiner, M., Carey, S.,
Extensible Battle Management Language as a
Transformation Enabler, George Mason University,
November 2004

Author Biographies

RICHARD STOTTLER co-founded Stottler Henke
Associates, Inc., an artificial intelligence consulting firm
in San Mateo, California, in 1988 and has been the
president of the company since then. He has been the
principal investigator on a large number of tactical
decision-making intelligent tutoring system projects
conducted by Stottler Henke including projects for the
Navy, Army, Air Force and Marine Corps. Currently he
is working on a Combined Arms ITS as part of the US
Marine Corps Combined Arms Command and Control
Training Upgrade System (CACCTUS). He has a
Masters degree in Computer Science from Stanford
University.

BRIAN SPAULDING is currently the Director of
Contract Engineering for MÄK Technologies, Inc.,
managing the performance and technical aspects of all
engineering services contracts. Mr. Spaulding’s projects
include the DARPA-sponsored DARWARS program, the
SIMinterNET family of Intermediate Desktop
Simulations, the development of 2D and 3D visualization
enhancements for CECOM and AFRL, and the
development of an after-action review system for the UK
Apache Program. He has worked at GTE Government
Systems as the lead architectural engineer responsible for
the development of a SGI-based, Collaborative 3D virtual
environment and supporting the development of GIS and
digital mapping tools.

ROBERT RICHARDS, PH.D. is a project manager
at Stottler Henke Associates, Inc. He has been and is the
principal investigator on projects dealing with training,
simulations and integration for the Navy, Air Force
and NASA. Currently he is working on a PC-based
training simulator teaching crewmembers (pilot, co-pilot
and sensor operator) the new MH-60S and MH-60R
platforms. The training simulator can be used solo,
however, it is designed to be integrated with other
hardware/software including Microsoft Flight Simulator,
COTS stick, throttle and rudder pedals, as well as head
tracking products and COTS head-mounted displays. Dr.
Richards received his Ph.D. from Stanford University.

