

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 1 of 9

Simulation Development and Authoring: Why Abstraction Matters

Dr. Sowmya Ramachandran, Randy Jensen, Erik Sincoff

Stottler Henke Associates, Inc.

San Mateo, CA

Sowmya@stottlerhenke.com, Jensen@stottlerhenke.com, Sincoff@stottlerhenke.com

ABSTRACT

The use of simulations for training has achieved mainstream status. While they span a range from high-fidelity

simulators with specialized hardware to those with simple branching interactions, the latter are fast gaining in

popularity given their capacity to provide experiential learning at a relatively low cost. As they become

commonplace, there will be a drive towards increasing simulation complexity. To date, many of these branching

simulations are implemented using hyperlinks and other content navigation mechanisms. Very little state information

is maintained explicitly, if any. Instead, state information is embedded within the navigational structure. Although

this is adequate for simple simulations and has the advantage of intuitive authoring, this representation does not scale

easily as the need for complexity rises. An alternative is a representation where simulation states are explicitly

maintained and used to drive the simulation. This is employed by all high-end simulations. The challenge is to

provide a way to create state-based simulations development platform that is also intuitive in terms of authoring, and

does not increase the cost of content significantly. In this paper, we will describe an approach that facilitates state-

based simulations while also providing ease of authoring. We will also discuss the costs and benefits of both state-

based and alternate representations.

ABOUT THE AUTHORS

Dr. Sowmya Ramachandran is a research scientist at Stottler Henke Associates. Her work focuses on the

applications of AI to improve education and training. She leads research and development efforts on Intelligent

Tutoring Systems and Authoring Tools. She has developed intelligent tutors for a diverse range of military and

civilian domains. Dr. Ramachandran headed the development of ReadInsight, a tutor for teaching reading

comprehension skills to adult English speakers. She also led the development of a tutor for training Tactical Action

Officers in the Navy. This system uses natural language processing technologies to assess and train TAOs and is

currently in operational use at the Surface Warfare Officers School. Currently, she is leading an investigation of

techniques for developing adaptive expertise in trainees through the use of intelligent tutoring, and for developing

automated analysis of chat-based communications to support after-action review for large team training exercises.

Dr. Ramachandran has presented extensively at conferences and has participated in a number of panels for defining

roadmaps for future Intelligent Tutoring Systems research.

Randy Jensen is a group manager at Stottler Henke Associates, Inc., working in training systems since 1993. He has

developed numerous Intelligent Tutoring Systems for Stottler Henke, as well as authoring tools, simulation controls,

after action review tools, and natural language analysis methods. He is currently leading projects to develop an

embedded training Intelligent Tutor for the Army, and an authoring tool for virtual training demonstrations for the

Army. He holds a B.S. with honors in symbolic systems from Stanford University.

Erik Sincoff is a lead software engineer at Stottler Henke Associates, and has focused on the design and

implementation of intelligent tutoring systems in a variety of domains including emergency medical training, military

equipment training, and homeland security training. Previously, he was a senior software engineer at Teknowledge

Corporation, where he worked in numerous domains, including implementing tutors in multiuser worlds. He has been

at Stottler Henke since 2005 and has a MS in computer science from Stanford University.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 2 of 9

Simulation Development and Authoring: Why Abstraction Matters

Dr. Sowmya Ramachandran, Randy Jensen, Erik Sincoff

Stottler Henke Associates, Inc.

San Mateo, CA

Sowmya@stottlerhenke.com, Jensen@stottlerhenke.com, Sincoff@stottlerhenke.com

INTRODUCTION

The use of simulations for training has achieved

mainstream status. While they span a range from high-

fidelity simulators with specialized hardware to those

with simple branching interactions, the latter are fast

gaining in popularity given their capacity for providing

experiential learning at a relatively low cost. As they

become commonplace, there will be a drive towards

increasing simulation complexity. To date, many of

these branching simulations are implemented using

hyperlinks and other content navigation mechanisms. In

such cases, very little state information is maintained

explicitly, if any. Most of this information is embedded

within the navigational framework. Essentially the

context within the simulation provides the implicit

state.

Although this is adequate for simple simulations and

has the advantage of intuitive authoring in such cases,

this representation does not scale easily as the need for

complexity rises. Frequently, training or analysis

requirements make it necessary to construct assessment

mechanisms that monitor the simulation and make

determinations about performance. In a highly

contextualized approach, the dependence on scenario

context for implicit state information results in a

requirement that scenarios and simulation sequencing

enforce the presumptions in the assessment

mechanisms. This in turn makes the authoring

complexity increase sharply with more complex

simulations, rapidly approaching levels that are no

longer practical without explicit states.

An alternative is a representation where simulation

states are explicitly maintained and drive the

simulation. This is employed by all high-end

simulations as a direct consequence of the range of

complex scenarios that they attempt to model. This can

be considered an abstracted approach in the sense that

states are abstracted from context. Using a simple

procedural example, consider a simulation for

mechanical maintenance on a vehicle. For training

purposes, the simulation may be used to evaluate

performance on a well-defined procedure, and so the

notion of states primarily corresponds to completed

tasks or procedures (e.g., checked fluid level,

disconnected battery, etc.). In an abstracted state-based

approach, the user may be allowed to work in any

context in the vehicle at any time. Performance

assessment is a matter of looking for the satisfaction of

prerequisite states before tasks are completed. Using

this general abstracted approach, scenario context may

be easily introduced into assessment logic when

needed, without being a necessary factor at all stages.

In contrast, in a contextualized approach with implicit

states, it becomes necessary to either structure the

simulation and scenarios to restrict the user’s actions,

or introduce assessment logic that can interpret a

combinatorial explosion of possible user sequences.

Barring either of these remedies, it would be impossible

for assessment mechanisms to determine the

correctness of an action in a particular context, because

of the uncertainty about whether the proper prerequisite

tasks have been completed.

Although a state-based approach is nearly inescapable

for high-end complex simulations, it is also relevant at

the opposite end of the spectrum, where lightweight

simulations are increasingly being used for experiential

training in lower fidelity arenas. The challenge is to

provide a way to create a state-based simulation

development platform that is also intuitive in terms of

authoring, and does not increase the cost of content

significantly. In this paper, we will describe an

approach that facilitates state-based simulations while

also providing ease of authoring. We will also discuss

the costs and benefits of both state-based and alternate

representations.

BACKGROUND

The role of simulations in military training has been

well established in recent years. This paper focuses on

training simulations used as tools for the conduct of

scenario-based training (SBT) or event-based approach

training (EBAT) (Prince, Oser, Salas, & Woodruff,

1993; Oser, Cannon-Bowers, Salas, & Dwyer, 1999).

SBT and EBAT refer to a similar concept of providing

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 3 of 9

a training audience the opportunity to practice the

application of knowledge, skills and attitudes (KSAs)

and receive feedback on their performance. This

fundamentally differs from lecture-based training in the

sense that “the scenarios become the curriculum –

meaning the events inserted in the scenarios constitute

the learning objectives, the means to achieve the

desired learning outcomes” (Salas, Priest, Wilson, &

Burke, 2006). The implication is that carefully defined

training objectives must be used to construct scenarios

that require trainees to demonstrate competence in

situations of varying difficulty and timing (Stretton &

Johnston, 1997).

In order to deliver meaningful feedback that trainees

can use to modify their models and future behavior,

scenarios must support performance assessment based

on either automated measures or human observations.

Scenarios constructed with explicit friction points or

triggers inserted afford human observers or automated

evaluation mechanisms a concrete basis for measuring

performance. Salas, Priest, Wilson, & Burke (2006)

elaborate on the importance of multi-dimensional

measurement, which “should be tied to learning

objectives and scenario events to ensure the assessment

of whether or not targeted competencies are learned

(i.e., outcome) and why performance occurred as it did

(i.e., process).”

This underscores the key objectives in constructing a

training simulation to be used for scenario-based

training. It must provide the opportunities for practice

in an environment with sufficient fidelity to create

realistic demands on trainees while performing tasks or

decisions. Performance must be measurable in the

simulation, and particularly where automated

assessment methods will be implemented with the

simulation, it is important to be able to disambiguate

the conditions under which potentially erroneous

actions are made, in order to generate effective trainee

feedback.

The matter of using empirical evidence to determine

the optimal level of fidelity for a training simulation in

a given domain remains a challenging task. However,

as an incremental step, researchers have arrived at a

commonly accepted breakdown of three dimensions:

physical fidelity, functional fidelity, and psychological

fidelity (Hays & Singer, 1989). Physical fidelity

typically is used to refer to “look and feel”

correspondence between a simulation environment and

the real world. Functional fidelity is sometimes treated

as a subcategory of physical fidelity, in that it concerns

the nature of tasks performed in the simulated

environment, and the similarity to how such operations

take place in real situations. Cognitive or psychological

fidelity refers to the ability of a simulation to create the

conditions where a trainee goes through the same

cognitive processes as the real world operational

environment requires for problem-solving, decision-

making, and so on.

Despite the visceral appeal of high fidelity simulation,

researchers have produced evidence that simulations

lower in physical and/or functional fidelity can still

yield training results that are effective and in some

cases comparable (Wickens & Hollands, 2000). Estock,

Steltzer, Alexander, & Engel (2009) reported on side-

by-side experiments conducted with subjects using two

F-16 aircraft simulators with differing levels of

“cockpit fidelity.” The study found that although

subjects’ subjective assessments rated the lower fidelity

simulator lower for overall effectiveness, objective

measures of training effectiveness showed no

differences. This result and similar results from other

studies may be important factors to consider in

simulation development, particularly where practical

matters of cost and complexity may be primary factors.

As might be expected, several researchers have also

identified how task-related variables can impact the

role that different forms of fidelity play in effectively

training certain learning objectives (Hays & Singer,

1989). For example, consider a planned training system

that aims to exercise trainees with targeting decisions,

as opposed to visual target acquisition skills. In such a

case, it is less important to construct a high fidelity

simulation environment providing the visual cues to

identify targets, when the primary learning objective

concerns trainee decisions and actions given the

presence of known and designated targets.

Thus, simulation authoring may take a low fidelity

approach for either practical reasons or direct

awareness of the limited requirements presented by the

tasks to be modeled, as long as sufficient psychological

fidelity can be preserved for such domains. This is

essentially the context for this paper’s discussion of the

value of an abstracted state-based approach in low

fidelity simulations. Although many of the same

premises of a state-based approach apply to high

fidelity simulations as well, the modeling complexity of

these simulations nearly always requires a state-based

paradigm. However, with lower fidelity branching

simulations, the near term expedient of a contextualized

approach often leads to a limitation for scalability

needs later on.

Lightweight simulations are often constructed for

procedural domains, structured with a simple branching

approach that generally resembles the prescribed flow

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 4 of 9

of actions for the operational domain. However, in

practice, the performance of procedural skills often

involves mixes of ordered and un-ordered procedures.

If these are modeled with implicit states, where all

performance is considered in terms of the ordering of

trainee actions, then this can make the authoring

process extremely complex because of the possible

sequencing permutations. By introducing states,

performance measures can be more general, and look

not only for conditions where tasks preceded tasks, but

also where states preceded tasks.

Explicit states also make it easier to construct training

that targets distinct learning objectives, and measures

progress toward those objectives independently. When

states are abstracted from simulation contexts, any

contextual point in the training sequence can be

presented without requiring the subject to go through a

prescribed navigational path to establish an implicit

state. This means an author or instructor can more

easily re-purpose a fragment of a scenario for targeted

practice. Whether such focused practice is for

remediation, refresher training, or simply tailoring to

the weaknesses of an individual learner, this is

particularly valuable when building adaptive

instruction.

The following sections will present a state-based

representation for a simulation/scenario and discuss

how it compares with other representations. Our

discussions will refer tothe area of Emergency Medical

Services (EMS), specifically simulations for training

paramedics. In particular, we will use as a running

example a scenario that involves a child who has been

run over by a runaway car in his driveway and is

suffering trauma. It opens with the player surveying the

driveway that contains the car, a man sitting by the car,

and a child crying on a woman's lap. The player is

required to determine who is hurt and take appropriate

actions and administer treatment

AN APPROACH TO STATE-BASED

SIMULATIONS

Simulation Model

The state of the simulation, conceptually, should

represent information about its meaningful and

manipulable components. A simulation typically

represents a circumscribed perspective on the real-

world. It is reasonable then to maintain state

information that reflects this perspective. The ontology

of the model will vary depending on the purpose of the

simulation (e.g. for troubleshooting vs for training

people in making sales calls).

For the purposes of our discussion we will limit our

attention to procedural simulations such as the one for

training paramedics. We model a simulation as a set of

locations, props, Non-Playing Characters (NPCs), and

events. Locations represent the various different logical

places in a scenario. For example, a side of the street

which is the scene of an accident can be a location. An

ambulance may be a second location. Props are

scenario objects in locations and can have actions

performed on them. The car involved in an accident is

an example of a prop. NPCs are virtual human

characters in the scenario. The child hurt in the

accident, as well as the other people on the scene would

be modeled as NPCs.

Each entity in the scenario (i.e. each location, prop,

NPC) has a set of associated attributes. The total set of

attributes essentially defines the simulation state. For

example, a car might have attributes representing the

state of its parking brake (“engaged” or “not engaged”),

an NPC representing an accident victim would have a

large set of attributes to describe his/her physiological

state, and an ambulance might have attributes

describing the number of beds available, and its current

location. As the simulation unfolds, these attributes will

be updated to reflect the current state. If the learner

decides to engage the car’s parking brake, for instance,

its attribute will be changed to reflect that it is now

parked. This information is always available to the

simulation, making it possible, for instance, to include a

simulation event where the car rolls down the driveway

and onto the street if the user fails to engage its parking

brake within an expected window of time. This enables

simulation developers to introduce training events

designed to address specific learning objectives

(Section “Background”).

The scenario model includes actions that can be

performed on the NPCs and props. Each action has a

unique command name, a set of preconditions as to

when this action can be performed, and a set of effects

that are executed after the action is performed. The

“Engage Parking Brake” action mentioned above has

no preconditions and produces the effect of setting the

state of the car’s parking brake to “engaged”. For

example, “Check Blood Pressure” may be an action

with the precondition that the blood pressure monitor

should be available for performing this action, and the

effect of reporting back the blood pressure of the NPC

in question. The action definition would also include

rules specifying the simulator's response when the

player performs this action. The scenario model

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 5 of 9

additionally would include events which are a set of

simulation-initiated effects that will be performed when

a set of preconditions are met. Events make it possible

to create dynamic simulations where the state of the

world can change even in the absence of any inputs

from the student, thus enabling the embedding of

situations that call upon skills. We described one such

event above where the car rolls onto the street in the

simulation when the student fails to engage its parking

brake, thus emphasizing the point that securing scene

safety is an important goal for a paramedic while

attending to an emergency. Actions and events are the

means for effecting changes to simulation state. Thus,

the simulation starts out in an initial state as specified

by authors and evolves dynamically as dictated by

actions and events. It is important to note that while the

state information is affected by actions and events, it is

maintained separately from them.

Notice that the simulation model does not include any

reference to the user interface or particular interaction

elements. The model can exist independently of its

external visualization. This has the benefit that the

external look and feel of a simulation can be changed

without touching any of its internals. Similarly, the

internals of the simulation can be changed without

modifying the interface. The two can be developed

separately and linked up by mapping model elements to

interface elements.

ASSESSMENT UNDER A STATE-BASED

REPRESENTATION

Typically, simulations (on the low-fidelity end of the

spectrum) tie evaluations of learners with user

interaction elements. For instance, a simulation might

present the learner with a few treatment options with

instructions to choose one. Each option might lead to a

different path through the scenario, but ultimately one

of the choices will provide positive or negative

feedback. Here assessment is closely integrated with

the interface. Changing the assessment rules entails

changing all the relevant interface structures.

Embedding the assessment logic with the navigation

structure in this manner can cause authoring effort to

increase rapidly with the desired sophistication of

assessment.

A state-based representation frees assessment and

simulation context from the interface. We can now

define assessment rules that look for simulation state

changes to evaluate student actions. For example, if the

expected protocol states that the learner must check a

set of vital signs before proceeding to treatment, but

they may be checked in any order, the simulation can

wait until the student starts treatments and then verify

with the simulation state that all the requisite checks

have been performed (the patient’s attribute set will

include flags to indicate if these actions have been

performed).

To illustrate, the simulation model may include a

patient NPC called Patient1. Its attribute set would

include the following flags: PulseChecked,

BloodPressureChecked, CirculationChecked,

PulseOximetryChecked, BreathingChecked etc. In

addition, the simulation will have the following

assessment rule to score the student’s performance:

Each of the actions of checking pulse, blood pressure,

circulation, pulse oximetry, and breathing will update

the corresponding state variable. Subsequently, an

assessment module will refer to these variables rather

than the actions themselves. With rules of this kind, we

can implement assessment criteria that disregard the

order in which actions are performed. To accomplish

this without a state representation would involve

developing a separate navigation path to represent each

specific ordering of actions. This is clearly not

desirable.

SIMULATION AUTHORING

Authoring complexity is a crucial consideration in the

design of simulation development tools. A factor

contributing to the increasing popularity of simulations

has been that user-friendly authoring tools have been

placed in the hands of content experts. To keep

simulations viable, the locus of authoring should

continue to reside with the content experts. However,

this impacts the degree of authoring complexity that

can be supported without making it impossibly

burdensome. We have argued that branching

simulations are limited in the complexity they support.

The state-based approach facilitates more complex

interactions and assessments but brings with it the cost

If the current action is a treatment action,

then

Set VitalSignsScore to 1, if all

(Pulsechecked, BloodPressureChecked,

CirculationChecked,

PulseOximetryChecked,

BreathingChecked) are all true

 Set VitalSignScore to 0 otherwise.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 6 of 9

of increased authoring effort. It is important to design

authoring tools for state-based simulations that mitigate

this effect. Here we describe a tool for authoring

content for the simulation model described in the

previous section. Building a scenario can be broken

down into the following parts: (1) designing the

physical world, (2) populating the world, (3) adding

events to the world, (4) mapping the scenario world to

the simulator interface, and (5) keeping track of what

the student is doing. There are form-based editors for

each of these steps. Figure 1 shows the main authoring

interface. Note the tabs, one for each simulation model

component. Authoring to a large extent involves

creating simulation entities (i.e. Props and NPCs) and

filling out their attributes. This can be further facilitated

by the inclusion of domain-specific wizards to create

and initialize attributes. Figure 2 shows a wizard for the

paramedic simulation. Figure 3 shows the form for

defining an action.

Authoring actions, events and simulation rules requires

more effort and skill not only for specifying the

parameters, but also for conceptualizing and modeling

the simulation prior to authoring. Modeling is an

additional step that must be included in the simulation

creation process. The authoring tool provides form-

based editors and wizards to facilitate the actual

specification of actions, events and rules.

Figure 1. Authoring Interface for a State-Based Representation

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 7 of 9

Figure 2. Adding Medications for a Character with the Authoring Tool

Figure 3. Authoring Form for Defining a New Action

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 8 of 9

 ANALYSIS

An easy hyperlink-based approach to implementing our

EMS scenario is to ask the trainee a series of multiple-

choice questions to simulate their assessment of the

patient's condition. While this is easy to author, it will

result in a scripted scenario and take most of the

initiative away from the student. Students will have

limited freedom to determine the sequence of tests to

perform and treatments to deliver. Allowing the student

more degrees of freedom will make the branching logic

rapidly unmanageable.

There are many commercial off-the-shelf simulation

development tools that go beyond the type of branching

simulation described above (e.g. the Lectora™ autoring

suite by Trivantis and the Toolbook™ authoring suite

by SumTotal Systems). These tools include a notion of

state by allowing variables to be associated with

simulation interface elements. Interactions can be in the

form of menus and hotspots. Simulations can be

developed using these tools that give the learner the

degrees of freedom required to elicit his/her initiative in

determining the right sequence of actions. Scenarios do

not have to be tightly scripted and can thus provide a

more realistic assessment of the learners’ skills. Tying

the variables to the interaction elements, however, has

disadvantages. Suppose the paramedic scenario

requires the student to transport the patients in an

ambulance while administering treatments. This will

typically require a different location and a different set

of interactions. Consequently the state information

associated with the earlier context is lost. This is at

times undesirable. Patients’ vital signs, the set of

treatments administered, to name a few state variables,

are all still relevant and salient in the new context and

should be carried over.

As a workaround, many of these simulation

development tools allow global variables, i.e. variables

that are not associated with any particular interface

element and are available independent of context. For

the paramedic example scenario, one could create

global variables that represent all the required entities’

attributes. Thus, authors can define variables to

represent the child’s pulse, breathing, blood pressure

etc. However, the separation between state and

interface is not as robust or clean as with the approach

we have described. Furthermore, they do not provide a

way to model the entities themselves explicitly. This

leads to some limitations. For example, the model that

we have described makes is possible to define an action

called Check Blood Pressure on a general “person”

NPC and apply that to different simulated people (e.g.

Check Blood Pressure applied to child, Check Blood

Pressure applied to the other man in the scene). This

leads to efficiencies in authoring and representation that

is not possible otherwise. Additionally, our model

provides the benefit of allowing state information to be

tied to conceptual scenario entities and thus to be

carried over regardless of the interaction context.

Whenever an entity is relevant to a context, its state

information is readily available.

Authoring complexity is an important consideration

when it comes to simulation development tools.

Authoring simulations with branching hyperlinks is on

the easy end of the spectrum. Introducing variables and

scripts increases the complexity of authoring and

design. The introduction of abstractions and

programming constructs makes authoring less

accessible to those that are not trained as computer

programmers. However, unlike the high-fidelity

simulators, authoring these simulations does not have to

be done at the actual programming level. The authoring

tools only require managing variables and writing

simple events and action logic.

The demand for more interactive and effective training

is driving the quest for better simulations at lower

costs. The current popular methods of simulation

development will hit soon hit a wall unless they evolve

to meet the growing needs for interactivity and

sophistication. The good news that many of the COTS

simulation authoring tools are indeed evolving in the

direction of state-based representations such as the one

discussed here. However, we argue the envelope of

abstraction can be pushed further in a direction that will

significantly expand the possibilities for the types of

simulations that can be developed while keeping

authoring complexity down at a level that is suitable for

content experts.

REFERENCES

Estock, J. L., Stelzer, E. M., Alexander, A. L., Engel,

K. (2009). Is cockpit fidelity important for effective

training? Perception versus performance. In

Proceedings of the Interservice/Industry Training,

Simulation, and Education Conference (I/ITSEC

2009).

Hays, R. T., & Singer, M. J. (1989). Simulation

Fidelity in Training System Design: Bridging the

Gap Between Reality and Training. Springer-

Verlag, New York, NY..

Oser, R. L., Cannon-Bowers, J. A., Salas, E., & Dwyer,

D. J. (1999). Enhancing human performance in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10162 Page 9 of 9

technology-rich environments: Guidelines for

scenario-based training. In E. Salas (Ed.),

Human/technology interaction in complex systems

(pp. 175-202). Stamford, CT: JAI Press.

Prince, C., Oser, R., Salas, E., & Woodruff, W. (1993).

Increasing hits and reducing misses in CRM/LOS

scenarios: Guidelines for simulator scenario

development. International Journal of Aviation

Psychology, 3(1), 69-82.

Salas, E., Priest, H. A., Wilson, K. A., & Burke, C. S.

(2006). Scenario-based training: Improving military

mission performance and adaptability. In C. A. C.

A.B. Adler, and T.W. Britt (Eds.), Military life:

The psychology of serving in peace and combat

(Vol. 2: Operational Stress, pp. 32-53). Westport,

CT: Praeger Security International.

Wickens, C. D. & Hollands, J. G. (2000). Engineering

psychology and human performance: Third edition.

Upper Saddle River, NJ: Prentice Hall.

Stretton, M. L., & Johnston, J. H., (1997). Scenario –

based training: An architecture for intelligent even

selection. In Proceedings of the 19
th

 Annual

Meeting of the Interservice/Industry Training

Systems Conference (pp. 108-117). Washington,

DC: National Training Systems Association.

