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ABSTRACT 

 

The use of simulations for training has achieved mainstream status. While they span a range from high-fidelity 

simulators with specialized hardware to those with simple branching interactions, the latter are fast gaining in 

popularity given their capacity to provide experiential learning at a relatively low cost. As they become 

commonplace, there will be a drive towards increasing simulation complexity. To date, many of these branching 

simulations are implemented using hyperlinks and other content navigation mechanisms. Very little state information 

is maintained explicitly, if any. Instead, state information is embedded within the navigational structure. Although 

this is adequate for simple simulations and has the advantage of intuitive authoring, this representation does not scale 

easily as the need for complexity rises. An alternative is a representation where simulation states are explicitly 

maintained and used to drive the simulation. This is employed by all high-end simulations. The challenge is to 

provide a way to create state-based simulations development platform that is also intuitive in terms of authoring, and 

does not increase the cost of content significantly. In this paper, we will describe an approach that facilitates state-

based simulations while also providing ease of authoring. We will also discuss the costs and benefits of both state-

based and alternate representations. 
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INTRODUCTION 

 

The use of simulations for training has achieved 

mainstream status. While they span a range from high-

fidelity simulators with specialized hardware to those 

with simple branching interactions, the latter are fast 

gaining in popularity given their capacity for providing 

experiential learning at a relatively low cost. As they 

become commonplace, there will be a drive towards 

increasing simulation complexity. To date, many of 

these branching simulations are implemented using 

hyperlinks and other content navigation mechanisms. In 

such cases, very little state information is maintained 

explicitly, if any. Most of this information is embedded 

within the navigational framework. Essentially the 

context within the simulation provides the implicit 

state.   

 

Although this is adequate for simple simulations and 

has the advantage of intuitive authoring in such cases, 

this representation does not scale easily as the need for 

complexity rises. Frequently, training or analysis 

requirements make it necessary to construct assessment 

mechanisms that monitor the simulation and make 

determinations about performance. In a highly 

contextualized approach, the dependence on scenario 

context for implicit state information results in a 

requirement that scenarios and simulation sequencing 

enforce the presumptions in the assessment 

mechanisms.  This in turn makes the authoring 

complexity increase sharply with more complex 

simulations, rapidly approaching levels that are no 

longer practical without explicit states.  

 

An alternative is a representation where simulation 

states are explicitly maintained and drive the 

simulation. This is employed by all high-end 

simulations as a direct consequence of the range of 

complex scenarios that they attempt to model.  This can 

be considered an abstracted approach in the sense that 

states are abstracted from context.  Using a simple 

procedural example, consider a simulation for 

mechanical maintenance on a vehicle. For training 

purposes, the simulation may be used to evaluate 

performance on a well-defined procedure, and so the 

notion of states primarily corresponds to completed 

tasks or procedures (e.g., checked fluid level, 

disconnected battery, etc.). In an abstracted state-based 

approach, the user may be allowed to work in any 

context in the vehicle at any time.  Performance 

assessment is a matter of looking for the satisfaction of 

prerequisite states before tasks are completed. Using 

this general abstracted approach, scenario context may 

be easily introduced into assessment logic when 

needed, without being a necessary factor at all stages.  

In contrast, in a contextualized approach with implicit 

states, it becomes necessary to either structure the 

simulation and scenarios to restrict the user’s actions, 

or introduce assessment logic that can interpret a 

combinatorial explosion of possible user sequences.  

Barring either of these remedies, it would be impossible 

for assessment mechanisms to determine the 

correctness of an action in a particular context, because 

of the uncertainty about whether the proper prerequisite 

tasks have been completed. 

 

Although a state-based approach is nearly inescapable 

for high-end complex simulations, it is also relevant at 

the opposite end of the spectrum, where lightweight 

simulations are increasingly being used for experiential 

training in lower fidelity arenas. The challenge is to 

provide a way to create a state-based simulation 

development platform that is also intuitive in terms of 

authoring, and does not increase the cost of content 

significantly. In this paper, we will describe an 

approach that facilitates state-based simulations while 

also providing ease of authoring. We will also discuss 

the costs and benefits of both state-based and alternate 

representations. 

 

 

BACKGROUND 

 

The role of simulations in military training has been 

well established in recent years.  This paper focuses on 

training simulations used as tools for the conduct of 

scenario-based training (SBT) or event-based approach 

training (EBAT) (Prince, Oser, Salas, & Woodruff, 

1993; Oser, Cannon-Bowers, Salas, & Dwyer, 1999).  

SBT and EBAT refer to a similar concept of providing 
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a training audience the opportunity to practice the 

application of knowledge, skills and attitudes (KSAs) 

and receive feedback on their performance.  This 

fundamentally differs from lecture-based training in the 

sense that “the scenarios become the curriculum – 

meaning the events inserted in the scenarios constitute 

the learning objectives, the means to achieve the 

desired learning outcomes” (Salas, Priest, Wilson, & 

Burke, 2006).  The implication is that carefully defined 

training objectives must be used to construct scenarios 

that require trainees to demonstrate competence in 

situations of varying difficulty and timing (Stretton & 

Johnston, 1997).   

 

In order to deliver meaningful feedback that trainees 

can use to modify their models and future behavior, 

scenarios must support performance assessment based 

on either automated measures or human observations. 

Scenarios constructed with explicit friction points or 

triggers inserted afford human observers or automated 

evaluation mechanisms a concrete basis for measuring 

performance. Salas, Priest, Wilson, & Burke (2006) 

elaborate on the importance of multi-dimensional 

measurement, which “should be tied to learning 

objectives and scenario events to ensure the assessment 

of whether or not targeted competencies are learned 

(i.e., outcome) and why performance occurred as it did 

(i.e., process).” 

 

This underscores the key objectives in constructing a 

training simulation to be used for scenario-based 

training.  It must provide the opportunities for practice 

in an environment with sufficient fidelity to create 

realistic demands on trainees while performing tasks or 

decisions. Performance must be measurable in the 

simulation, and particularly where automated 

assessment methods will be implemented with the 

simulation, it is important to be able to disambiguate 

the conditions under which potentially erroneous 

actions are made, in order to generate effective trainee 

feedback. 

 

The matter of using empirical evidence to determine 

the optimal level of fidelity for a training simulation in 

a given domain remains a challenging task.  However, 

as an incremental step, researchers have arrived at a 

commonly accepted breakdown of three dimensions: 

physical fidelity, functional fidelity, and psychological 

fidelity (Hays & Singer, 1989). Physical fidelity 

typically is used to refer to “look and feel” 

correspondence between a simulation environment and 

the real world.  Functional fidelity is sometimes treated 

as a subcategory of physical fidelity, in that it concerns 

the nature of tasks performed in the simulated 

environment, and the similarity to how such operations 

take place in real situations. Cognitive or psychological 

fidelity refers to the ability of a simulation to create the 

conditions where a trainee goes through the same 

cognitive processes as the real world operational 

environment requires for problem-solving, decision-

making, and so on.   

 

Despite the visceral appeal of high fidelity simulation, 

researchers have produced evidence that simulations 

lower in physical and/or functional fidelity can still 

yield training results that are effective and in some 

cases comparable (Wickens & Hollands, 2000). Estock, 

Steltzer, Alexander, & Engel (2009) reported on side-

by-side experiments conducted with subjects using two 

F-16 aircraft simulators with differing levels of 

“cockpit fidelity.”  The study found that although 

subjects’ subjective assessments rated the lower fidelity 

simulator lower for overall effectiveness, objective 

measures of training effectiveness showed no 

differences.  This result and similar results from other 

studies may be important factors to consider in 

simulation development, particularly where practical 

matters of cost and complexity may be primary factors.   

As might be expected, several researchers have also 

identified how task-related variables can impact the 

role that different forms of fidelity play in effectively 

training certain learning objectives (Hays & Singer, 

1989). For example, consider a planned training system 

that aims to exercise trainees with targeting decisions, 

as opposed to visual target acquisition skills.  In such a 

case, it is less important to construct a high fidelity 

simulation environment providing the visual cues to 

identify targets, when the primary learning objective 

concerns trainee decisions and actions given the 

presence of known and designated targets. 

 

Thus, simulation authoring may take a low fidelity 

approach for either practical reasons or direct 

awareness of the limited requirements presented by the 

tasks to be modeled, as long as sufficient psychological 

fidelity can be preserved for such domains.  This is 

essentially the context for this paper’s discussion of the 

value of an abstracted state-based approach in low 

fidelity simulations.  Although many of the same 

premises of a state-based approach apply to high 

fidelity simulations as well, the modeling complexity of 

these simulations nearly always requires a state-based 

paradigm.  However, with lower fidelity branching 

simulations, the near term expedient of a contextualized 

approach often leads to a limitation for scalability 

needs later on. 

 

Lightweight simulations are often constructed for 

procedural domains, structured with a simple branching 

approach that generally resembles the prescribed flow 
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of actions for the operational domain.  However, in 

practice, the performance of procedural skills often 

involves mixes of ordered and un-ordered procedures.  

If these are modeled with implicit states, where all 

performance is considered in terms of the ordering of 

trainee actions, then this can make the authoring 

process extremely complex because of the possible 

sequencing permutations. By introducing states, 

performance measures can be more general, and look 

not only for conditions where tasks preceded tasks, but 

also where states preceded tasks. 

 

Explicit states also make it easier to construct training 

that targets distinct learning objectives, and measures 

progress toward those objectives independently. When 

states are abstracted from simulation contexts, any 

contextual point in the training sequence can be 

presented without requiring the subject to go through a 

prescribed navigational path to establish an implicit 

state.  This means an author or instructor can more 

easily re-purpose a fragment of a scenario for targeted 

practice.  Whether such focused practice is for 

remediation, refresher training, or simply tailoring to 

the weaknesses of an individual learner, this is 

particularly valuable when building adaptive 

instruction.  

 

The following sections will present a state-based 

representation for a simulation/scenario and discuss 

how it compares with other representations. Our 

discussions will refer tothe area of Emergency Medical 

Services (EMS), specifically simulations for training 

paramedics. In particular, we will use as a running 

example a scenario that involves a child who has been 

run over by a runaway car in his driveway and is 

suffering trauma. It opens with the player surveying the 

driveway that contains the car, a man sitting by the car, 

and a child crying on a woman's lap. The player is 

required to determine who is hurt and take appropriate 

actions and administer treatment 

 

 

AN APPROACH TO STATE-BASED 

SIMULATIONS 

 

Simulation Model 

 

The state of the simulation, conceptually, should 

represent information about its meaningful and 

manipulable components. A simulation typically 

represents a circumscribed perspective on the real-

world. It is reasonable then to maintain state 

information that reflects this perspective. The ontology 

of the model will vary depending on the purpose of the 

simulation (e.g. for troubleshooting vs for training 

people in making sales calls).  

 

For the purposes of our discussion we will limit our 

attention to procedural simulations such as the one for 

training paramedics. We model a simulation as a set of 

locations, props, Non-Playing Characters (NPCs), and 

events. Locations represent the various different logical 

places in a scenario. For example, a side of the street 

which is the scene of an accident can be a location. An 

ambulance may be a second location. Props are 

scenario objects in locations and can have actions 

performed on them.  The car involved in an accident is 

an example of a prop. NPCs are virtual human 

characters in the scenario. The child hurt in the 

accident, as well as the other people on the scene would 

be modeled as NPCs.   

 

Each entity in the scenario (i.e. each location, prop, 

NPC) has a set of associated attributes. The total set of 

attributes essentially defines the simulation state. For 

example, a car might have attributes representing the 

state of its parking brake (“engaged” or “not engaged”), 

an NPC representing an accident victim would have a 

large set of attributes to describe his/her physiological 

state, and an ambulance might have attributes 

describing the number of beds available, and its current 

location. As the simulation unfolds, these attributes will 

be updated to reflect the current state. If the learner 

decides to engage the car’s parking brake, for instance, 

its attribute will be changed to reflect that it is now 

parked. This information is always available to the 

simulation, making it possible, for instance, to include a 

simulation event where the car rolls down the driveway 

and onto the street if the user fails to engage its parking 

brake within an expected window of time. This enables 

simulation developers to introduce training events 

designed to address specific learning objectives 

(Section “Background”). 

 

The scenario model includes actions that can be 

performed on the NPCs and props. Each action has a 

unique command name, a set of preconditions as to 

when this action can be performed, and a set of effects 

that are executed after the action is performed. The 

“Engage Parking Brake” action mentioned above has 

no preconditions and produces the effect of setting the 

state of the car’s parking brake to “engaged”. For 

example, “Check Blood Pressure” may be an action 

with the precondition that the blood pressure monitor 

should be available for performing this action, and the 

effect of reporting back the blood pressure of the NPC 

in question. The action definition would also include 

rules specifying the simulator's response when the 

player performs this action. The scenario model 
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additionally would include events which are a set of 

simulation-initiated effects that will be performed when 

a set of preconditions are met. Events make it possible 

to create dynamic simulations where the state of the 

world can change even in the absence of any inputs 

from the student, thus enabling the embedding of 

situations that call upon skills. We described one such 

event above where the car rolls onto the street in the 

simulation when the student fails to engage its parking 

brake, thus emphasizing the point that securing scene 

safety is an important goal for a paramedic while 

attending to an emergency. Actions and events are the 

means for effecting changes to simulation state. Thus, 

the simulation starts out in an initial state as specified 

by authors and evolves dynamically as dictated by 

actions and events. It is important to note that while the 

state information is affected by actions and events, it is 

maintained separately from them. 

 

Notice that the simulation model does not include any 

reference to the user interface or particular interaction 

elements. The model can exist independently of its 

external visualization. This has the benefit that the 

external look and feel of a simulation can be changed 

without touching any of its internals. Similarly, the 

internals of the simulation can be changed without 

modifying the interface. The two can be developed 

separately and linked up by mapping model elements to 

interface elements. 

 

 

ASSESSMENT UNDER A STATE-BASED 

REPRESENTATION 

 

Typically, simulations (on the low-fidelity end of the 

spectrum) tie evaluations of learners with user 

interaction elements. For instance, a simulation might 

present the learner with a few treatment options with 

instructions to choose one. Each option might lead to a 

different path through the scenario, but ultimately one 

of the choices will provide positive or negative 

feedback. Here assessment is closely integrated with 

the interface. Changing the assessment rules entails 

changing all the relevant interface structures. 

Embedding the assessment logic with the navigation 

structure in this manner can cause authoring effort to 

increase rapidly with the desired sophistication of 

assessment. 

 

A state-based representation frees assessment and 

simulation context from the interface. We can now 

define assessment rules that look for simulation state 

changes to evaluate student actions. For example, if the 

expected protocol states that the learner must check a 

set of vital signs before proceeding to treatment, but 

they may be checked in any order, the simulation can 

wait until the student starts treatments and then verify 

with the simulation state that all the requisite checks 

have been performed (the patient’s attribute set will 

include flags to indicate if these actions have been 

performed).  

 

To illustrate, the simulation model may include a 

patient NPC called Patient1. Its attribute set would 

include the following flags: PulseChecked, 

BloodPressureChecked, CirculationChecked, 

PulseOximetryChecked, BreathingChecked etc. In 

addition, the simulation will have the following 

assessment rule to score the student’s performance: 

 

 
 

Each of the actions of checking pulse, blood pressure, 

circulation, pulse oximetry, and breathing will update 

the corresponding state variable. Subsequently, an 

assessment module will refer to these variables rather 

than the actions themselves. With rules of this kind, we 

can implement assessment criteria that disregard the 

order in which actions are performed. To accomplish 

this without a state representation would involve 

developing a separate navigation path to represent each 

specific ordering of actions. This is clearly not 

desirable. 

 

  

SIMULATION AUTHORING 

 

Authoring complexity is a crucial consideration in the 

design of simulation development tools. A factor 

contributing to the increasing popularity of simulations 

has been that user-friendly authoring tools have been 

placed in the hands of content experts. To keep 

simulations viable, the locus of authoring should 

continue to reside with the content experts. However, 

this impacts the degree of authoring complexity that 

can be supported without making it impossibly 

burdensome. We have argued that branching 

simulations are limited in the complexity they support. 

The state-based approach facilitates more complex 

interactions and assessments but brings with it the cost 

If the current action is a treatment action, 

then  

Set VitalSignsScore to 1, if all 

(Pulsechecked, BloodPressureChecked, 

CirculationChecked, 

PulseOximetryChecked, 

BreathingChecked) are all true 

          Set VitalSignScore to 0 otherwise. 
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of increased authoring effort. It is important to design 

authoring tools for state-based simulations that mitigate 

this effect. Here we describe a tool for authoring 

content for the simulation model described in the 

previous section. Building a scenario can be broken 

down into the following parts: (1) designing the 

physical world, (2) populating the world, (3) adding 

events to the world, (4) mapping the scenario world to 

the simulator interface, and (5) keeping track of what 

the student is doing. There are form-based editors for 

each of these steps. Figure 1 shows the main authoring 

interface. Note the tabs, one for each simulation model 

component. Authoring to a large extent involves 

creating simulation entities (i.e. Props and NPCs) and 

filling out their attributes. This can be further facilitated 

by the inclusion of domain-specific wizards to create 

and initialize attributes. Figure 2 shows a wizard for the 

paramedic simulation. Figure 3 shows the form for 

defining an action. 

Authoring actions, events and simulation rules requires 

more effort and skill not only for specifying the 

parameters, but also for conceptualizing and modeling 

the simulation prior to authoring. Modeling is an 

additional step that must be included in the simulation 

creation process. The authoring tool provides form-

based editors and wizards to facilitate the actual 

specification of actions, events and rules.  

  

 

Figure 1.  Authoring Interface for a State-Based Representation 

 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10162 Page 7 of 9 

 

Figure 2.  Adding Medications for a Character with the Authoring Tool 

 

 

 

Figure 3. Authoring Form for Defining a New Action
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 ANALYSIS 

 

An easy hyperlink-based approach to implementing our 

EMS scenario is to ask the trainee a series of multiple-

choice questions to simulate their assessment of the 

patient's condition. While this is easy to author, it will 

result in a scripted scenario and take most of the 

initiative away from the student. Students will have 

limited freedom to determine the sequence of tests to 

perform and treatments to deliver. Allowing the student 

more degrees of freedom will make the branching logic 

rapidly unmanageable. 

 

There are many commercial off-the-shelf simulation 

development tools that go beyond the type of branching 

simulation described above (e.g. the Lectora™ autoring 

suite by Trivantis and the Toolbook™ authoring suite 

by SumTotal Systems ). These tools include a notion of 

state by allowing variables to be associated with 

simulation interface elements. Interactions can be in the 

form of menus and hotspots. Simulations can be 

developed using these tools that give the learner the 

degrees of freedom required to elicit his/her initiative in 

determining the right sequence of actions. Scenarios do 

not have to be tightly scripted and can thus provide a 

more realistic assessment of the learners’ skills. Tying 

the variables to the interaction elements, however, has 

disadvantages. Suppose the paramedic scenario 

requires the student to transport the patients in an 

ambulance while administering treatments. This will 

typically require a different location and a different set 

of interactions. Consequently the state information 

associated with the earlier context is lost. This is at 

times undesirable. Patients’ vital signs, the set of 

treatments administered, to name a few state variables, 

are all still relevant and salient in the new context and 

should be carried over.  

 

As a workaround, many of these simulation 

development tools allow global variables, i.e. variables 

that are not associated with any particular interface 

element and are available independent of context. For 

the paramedic example scenario, one could create 

global variables that represent all the required entities’ 

attributes. Thus, authors can define variables to 

represent the child’s pulse, breathing, blood pressure 

etc. However, the separation between state and 

interface is not as robust or clean as with the approach 

we have described.  Furthermore, they do not provide a 

way to model the entities themselves explicitly. This 

leads to some limitations. For example, the model that 

we have described makes is possible to define an action 

called Check Blood Pressure on a general “person” 

NPC and apply that to different simulated people (e.g. 

Check Blood Pressure applied to child, Check Blood 

Pressure applied to the other man in the scene). This 

leads to efficiencies in authoring and representation that 

is not possible otherwise. Additionally, our model 

provides the benefit of allowing state information to be 

tied to conceptual scenario entities and thus to be 

carried over regardless of the interaction context. 

Whenever an entity is relevant to a context, its state 

information is readily available.  

 

Authoring complexity is an important consideration 

when it comes to simulation development tools. 

Authoring simulations with branching hyperlinks is on 

the easy end of the spectrum. Introducing variables and 

scripts increases the complexity of authoring and 

design. The introduction of abstractions and 

programming constructs makes authoring less 

accessible to those that are not trained as computer 

programmers. However, unlike the high-fidelity 

simulators, authoring these simulations does not have to 

be done at the actual programming level. The authoring 

tools only require managing variables and writing 

simple events and action logic.  

 

The demand for more interactive and effective training 

is driving the quest for better simulations at lower 

costs. The current popular methods of simulation 

development will hit soon hit a wall unless they evolve 

to meet the growing needs for interactivity and 

sophistication. The good news that many of the COTS 

simulation authoring tools are indeed evolving in the 

direction of state-based representations such as the one 

discussed here. However, we argue the envelope of 

abstraction can be pushed further in a direction that will 

significantly expand the possibilities for the types of 

simulations that can be developed while keeping 

authoring complexity down at a level that is suitable for 

content experts.  
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