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ABSTRACT 

 

Geographic profiling (GP) techniques for crime analysis have proven useful for identifying the locations 

where serial killers dwell.  In this paper we examine the application of geographic profiling techniques to an 

organized group of individuals, such as drug dealers and insurgents; in particular, tackling the problem of 

predicting which facilities in an urban area might support clandestine activities such as drug processing or 

bomb making.  GP techniques assume a single perpetrator whose only observable actions are punctuated 

killings.  In contrast, clandestine organizations involve several distributed individuals who communicate, 

coordinate, make plans, and execute.  Most of their actions, potentially observable such as phone calls, are 

seemingly innocuous.  Through the use of a simulated intelligence stream, we combine GP techniques with 

plan recognition technology.  We advocate a recognition approach which exploits a wide range of 

knowledge about the group, including the methods of operation, preferences, constraints, and relationships 

with other like-minded groups.  In turn, GP techniques can be augmented with more sophisticated distance 

metrics using derived geo-spatial attributes, such as cost-of-travel and perceived route risk.  We then 

discuss approaches to fuse all information into a predictive model for each group. This model estimates the 

risk of future activity based on current observations of group presence. This estimated risk is used to 

generate actionable products such as security force search paths and prioritization of intelligence collection 

requests. Finally, we evaluate accuracy of the approach in the presence of noise and incomplete data.    
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GEOGRAPHIC PROFILING 

 

The development and widespread acceptance of 

computerized geographical information systems (GIS) 

have opened the doors to advanced, data-rich spatial 

analysis algorithms.  This analysis is no longer limited 

by a lack of data.  Instead, the advancement of 

analytical algorithms now relies on the ability to isolate 

relevant data, detect key patterns and fuse multiple 

sources of knowledge into a single coherent model.  Of 

particular interest is the spatial analysis of historical 

data to detect key locations or patterns of a particular 

activity or process.  These patterns may be described by 

proximity, with events centered around a specific 

location, or by attributes of the locations themselves. 

 

Ideally the patterns will be useful for predicting the 

future behavior of an adversarial agent.  Patterns must 

be able to handle three aspects of real-world behavior: 

activities may only be partially observable, the exact 

intent unknown, and actors may be purposefully modify 

their behavior to escape detection.  A classic example 

of such analysis is the search for serial offenders in 

criminal investigation. 

 

The methods of Geographic Profiling (GP) show 

promise for predicting key locations and patterns based 

on sets of incidents. GP is based on the field of 

Environmental Criminology (EC) [Brantingham and 

Brantingham 1990], which focuses on criminal spatial 

behavior, or how crime relates to particular places. It 

attempts, for instance, to explain the spatial distribution 

of offenders and offences. Activity space, the area of 

mobility and familiarity for a criminal offender, is a 

primary concept. GP derives “base of operations” 

estimates from serial crime data, primarily through the 

use of distance decay functions, which characterize the 

offender’s hunting pattern in terms of its distance from 

residence. It is important to note that “the subjective 

psychological perception of distance is just as critical 

as the objective physical space involved” [Rossmo 

1999]. That is, these measurements of distance are not 

purely geographic, but capture the offender’s behavior 

with respect to geographic features, which may present 

particular attractions or barriers to particular offenders. 

These are special distances, specific to the offender’s 

process. 

 

The famous primeval example of GP is John Snow’s 

death map, produced during the 1854 London Cholera 

outbreak [Johnson 2006]. It showed all deaths from 

cholera on a city map, which turned out to cluster 

around a single point of origin. At that point stood a 

public water pump, from which tainted water was being 

drawn by the city’s residents. When that pump was 

disabled, the outbreak abated. This map was not the 

entire story, however. Prior to the outbreak, John Snow 

already had a waterborne model for the transmission of 

cholera in mind, one which countered the prevailing 

view of airborne transmission, and which suggested a 

particular process model based on his knowledge of the 

city’s workings: sewage, draining into river water, 

distributed to certain tanks by certain water companies, 

and finally provided to individuals through public 

pumps. His map led him merely to a city block; from 

there, the process model led him to the point of 

intervention, which was a bit of infrastructure crucial to 

the process: the guilty pump. 

 

Limitations of GP 

 

Current GP models incorporate some infrastructural 

knowledge, in buffer zones around the offender’s 

residence, within which offenders tend not to act, and 

catchment areas for crime locations, which are the areas 

surrounding certain kinds of buildings, such as schools, 

where the offender may prefer to operate. These 

produce, in effect, simple spatial preference functions 

for the serial criminal offender, when leaving home to 

hunt for a victim. 

 

While GP has had its successes and shows promise for 

future development, it also possesses significant known 

limitations. For such profiling to be effective, the data 

must satisfy four distinct characteristics [Rossmo 

2005]: 

1. The case involves a series of at least five events 

2. The agent has a single stable anchor point 
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3. The agent is using an understood method 

4. The relevant geographical area (the “backcloth”) is 

reasonably uniform 

 

In contrast, clandestine organizations involve several 

distributed individuals who communicate, coordinate, 

make plans, and execute.  Any bare-bones GP-based 

approach is insufficient to detect distributed activity as 

it fails the second constraint of a single anchor-point.  

While related activities may still have strong 

geographical centers, the resulting jeopardy surface 

within a geo-profile will be skewed towards the center 

of the relevant anchor-points.  A more advanced 

approach must be able to take into account the multiple 

anchor-points of a spatially separated organization, and 

to predict which locations are the most spatially 

relevant. 

 

The constraint of a near-uniform backcloth also fails in 

a large number of domains, again reducing the 

effectiveness of traditional GP-based approaches.  In 

urban environments, locations differ dramatically in 

terms of accessibility, security, population, and other 

numerous attributes which may be tied intimately into 

agent activity.  Geographical features, too, tend to 

negate the uniformity constraint with the presence of 

water bodies and impassable terrain.  Ideally, the non-

uniformity of the backcloth would be exploited, rather 

than ignored, to facilitate detection of key patterns of 

activity in the geo-spatial data. 

 

 

ADVERSARIAL MODELING 

 

The proposed approach models agents through 

preference functions.  These preference functions 

maintain and analyze characteristics of the adversarial 

individual or group and the complex process that 

results in activity.  Preference functions also exploit 

spatial characteristics that support individual parts of 

that process, and impose constraints in time, space, and 

resources.  The preference knowledge base is built on 

actor, event, and geographical ontologies for the 

representation and aggregation of information at 

multiple levels of specificity. This results in a 

multidimensional characterization of the adversarial 

event, as the end result of a specific process by a 

specific actor or group, or type of actor. Verma and 

Lodha note that the adversarial event has five 

dimensions, including space, time, law, offender, and 

target or victim [2002], and that all of these should be 

analyzed interdependently. 

 

Preference modeling operates on the assumption that 

certain attributes of a location positively or negatively 

impact its selection for use by a given agent.  If an 

adversary’s location selection criteria can be learned 

from past activity, they can then be used to predict 

future locations by that adversary.  Any available 

geographical data can be exploited to construct these 

predictive models, drawing upon heterogeneous 

sources such as 

• municipal records – zoning, building 

construction type, owner, assessed value, 

construction date, etc. 

• geographical data – water bodies, temperature, 

elevation 

• census data – known residents, residents’ 

occupations, genders, etc. 

• utility records – electric and water bills, phone 

numbers, etc. 

• intelligence – neighborhood tribal/religious 

loyalties, etc. 

 

This information can be stored and managed by the GIS 

as multiple data layers, and new layers can be added as 

new data sources become available.  Each geographical 

location can thus be thought of as having a vector of 

associated attribute values 

 <a1, a2, a3, …, an>  (With values normalized to 

the range [0,1]) 

 

There are multiple ways to evaluate the significance of 

a series of locations, represented by attribute vectors.  

One approach to determining the significance of 

attributes is to calculate significant variations between 

the activity mean and the population mean.  For each 

attribute ai we calculate the standard score, 

 

iiii  / ) - (x  σµ=z  (1) 

 

where x is the activity mean, µ is the population mean, 

and σ is the population standard deviation.  The sign of 

this score represents whether deviations are positively 

or negatively correlated with the occurrence of the 

given activity.  The magnitude describes the strength of 

the correlation. 

 

The score of each attribute is updated after every 

profiled event.  To compute the profile, we calculate 

the likelihood of each point as the product of the 

coefficient vector and the deviation vector: 

 

iipi,i  / ) - (x  d with d, · z  L(p) σµ==  (2) 

 

where xi,p represents the value of attribute ai at point p.  

This value goes up when the deviation of the attribute 
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at point p matches the current correlation.  L(p) 

essentially represents the likelihood of a future 

occurrence of the specific activity at the location p. 

 

For example, a series of Festival events occur at a 

specified set of locations.  Upon analysis, the 

population attribute seems to be statistically higher in 

the set of event locations when compared to the average 

population of the area.  A stronger statistical deviation 

of a given attribute implies stronger predictive power.  

In this case, L(p) is higher in areas which contain a 

significantly higher population than average.  Another 

attribute, crime rate, is seen to be generally somewhat 

lower than the area average.  Thus, L(p) is also highest 

at points of low crime rate.  The primary areas 

identified by the profiling algorithm are thus high 

population, low crime rate locations. 

 

Activity/Process Modeling 

 

Our approach is also based on the hypothesis that we 

can improve our predictive models by exploiting 

knowledge about the methodology of a specific 

activity.  The second extension is the use of process 

models to capture specific adversary tactics, plans, or 

methodologies.  A process model is essentially a 

hierarchical task network (HTN), which consists of a 

collection of events connected by links.  Events can be 

concrete, directly observable actions (for example, a 

telephone call, posting of propaganda to a website, or a 

meeting between several individuals) or abstract 

occurrences (e.g., procuring drug supplies).  Links 

between events denote temporal or spatial constraints 

between those events (e.g., event B must start after 

event A and occur within one mile of event C). 

 

Because process models are hierarchical, the nodes 

within a process model can also refer to other process 

models.  These referenced process models act as “sub 

plans” within the larger adversary plan.  For instance, 

several drug dealing events might be nested within 

another process model representing a larger drug 

campaign by a given adversary.  By allowing the 

analyst to break down complex adversary plans into 

smaller reusable chunks, HTNs yield a more concise 

and maintainable model of adversary behavior.   

 

The hierarchical nature of process models has a 

secondary advantage.  Events in the incoming event 

stream typically describe concrete adversary actions.  It 

would be useful, however, to be able to abstract over 

those events to a “big-picture” view of an adversary’s 

activity, to enable analysis of hostile activity at the 

level of plans and goals.  With an HTN-based 

representation, low-level plans can naturally be 

aggregated into higher-level plans.  In addition, all 

events referenced in the process model library are 

arranged in a type hierarchy (e.g., both “phone call” 

and “face-to-face meeting” events are subtypes of the 

abstract “contact” event).  This enables generalization 

within process models, which can increase their 

coverage of adversary behavior.  For example, a 

process model that contains an abstract “B contacts E” 

event will match both “B telephones E” and “B emails 

E” events.  Note that the abstraction-over-activities 

capability provided by process models strongly 

complements the abstraction-over-actors capability 

provided by the actor ontology. 

 

Every event in a process model can be further 

annotated with attributes that describe, among other 

things: 

• The impact of a process model (e.g. a murder has a 

high impact, while a phone call has a low impact) 

• Whether an event is optional or must occur in the 

process model 

• Which attributes of an event must be present in 

order to match the process model (which allows 

the system to weed out “frivolous” matches that 

contain little or no usable information) 

• The importance of each event in the process model 

(roughly its value as an indicator) 

• Temporal constraints that must hold between 

events in the process model (e.g. event A must 

happen within 30 days of event B) 

• Constraints on the actors, locations, and resources 

that participate in a process model 

• Whether the system should attempt to predict a 

given event (to avoid predicting banal or 

insignificant events) 

• Type constraints on attributes for events within a 

process model 

• The estimated observability of a given event 

 

The approach can be used to incrementally build 

evidence for detection of adversary activity.  As events 

flow into the system from the event stream, relevant 

process models are matched.  (Note that some of these 

process models may have already been partially 

matched against previous events.)  The system then 

fleshes out these process models with any available 

attributes of the newly-matched event – for example, 

the location and time where it took place and the actors 

involved.  (Any of these attributes may be missing.)  

Each of these fleshed-out process models represents a 

hypothesis by the system about the current activity of a 

given adversary.  The confidence of a given hypothesis 

is a function of the number of matched nodes and the 

confidence of each matching event. 
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Figure 1. Matching incoming events against a process model 

 

 

 

When a hypothesis achieves a certain confidence level, 

the system generates an abstract event representing that 

hypothesis and inserts it in the event stream.  These 

abstract events can match against process models just 

like normal concrete events.  This process of 

abstraction enables the analyst to focus on the high-

level activities of adversaries rather than becoming 

overwhelmed by the tremendous number of low-level 

events coming in from the data stream. 

 

 

SIMULATION 

 

For the purposes of the evaluation, we used a 

simulation which mimics the features of real data 

streams, including noise, missing data, and corrupt 

data.  It also simulates multiple collection sources with 

varying confidence and observability levels.  The 

simulator is domain-independent, taking as input a 

“domain theory” that describes the processes and actors 

to be simulated.  For the purposes of this effort, we 

developed a domain theory based on domestic drug 

trafficking, which possesses all of the characteristics 

necessary to test the detection of organized adversarial 

activity in the presence of noise and incomplete data.  

Our domain theory was based on criminology literature 

and features all elements of the domestic drug 

trafficking operation, including transport, stockpiling, 

retail, and inter-gang warfare.  It also models the 

organizational structure of a drug distribution 

organization, from the “boss” to the street-level dealer.  

This domain theory, when fed through the simulator, 

produces a primary data set of 2192 events covering 12 

months. 

 

This event set, which represents the observed activity 

of the drug traffickers rather than ground truth, is 

streamed chronologically into the prototype to simulate 

a real-time event stream.  It is important to note that the 

prototype does not have access to simulator ground 

truth (that is, what actually happened in the simulation 

run) nor to the underlying domain theory.  It must base 

its predictions entirely on the distorted and noisy 

observed view of the adversary that it gets from the 

event stream.  We also developed a library of process 

models representing the behavior of the target 

adversary – in this case the various members of a drug 

trafficking organization.   

 

The simulation also consisted of a micro-GIS to 

provide geographic query capability to the prototype.  

Our GIS models 40,000 map locations in a single urban 

area.  It has a grid-based road model that includes roads 

varying in size from alleys to highways to provide a 

simple model of accessibility.  It also stores arbitrary 

attributes for each facility on the map.  For the 

purposes of the prototype, we implemented 10 

attributes: 

1. property value 

2. building size  

3. zoning (retail, office, residential, industrial) 

4. owned/rented 

5. number of residents 

6. average resident age 
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7. average resident income 

8. accessibility to major roads 

9. crime rate 

10. police presence 

The prototype can query the GIS for the attributes of 

any facility as well as for the distance (using various 

metrics) between two facilities.  The prototype does not 

have access, of course, to the underlying preference 

functions that simulated actors use to select facilities.  

This preference model is learned automatically from 

the event stream. 

 

Two separate and methodologically distinct activities 

were simulated within our model drug trafficking 

domain.  Gang killings were a low-frequency activity 

most likely to occur in areas of overlapping gang 

territory, with minimal regard to spatial attributes.  

Drug deals represented a relatively high-frequency 

event with a preference for locations which combined 

both low police presence and low income (providing a 

strong weighting for geospatial preferences), within the 

bounds of gang territory (representing a softer distance 

constraint).  Because the income and security attributes 

were significantly non-uniform, this activity tested the 

quality of the proposed approach in the absence of 

constraint (4).  In addition, drug dealing agents were 

simulated individually, each with their own anchor 

point.  Thus, the drug deal activity evaluated the 

approach in the presence of multiple anchor points. 

 

To evaluate the detection of differences between 

adversaries, two separate organizations were simulated.  

Two gangs, named “Avon” and “Marlo”, each 

possessed variations in preferences for the drug deal 

activities.  The Avon gang weighted highly accessible 

areas, while the Marlo gang preferred lower 

accessibility.  In addition to these differences in 

preference function, the gangs were given spatially 

separated “territories”, which (as mentioned above) 

affected both activities. 

 

 

RESULTS 

 

We present here the definition of some terms that are 

commonly used in the discussion of the various 

predictive models. 

 

Jeopardy Surface 

The height of the profile's jeopardy surface represents 

the probability that the next event will occur at that 

point.  We define P(x, y) as the height at position (x, y) 

and P(event) as the height at the location of event. 

 

Miss Area 

We define the search area for a particular event,  

 Amiss(event) = { (x, y) such that P(x, y) >= 

P(event) } 

In other words, the miss area represents the set of 

points that were identified as being more likely than the 

location at which the event occurred.  Note that this 

area relies only on the relative ordering of the values 

P(x, y), and not their magnitude. 

 

Hit Rate 

The hit rate for a particular event is defined as the ratio 

of the size of the miss area to the total size of the 

profile, 

 HitRate(event) = #Amiss(event) / N 

In other words, the hit rate is the percentage of points 

with a greater or equal surface height than that of the 

event's location.  The best hit rate is nearly 0 (every 

other point had a lower probability), while the worst is 

1 (every other point had a higher probability).  Note 

again that this relies only on relative ordering and not 

on magnitude. 

 

The following sections summarize the predictive results 

of the prototype system.  Note that hit rates are all 

calculated before the models interpret the data, so the 

following values accurately represent prediction 

accuracy. 

 

Generated Profiles 

 

In the following profiles, the red dots represent the 

locations of known activity events, while the green 

areas represent the points most likely for the next event 

to occur. 

 

Figure 2 demonstrates the profiles generated for the 

Sell Drug activity over two separate actor groups.  The 

group used on the first is Anyone, and covers all Sell 

Drug events.  The profile on the right considers only 

events associated with the Avon gang.  Note that the 

events in the latter are a subset of the events of the 

former.  This activity is an organized activity. 
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Figure 2: Profile for the Sell Drug activity, (left) over all actors, and (right) restricted to the Avon gang 

 

 

 

Prediction Error 

 

Figure 3 displays the hit rate for the profile (“Anyone”, 

“Murder”). 

 

 
Figure 3: Prediction error for the Murder activity 

 

Convergence to the best hit rate occurs rapidly.  The 

steady hit rate likely indicates that the underlying actor 

preference model is not changing over time, or is 

changing only slowly.  This convergence indicates that 

the given data and models are adequate to profile 

Murder activity. 

 

 
Figure 4: Prediction error for the Sell Drug activity 

over all actors 

 

Figure 4 displays the hit rate for the profile (“Anyone”, 

“Sell Drug”).  In other words, the graph shows the error 

in answers to the question, “Where will the next Sell 

Drug event occur?”  This profile never converges to a 

good hit rate, but its average hit rate hovers between 

.15 and .2.  The variance in error is high, indicating that 

the given models are inadequate to predict this 

particular activity. 
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Figure 5: Prediction error for the Sell Drug activity 

within the Avon gang 

 

Figure 5 displays the hit rate for the profile (“Avon”, 

“Sell Drug”).  This profile takes another look at the Sell 

Drug activity, but only profiles the set of events 

associated with a specific organization – the Avon 

gang.  Thus, it displays the error in answers to the 

question, “Where will the next Sell Drug event 

associated with the Avon gang occur?” 

 

Convergence in this case occurs within just four 

iterations.  The dramatic increase in predictive quality 

over the previous profile illustrates the importance of 

organization to this activity.  This could have several 

explanations.  First, we can expect a minor increase in 

prediction error as we increase the scale of our profile.  

Secondly, it is apparent from the map in Figure 2 that 

there is a significant territorial bias in this activity.  

Finally, it is possible that Sell Drug attribute 

preferences within the Avon gang differ from those of 

other groups. 

 

Effects of Positioning Error 

 

In general, prediction error increases gradually with the 

scale of the organization being profiled.  Naturally, 

error increases significantly if the organization contains 

actors with conflicting preferences.  In this way, 

analysis of the effect of organizational-scale on 

prediction error can reveal which groups contain actors 

with similar preferences. 

 

We also evaluate the effect of positioning error on two 

activities in our dataset.  To relate scale, we define our 

profile area to be 10km x 10km.  The leftmost graph 

shows the hit rates with no error.  The middle graphs 

shows the effect of a 750m standard error and the 

rightmost graphs shows the effect of a 1.5km error. 

 

Figure 6 shows the effect of positioning error on the 

Murder activity.  Recall from the previous section that 

the Murder profiler draws most heavily from the 

attribute-preference model.  As positioning error 

increases, higher-frequency attributes are “blurred.”  

This reduces the overall effectiveness of the attribute 

model, and reduces predictive quality.  While some 

level of accuracy still remains with a 750m error, the 

model is essentially unusable with a 1.5km error. 

 

As shown in Figure 7, the (“Avon”, “Sell Drug”) 

profile is significantly more tolerant to positioning 

error.  Though the average prediction error increases 

with positioning error, the increase is gradual.  This is 

due to the fact that the main indicator is the proximity 

model, which tends to be a much lower frequency 

signal. 

 

 
Figure 6 The effect of positioning error on prediction of the Murder activity. (left) no  error, (middle) 

750m error, (right) 1.5km error 
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Figure 7: The effect of positioning error on prediction of the Avon-Sell Drug activity. (left) no  error, 

(middle) 750m error, (right) 1.5km error 

 

 

CONCLUSION 

 

Though the above analysis deals with the detection of 

drug-trafficking activity, the approach has significant 

relevance to detection of any partially observable agent 

behavior.  For example, a relevant process theory could 

be developed for the domain of bank fraud or identity 

theft.  Preference functions could be automatically 

developed for each individual based on purchase 

history.  Spatial constraints could be formed based on 

the locations of purchases.  Deviations in the known 

patterns would result in warnings of possible 

adversarial activity. 

 

This initial investigation has turned up a number of 

promising directions for future research that would 

build upon and refine the initial approach.  There are a 

number of ways in which the basic process model 

framework in the prototype could be extended.  The 

initial analysis focused on temporal constraints when 

detecting related events.  Process models may also 

contain spatial constraints, however, which can specify 

either a bound on or a preference for minimizing 

factors such as distance, transit time, safety, or number 

of checkpoints between two events.  If we were to 

consider the entire process model while generating 

predictions for a given activity, we could refine our 

prediction by taking into account spatial constraints 

between that activity and other activities in the process.  

This might significantly improve prediction accuracy. 

 

Another limitation of the process modeling approach is 

that it requires a library of process models to work 

from.  Currently, the system expects that these models 

are provided by a subject matter expert, probably 

created manually using some type of software tool.  For 

large numbers of agents with rapidly-evolving 

behavior, the analyst would become a serious 

bottleneck and maintaining an up-to-date and 

comprehensive process model library would become 

difficult.  It would thus be useful to explore approaches 

to automatically learning process models through 

analysis of the event stream. 

 

If an existing “seed” library of process models is 

available, a case-based reasoning (CBR) approach to 

learning new process models might be feasible.  In this 

approach, when the system fails to produce good 

matches against existing process models, it tries to 

generate a new process model that is a better fit.  It 

would first retrieve the existing process model that best 

fits the events.  It would then adapt that process model 

to improve its fit to the data, either by adding or 

removing events or by changing constraints between 

events.   The new process model then is added to the 

library. 

 

Another direction for future work is to investigate 

methods for learning process models “from scratch,” 

using only historical event data and no pre-existing 

models.  One avenue here is statistical approaches that 

consider co-occurrence of events and actors.  Another 

avenue is model-based approaches that use domain-

specific knowledge to construct process models in 

causal fashion based on agent goals.  Obviously the 

latter might require a significant knowledge 

engineering effort that might outstrip the difficulty of 

simply hand-constructing process models, but there 

may be approaches that minimize the domain 

knowledge required. 
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